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Abstract: We consider stochastic dynamical systems operating under synchronization constraints on system
events. The system dynamics is represented by a linear vector equation in an idempotent semiring through
second-order state transition matrices with both random and constant entries. As the performance measure of
interest, the Lyapunov exponent defined as the asymptotic mean growth rate of the system state vector is examined.
For a particular system, we derive a general expression for the exponent under the assumptions that the random
matrices are independent and identically distributed, and their random entries have finite means. To illustrate, the
exponent is calculated in the case when the random entries have exponential and continuous uniform distributions.
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1 Introduction

Dynamical models describing time evolution of actual
systems in engineering, manufacturing, economics,
management, and other areas, frequently involve var-
ious synchronization mechanisms for events that may
occur in the systems. Specifically, in a manufacturing
system, production process of a new product cannot
start before an appropriate raw material arrives. In a
data communication system, a station initiates trans-
mission of a new data packet to another station as
soon as it receives an acknowledgment that the pre-
vious packet reached the destination.

The dynamics of many systems with event syn-
chronization is described with a state vector represent-
ing the occurrence time of system events. The state
evolution of the system can be then determined by
a state transition matrix through an equation that is
linear in the sense of an idempotent semiring [1–4].
Of particular interest and concern are stochastic mod-
els with random matrices, which can usually provide
more adequate representation of actual systems.

In the analysis of system performance, one often
needs to evaluate the mean growth rate of the state
vector, which is normally referred to as the Lyapunov

exponent of the system [1, 5]. The exponent presents
the mean time of one system operation cycle (produc-
tion cycle, communication session, etc), whereas its
inverse can be regarded as the system throughput.

Exact evaluation of the Lyapunov exponent can
be a rather cumbersome problem even for quite simple
systems. Most of the known results are obtained for
systems with second-order matrices that have expo-
nentially distributed entries (see, e.g. [5–12]). There
are also a few solutions obtained for discrete uniform,
Bernoulli, and geometric distributions [5–7].

The aim of this paper is to overview and fur-
ther extend the list of known results for systems with
second-order matrices. We find the Lyapunov expo-
nent when the matrix has its first row containing non-
negative random variable with finite mean and con-
stant, while the other row consists entirely of zeros.

While being of independent interest, the system
under study acquires evident practical and theoretical
significance when considered in the context of all re-
lated models with known solution, which, taken to-
gether, can cover a range of actual systems and pro-
vide a basis for development of a general solution.
Although it may appear that the system is quite sim-
ple, its related exact solution proves to be nontrivial.
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At the same time, a particular form of the matrix en-
ables one to obtain the solution under general condi-
tions and in a general form. Unlike known results, the
solution does not rely on exponential distribution as-
sumptions; instead, it is given by an expression that is
independent of particular distribution and yet suitable
for both numerical computations and further analysis.

The paper is organized as follows. We start with
some motivating examples and an overview of known
results. Furthermore, a new system with second-order
matrix is described and its preliminary analysis is
given. To compute the Lyapunov exponent, we first
change variables from the state vector to a single state
variable. A sequence of one-dimensional distribution
functions associated with the variable is then intro-
duced and convergence analysis for the sequence is
performed. An expression for the exponent is derived
as the mean of the limiting distribution. Finally, exam-
ples of calculation of the exponent in the case of ex-
ponential and continuous uniform distributions of the
random entry in the state transition matrix are given.

2 Motivating Examples
We start with two example systems that are drawn
from manufacturing and telecommunications. Other
related examples can be found in [1, 5, 7].

2.1 Manufacturing
Consider a manufacturing system that consists of two
production centers A and B . Each center produces
its output based on use of an output from the other
center. The operation of each center as well as of the
entire system forms a sequence of production cycles.

Every cycle involves simultaneous production of
a new output and transportation of the output from the
previous cycle. A center completes its current cycle
as soon as it finishes production of the current output
and the output from the other center arrives. A current
production cycle of the entire system comes to the end
and the next cycle is initiated as soon as both centers
A and B complete their related cycles.

Suppose that at the initial time, each center has
its output available for delivery. Given production and
transportation time at both centers, one is often inter-
ested in evaluating the mean time of production cycle
as the number of cycles goes to infinity. The system
throughput determined as the inverse of the mean cy-
cle time is another performance measure of interest.

For every cycle k = 1, 2, . . . we introduce the
following notation. By x(k) and y(k) we denote the
respective cycle completion epochs at centers A and
B . Let αk and δk be the production time at centers A
and B , and let βk and γk be the transportation time
from center B to A and from A to B .

With the condition that x(0) = y(0) = 0 , the dy-
namics of the system is represented by two equations

x(k) = max(x(k − 1) + αk, y(k − 1) + βk), (1)

y(k) = max(x(k − 1) + γk, y(k − 1) + δk). (2)

The mean cycle time for the system is given by
the limit

λ = lim
k→∞

1

k
max(x(k), y(k)), (3)

where λ can be considered as the mean asymptotic
growth rate of the state vector, and it is normally re-
ferred to as the Lyapunov exponent for the system.

2.2 Telecommunications
Consider a system of two work stations A and B ,
which exchange messages over a communication net-
work. Each station generates and sends messages in
response to messages received from the other station.
If a message is sent from a station, it immediately en-
ters the network and then goes from one intermediate
node to another until it arrives at the other station.

The operation of each station and of the whole
system consists in a sequence of communication ses-
sions. A new session at a station begins with genera-
tion of a new message and completes by sending the
message to the other station. Once the message is gen-
erated, it is sent from the station as soon as a message
from the other station arrives. A current communi-
cation session of the system starts when both nodes
A and B complete their previous sessions, and lasts
until they complete their sessions.

For every session k = 1, 2, . . . we denote by x(k)
and y(k) the completion epochs for stations A and
B . Let αk and δk be the message generation time
at station A and B , and βk and γk be the message
transmission time from B to A and from A to B .

Suppose that αk , βk , γk , and δk are given for all
k = 1, 2, . . . Consider the problem of evaluating the
mean communication session time which one can take
as a natural performance measure for the system. As
it is easy to see, the dynamic equations for the system
have the same form as (1)-(2). Moreover, the mean
communication session time can be represented as (3).
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3 System Representation
First note that equations (1)-(2) can be rewritten in
terms of an idempotent semiring with the operation
of maximum as semiring addition ⊕ , and arithmetic
addition as semiring multiplication ⊗ , in the form

x(k) = αk ⊗ x(k − 1)⊕ βk ⊗ y(k − 1),

y(k) = γk ⊗ x(k − 1)⊕ δk ⊗ y(k − 1).

Let us introduce a system state vector and a state
transition matrix,

z(k) =

(
x(k)
y(k)

)
, A(k) =

(
αk βk
γk δk

)
.

We assume that for all k = 1, 2, . . . the matrices
A(k) are independent and identically distributed.

Now we can replace the above scalar equations
with one vector equation

z(k) = A(k)⊗ z(k − 1),

where the matrix-vector multiplication ⊗ is thought
of in the sense of scalar operations ⊕ and ⊗ .

Consider the problem of evaluating the Lyapunov
exponent defined by (3). Provided that all entries in
A(k) have finite means, it is not difficult to verify the
existence of the limit at (3) by using the ergodic theo-
rem in [14]. Application of the theorems to the system
under consideration leads to the conclusions that the
limit exists with probability one, and that the limiting
value can be evaluated as

λ = lim
k→∞

1

k
Emax(x(k), y(k)). (4)

Note that the last result allows one to reduce the
problem of evaluating limits for sequences of random
variables to that for sequences of their mean values.

3.1 Preliminary Results
Assume the entries αk , βk , γk , and δk in each matrix
A(k) to be independent random variables that have
exponential distributions with respective parameters
µ , ν , σ , and τ . A general solution to the problem
is given in [10], where evaluation of the exponent re-
duces to solution of a system of linear equations and
calculation of a linear functional on the solution. An-
other approach based on the joint Laplace transform
of the state vector components is proposed in [5].

There are some cases when the Lyapunov expo-
nent are derived in closed form as rational functions

of the distribution parameters, including those with
µ = ν = σ = τ [6, 7] and with µ = τ , ν = σ [5, 8].

Assume that the time to perform certain opera-
tions in a system (e.g., production of output at a cen-
ter or transmission of messages between stations) is
sufficiently short as compared to that of the other op-
erations. Under this assumption, one can usually set
the duration of the operations equal to zero with neg-
ligible loss of accuracy, and then consider the matrix
A(k) with zero in place of one or more its entries.

As a more general case, one can consider a sit-
uation when there is an operation time that remains
constant for all cycles in a system, which leads to ma-
trices with arbitrary nonnegative constant elements.

Suppose that some of the random entries in each
matrix A(k) are replaced with nonnegative constants.
Systems with matrices having zero constants are ana-
lyzed in [5, 9, 10]. Examples of the considered matri-
ces together with related results are given in Table 1.

A(k) λ

(
αk 0
0 δk

)
µ4+µ3τ+µ2τ2+µτ3+τ4

µτ(µ+τ)(µ2+τ2)

(
0 βk
γk 0

)
4ν2+7νσ+4σ2

6νσ(ν+σ)

(
αk βk
0 0

)
2µ4+7µ3ν+10µ2ν2+11µν3+4ν4

µν(µ+ν)2(3µ+4ν)

Table 1: Results for matrices with zero entries.

Let c be an arbitrary nonnegative constant. Re-
lated solutions (see, e.g. [12,13]) are listed in Table 2.

4 A Stochastic Dynamical System
Now we extend the above results to systems that have
matrices of the form

A(k) =

(
αk c
0 0

)
.

that gives a more general solution where the assump-
tion of exponential distribution is no longer needed.
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A(k) λ

(
αk 0
0 c

)
c+ 2e−3µc

µ(2−4µce−µc+µ2c2e−2µc)

(
c βk
0 0

)
c+ 2e−2νc

ν(2+e−2νc)

(
αk c
c c

)
c+ 2e−µc

µ(2+e−µc−2e−2µc+e−3µc)

Table 2: Results for matrices with a constant c ≥ 0 .

We assume αk to be a nonnegative random vari-
able with the distribution function F (t) and finite
mean a , and c to be a nonnegative constant.

To solve the problem of evaluating the Lyapunov
exponent, we first refine equations (1)-(2) to get

x(k) = max(x(k − 1) + αk, y(k − 1) + c), (5)

y(k) = max(x(k − 1), y(k − 1)). (6)

Since the conditions αk ≥ 0 and c ≥ 0 are ful-
filled, for all k = 0, 1, . . . we have

x(k) = max(x(k − 1) + αk, y(k − 1) + c)

≥ max(x(k − 1), y(k − 1)) = y(k).

With this inequality, dynamic equations (5)-(6)
take the form

x(k) = max(x(k − 1) + αk, y(k − 1) + c), (7)

y(k) = x(k − 1), (8)

whereas (4) reduces to the limit

λ = lim
k→∞

1

k
Ex(k). (9)

Consider two particular cases when the solution
can be immediately obtained based on simple algebra.
Let us first assume αk to be bounded below such that
αk ≥ c . Through iteration of (7), we get

x(k) = x(k − 1) + αk = · · · = α1 + · · ·+ αk,

and then immediately arrive at λ = Eα1 = a .

Furthermore, we examine a system where the ran-
dom variables αk have a finite support such that the
condition αk ≤ c/2 holds for all k . It is not difficult
to verify based on (5)-(6) that

x(k) =

{
c
2k + max(α2, α4, . . . , αk), if k is even;
c
2(k + 1), if k is odd.

Application of (9) gives the result λ = c/2 .

5 Lyapunov Exponent Evaluation
We now turn to a general case of a nonnegative ran-
dom variable αk with either infinite support or a finite
support that does not satisfy the above condition.

5.1 New State Variable and Its Distribution
First we introduce a new state variable

X(k) = x(k)− x(k − 1)

for all k = 1, 2, . . . , and note that

x(k) = X(1) + · · ·+X(k).

Furthermore, we further reduce equations (7)-(8)
to one equation in the new variable

X(k) = max(αk, c−X(k − 1)),

and rewrite (9) in the form

λ = lim
k→∞

1

k

k∑
i=1

EX(k). (10)

Let us define the probability distribution function

Φk(t) = P{X(k) < t}.

It is easy to verify that

Φ0(t) =

{
0, if t ≤ 0;

1, if t > 0.

For each k ≥ 1 we have

Φk(t) = P{max(αk, c−X(k − 1)) < t}.

After evaluation of the probability, we arrive at
the recursive equation

Φk(t) =


0, if t ≤ 0;

F (t)(1− Φk−1(c− t)), if 0 < t ≤ c;
F (t), if t > c.
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5.2 Convergence of Distributions
Let us consider the above recursive equation when
0 < t ≤ c under the condition that the distribution
defined by F (t) has either infinite support or a finite
support that is not bounded from above by c/2 .

We introduce G(t) = F (t)F (c − t) and verify
that G(t) < 1 . It is clear that the inequality is valid in
the case of the distribution with infinite support.

Suppose the distribution has a finite support with
an upper bound U > c/2 . To show that G(t) < 1 ,
assume to the contrary that G(t) = F (t)F (c−t) = 1 .
From this equality we have U ≤ t ≤ c− U and then
U ≤ c/2 , which is a contradiction.

For all even k = 2m , by iterating the equation,
we arrive at the function

Φ2m(t) = 1− (1−F (t))(1+G(t)+ · · ·+Gm−1(t)).

The sum on the right-hand side presents an ini-
tial part of the geometric series with the common ratio
G(t) < 1 . In the limit as m tends to infinity, for all t
under consideration, the subsequence Φ2m(t) goes to

Φ(t) = 1− 1− F (t)

1−G(t)
=
F (t)−G(t)

1−G(t)
.

In the same way, for all k = 2m + 1 , we verify
that Φ2m+1(t)→ Φ(t) as m→∞ .

From the convergence of the subsequences to a
common limit, it follows that when 0 < t ≤ c , the
entire sequence Φk(t) also converges to

Φ(t) =
F (t)−G(t)

1−G(t)
=
F (t)(1− F (c− t))
1− F (t)F (c− t)

.

Taking into account that Φk(t) = F (t) if t > c ,
we finally conclude that for all t , as k → ∞ , the
sequence of functions Φk(t) converges to the function

Φ(t) =


0, if t ≤ 0;
F (t)(1−F (c−t))
1−F (t)F (c−t) , if 0 < t ≤ c;
F (t), if t > c.

It is clear that Φ(t) is a distribution function for a
random variable, which will be referred to as X .

5.3 Evaluation of the Lyapunov Exponent
Since X(k) converges to X in distribution, we see
that EX(k) → EX as k → ∞ . Therefore, the limit
at (10) becomes

λ = EX =

∫ ∞
0

tdΦ(t).

Substitution of Φ(t) and rearrangement of terms
gives the representation

λ =

∫ ∞
0

tdF (t)

+

∫ c

0
td

(
F (t)(1− F (c− t))
1− F (t)F (c− t)

− F (t)

)
,

where the first integral is equal to a .
Denote the second integral by I . By applying in-

tegration by parts, we get

I =

∫ c

0

F (t)F (c− t)(1− F (t))

1− F (t)F (c− t)
dt.

Finally, we arrive at the solution

λ = a+

∫ c

0

F (t)F (c− t)(1− F (t))

1− F (t)F (c− t)
dt. (11)

Note that the last result is derived when the proba-
bility distribution has either infinite support or a finite
support with its upper boundary U > c/2 . In the case
of finite support with U ≤ c/2 , there is the solution
λ = c/2 obtained in a previous section.

6 Examples
In this section we give examples of calculating λ with
(11) for some particular probability distributions.

6.1 Exponential Distribution
First consider the case of the exponential distribution
with distribution function

F (t) = max(0, 1− e−µt).

In (11), we have a = 1/µ , while the integral
takes the form

I =

∫ c

0

dt

1− e−µ(c−t)(1− eµt)
− 1

µ
(1− e−µc).

Calculation of the integral gives

λ =
c

2
+
e−µc

µ
+

3 arctan
√

4eµc − 1− π
µ
√

4eµc − 1
.

6.2 Continuous Uniform Distribution
Consider the uniform distribution on the segment
[0, 2a] with the distribution function

F (t) =


0, if t ≤ 0;
t
2a , if 0 < t ≤ 2a;

1, if t > 2a.
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To evaluate λ , we examine three cases. First we
assume that c ≤ 2a and apply (11). The integral in
(11) reduces to that of the form

I =
1

2a

∫ c

0

t(c− t)(2a− t)
4a2 − t(c− t)

dt.

After calculating the integral, we get

λ =
(2a− c)2

4a
+

4a(4a− c)√
16a2 − c2

arctan
c√

16a2 − c2
.

Suppose that 2a < c ≤ 4a . Now we have

I =
1

2a

∫ c−2a

0
tdt+

1

2a

∫ 2a

c−2a

t(c− t)(2a− t)
4a2 − t(c− t)

dt.

Evaluation of the integrals gives

λ = c− 2a+
4a(4a− c)√

16a2 − c2
arctan

4a− c√
16a2 − c2

.

When c > 4a , we arrive at the case of finite sup-
port with the upper boundary U = 2a ≤ c/2 . The
solution now takes the form λ = c/2 .

By combining the results for all cases, we finally
get the solution given by

λ =



(2a−c)2
4a + 4a

√
4a−c
4a+c arctan c√

(4a−c)(4a+c)
,

if c ≤ 2a;

c− 2a+ 4a
√

4a−c
4a+c arctan

√
4a−c
4a+c ,

if 2a < c ≤ 4a;
c
2 , if c > 4a.
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