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Abstract: - The paper describes the relationship between changes of deflection of beams due damages and the natural 

frequency changes. Previous papers relate the influence of damage location and severity upon the natural frequency 

changes of weak-axis bending vibration modes, for which the authors have found a correlation. It base on the reduction 

of stiffness in a slice of the beam and consequently on the reduction of the potential stored energy in that slice. While 

the stiffness reduction affect also the deflection under the own mass of the beam, we concluded that it can be found a 

relationship between deflection and frequency changes. Researches performed this direction revealed that it is a clear 

dependency between deflection and frequency changes, what makes deflection an important feature of beam behavior, 

usable in damage assessment. 
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1   Introduction 
The use of natural frequency shifts for damage detection 

is largely presented in literature [1], [2], [3] and [4]. The 

methods based on these changes are classified into two 

important groups [5]: methods limited to damage 

detection and methods which supplementary permit to 

locate and to quantify damages. 

The dynamic behavior of structures is influenced by 

damages, changing their mechanical and dynamic 

characteristics such as natural frequencies [6], mode 

shapes and their curvatures [7], damping ratio and 

stiffness or flexibility [8]. Former approaches fit 

particular cases; recent researches made by the authors 

found a phenomenon permitting the development of a 

robust, general method, able to detect, locate and assess 

open cracks in all types of beams, for a large range of 

severity levels [9], [10] and [11]. In includes a relation 

composed by two terms: one linked with the damage 

severity and the second to its position. 

The work presented in this paper bring new 

knowledge in this field, by revealing the way how a 

coefficient can be determined using the deflection of the 

beam under own mass in damaged and undamaged case. 

 

2   Damage detection method 
Methods for detecting damage in beams were presented 

in the works [12], [13]. In this paper is firstly made a 

brief description of this method. 
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The considered damage is open type damage; on the 

width of the beam and the damage can be located 

anywhere along the length of the beam. The depth of the 

damage can take values of up to half the height of the 

cross section. 

Method for detecting the damage in beams consists 

of measuring the natural frequency for the first ten 

modes of vibration on weak bend axis of the beam by 

using a single accelerometer, having already measured 

the natural frequencies for the undamaged beam and 

comparison of relative differences with specified value 

obtained analytically or numerically, values stored in 

database. By comparison, result the damage location and 

the assessment of damage depth [14]. 

Analytical calculation of natural frequency for the 

damaged beam, established by the authors is: 

Relatia analitica pentru calculul frecventelor proprii 

la bara cu defect, stabilita de autori este de forma: 
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where, 

  iD xf ),( ∂ [Hz], represents the natural frequency of 

vibration mode i for the damaged beam with damage located 

in the x position and damage depth δ; 
  

iUf [Hz], represents the natural frequency of 

vibration mode i for the undamaged beam; 
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, is the second derivative of 

the mode shape. It is the law of natural frequency 

changes for damaged beam at vibration mode i; 

  )(δc  a coefficient that depends on the depth of 

the damage. For a damaged beam with the geometry, 

mechanical parameters and boundary condition known, 

the coefficient )(δc  has the same value regardless of 

mode of vibration i. 

In other words, for a damaged beam, knowing the 

value of the coefficient )(δc  and the damage location, 

by changing the value of natural frequency of 

undamaged beam in relation (1), for other vibration 

mode, by calculation, get its natural frequency for the 

damaged beam at considered vibration mode. 

The relationship (1) has been verified and validated 

by numerical methods and experimental measurements. 

Verification of relationship by numerical methods, 

modal analysis by using FEM, was made on beams of 

rectangular section with three type of boundary 

conditions: clamped beam, double clamped beam and 

simply supported beam. 

Validation of the method was made by experimental 

methods on clamped beams with different beam length 

and various cross sections. 

For example, it is considered the clamped beam in 

figure 1. 

The results obtained by analytical, numerical and 

experimental methods for the undamaged beams are 

presented in table 1 and 2, the results obtained for 

damaged beam with damage depth δ=0.25H, coefficient 

009507.0)25.0( =Hc , damage location at x1=0.098L are 

presented in table 3 and the results obtained for the 

damage location at x2=0.31L are presented in table 4. 

The damage width is of 0.002L. 

The real analyzed beam was a steel one, having the 

following geometrical characteristics: length L = 1000 

mm; width B = 50 mm and height H = 5 mm. 

Consequently, for the undamaged state the beam has 

the cross-section A = 250·10
-6

 m
2
 and the moment of 

inertia I = 520.833·10
-12

 m
4
. 

The material parameters of the specimens are: mass 

density ρ = 7850 kg/m
3
; Young’s modulus E = 2.0·10

11
 

N/m
2
 and Poisson’s ratio µ = 0.3. 

 

 
Fig. 1. Cantilever damaged beam 

 

Table 1 

Natural frequencies for undamaged beam [Hz] 

Vibration 

Mode 

i 

Analytic FEM Measured 

fAi fFEMi fMi 

1 4.077 4.08986 4.035 

2 25.550 25.6266 23.284 

3 71.539 71.7545 70.970 

4 140.189 140.6275 139.090 

5 231.742 232.5200 230.336 

6 346.182 347.4518 344.196 

7 483.511 485.4578 481.809 

8 643.727 646.5624 641.261 

9 826.832 830.7827 823.897 

10 1032.825 1038.1089 1030.068 
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Table 2 

Natural frequencies for undamaged beam [Hz] 

Vibration 

Mode 

i 

Analytic FEM Measured 

fAi fFEMi fMi 

1 4.077 4.08986 4.060 

2 25.550 25.6266 25.439 

3 71.539 71.7545 71.426 

4 140.189 140.6275 139.902 

5 231.742 232.5200 231.038 

6 346.182 347.4518 344.750 

7 483.511 485.4578 482.503 

8 643.727 646.5624 641.823 

9 826.832 830.7827 824.910 

10 1032.825 1038.1089 1030.707 

 
In table 5, are given the relative frequency shift  from 

tables 1 and 3 and in table 6 are given the relative 

frequency shift  from tables 2 and 4. 

The relative frequency shifts have been determined 

with the relationship (2) 
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Table 3 

Natural frequencies for damaged beam with 

damage at 0.098L and δδδδ=0.25H [Hz] 
Vibration 

Mode 

i 

Analytic FEM Measured 

fDAi fDFEMi fDM 

1 4.061 4.059 4.005 

2 25.512 25.551 25.211 

3 71.518 71.711 70.911 

4 140.188 140.649 139.87 

5 231.652 232.438 230.175 

6 345.797 346.907 343.458 

7 482.631 484.084 480.231 

8 642.303 644.241 638.874 

9 825.057 827.813 821.035 

10 1031.109 1035.40 1026.917 

 
The results presented in tables 5 and 6, it is apparent 

that for a certain damage depth, if it is know the 

coefficient )(δc  for the first vibration mode, it can be 

determined the natural frequencies in analytical way for 

other vibration modes. 
 
 
 
 
 

Table 4 

Natural frequencies for damaged beam with 

damage at 0.31L and δδδδ=0.25H [Hz] 
Vibration 

Mode 

i 

Analytic FEM Measured 

fDAi fDFEMi fDM 

1 4.070 4.076 4.046 

2 25.533 25.604 25.411 

3 71.380 71.483 71.158 

4 140.108 140.487 139.702 

5 231.622 232.321 230.803 

6 345.306 345.924 343.336 

7 482.947 484.459 481.417 

8 643.638 646.435 641.515 

9 824.976 827.596 821.543 

10 1031.051 1035.032 1027.791 

 
Table 5 

Relative frequency shift for damaged beam with 

damage located at x1=0.098L [%] 

Vibration 

Mode 

i 

Analytic FEM Measured 

∆∆∆∆fAi ∆∆∆∆fFEMi ∆∆∆∆fMi 

1 0.712 0.761 0.732 

2 0.270 0.295 0.288 

3 0.056 0.060 0.083 

4 0.001 -0.015 0.002 

5 0.071 0.035 0.070 

6 0.206 0.157 0.214 

7 0.337 0.283 0.328 

8 0.410 0.359 0.372 

9 0.398 0.358 0.347 

10 0.308 0.286 0.306 

 

Table 6 

Relative frequency shift for damaged beam with 

damage located at x1=0.31L [%] 

Vibration 

Mode 

i 

Analytic FEM Measured 

∆∆∆∆fAi ∆∆∆∆fFEMi ∆∆∆∆fMi 

1 0.317 0.337 0.344 

2 0.117 0.089 0.109 

3 0.412 0.378 0.375 

4 0.106 0.100 0.143 

5 0.096 0.086 0.102 

6 0.469 0.440 0.410 

7 0.216 0.206 0.225 

8 0.026 0.020 0.048 

9 0.416 0.384 0.408 

10 0.318 0.296 0.283 

 

The question arises of determining the )(δc  

coefficients. 
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3   Global stiffness reduction and changes 

in frequency  
The natural frequencies for the undamaged cantilever 

beam are are given with relation: 
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where iα  represents the first ten solutions of equation: 

0coshcos1 =⋅+ αα , for undamaged cantilever beam and 

g [m/s
2
] is the acceleration due to gravity. 

The maximum deflection for the cantilever beam is 

obtained with the relation: 
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8
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From relation (4) it can be obtain: 
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which is introduced in formula (3) and the natural 

frequencies for the undamaged cantilever beam can be 

calculated with the formula: 
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By analogy, in the case of damaged beam, with the 

damage located near the clamped end (Dj~0 in figure 1), 

the natural frequencies shall be determined: 
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where vD [m] represents the maximum deflection of the 

damaged cantilever beam. 

Taking into consideration the relationship (2) and by 

replacing the relationships of natural frequencies (6) and 

(7), results: 
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Finally, the relationship (8) can be written: 
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Consequently, the natural frequency for the damaged 

beam becomes: 
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Taking into consideration the second derivative of 

the mode shape and introduced it in (10), get the 

function for natural frequencies for the damaged beam: 
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By comparing (1) to (11) shall be observed that: 
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)(
)(

yv

vyv
c

D

D −
=δ  (12) 

 

is the coefficient that depends on the depth of the 

damage. 

For a cantilever beam with two cross sections, loaded 

under its own weight, the maximum deflection is given 

by formula: 
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where, I0(y) [m
4
] is the moment of inertia in the 

damaged area.  

The moment of inertia depends on the damage depth; 
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where  x1 [m] is the damage width multiplied with π . 
For the considered cantilever beam, in table (7) are 

presented maximum deflection obtained by analytical 

and numerical calculation for the undamaged beam.  
 

Table 7 

Maximum deflection for undamaged beam v [mm] 

Analytic FEM 

23.095 23.082 
 

For damaged beam, the maximum deflection 

obtained by analytical and numerical calculations are 

presented in table 8. The damage width is of 2 mm and 

damage depth of 8%, 17%, 25%, 33%, 42%, 50% and 

58% in respect to the beam height. 

The natural frequencies for the considered examples, 

analytic obtained with formula (11) and numeric 

obtained with modal analysis, are presented in tables 1 

and 2 for the undamaged beams, and tables 3 and 4 for 

the damaged beams. 

Advances in Remote Sensing, Finite Differences and Information Security

ISBN: 978-1-61804-127-2 41



Table 8 

Maximum deflection for damaged beam vD [mm] 

Damage 

depth δδδδ    
Analytic FEM 

0.08H 23.188 23.146 

0.17H 23.339 23.269 

0.25H 23.540 23.433 

0.33H 23.852 23.693 

0.42H 24.437 24.185 

0.50H 25.373 24.919 

0.58H 27.161 27.244 

 

 

4   Conclusion 
The damage detection method presented in the paper, 

applicable to beams with open cracks, is based on 

certain phenomena characteristic to the dynamic 

behaviour of beams, highlighted as a result of several 

analytical, numerical and experimental studies 

developed by the authors. 

Observing the relationship (11) we concluded that it 

is a relationship between deflection and frequency 

changes. 

The relationship (12) gives a solution for the 

previous works of authors. 

For a level of damage depth, the value obtained for 

c(δ) allows us to calculate the natural frequency for 

damaged beam in any vibration mode, in any location of 

the damage on the beam. 

Researches performed this direction revealed that it 

is a clear dependency between deflection and frequency 

changes, what makes deflection an important feature of 

beam behavior, usable in damage assessment. 

 

Acknowledgements 
The authors gratefully acknowledge the support of the 

Managing Authority for Sectoral Operational 

Programme for Human Resources Development 

(MASOPHRD), within the Romanian Ministry of 

Labour, Family and Equal Opportunities by co-financing 

the project “Excellence in research through postdoctoral 

programmes in priority domains of the knowledge-based 

society (EXCEL)” ID 62557. 

 

 

References: 

 [1] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. 

Shevitz, Damage identification and health 

monitoring of structural and mechanical systems 

from changes in their vibration characteristics: a 

literature review, Report No. LA 13070-MS, Los 

Alamos National Laboratory, Los Alamos, NM, 

1996 

[2] O.S. Salawu, Detection of structural damage 

through changes in frequency: a review, Engineering 

Structures, 19(9), 1997, pp. 718-723. 

[3] D. Balageas, C.P. Fritzen, A. Güemes, Structural 

health monitoring, ISTE Ltd, London, 2006 

[4] S.W. Doebling, C.R. Farrar, M.B. Prime, A summary 

review of vibration based damage identification 

methods, Shock Vibration Digest, 30(2), 1998, pp. 

91-105. 

[5] A. Rytter, Vibration based inspection of civil 

engineering structures. Ph.D. Thesis, Aalborg 

University, Denmark, 1993 

[6] P. Cawley, R.D. Adams, The location of defects in 

structures from measurements of natural 

frequencies. Journal of Strain Analysis, 14(2), 1979, 

pp. 49-57. 

[7] A. K. Pandey, M. Biswas, M.M. Samman, Damage 

detection from changes in curvature mode shapes. 

Journal of Sound and Vibration 145 (1991), pp. 321–

332.  

[8] A.K. Pandey, M. Biswas, Damage Detection in 

Structures Using Changes in Flexibility Journal of 

Sound and Vibration, 169 (1994), pp. 3-17  

[9] G-R. Gillich, Z-I. Praisach, D. Moaca-Onchis, About 

the Effectiveness of Damage Detection Methods 

Based on Vibration Measurements, Proceedings of 

the 3rd WSEAS International Conference on 

Engineering Mechanics, Structures, Engineering 

Geology (EMESEG '10), Corfu Island, Greece, July 

22-24, 2010 

[10] G.R. Gillich, Z.I. Praisach, D. Onchis-Moaca, N. 

Gillich, How to correlate vibration measurements 

with FEM results to locate damages in beams, 4
th
 

International Conference on finite Differences - 

Finite Elements - Finite Volumes - Boundary 

Elements, Paris, 28-30 April 2011 

[11] G.R. Gillich, Z.I. Praisach, Robust method to 

identify damages in beams based on frequency shift 

analysis, SPIE Smart Structures and Materials & 

Nondestructive Evaluation and Health Monitoring 

(Vol. 8348), March 2012, San Diego, CA 

[12] A. Morassi, F. Vestroni, Dynamic Methods for 

Damage Detection in Structures, CISM Courses and 

Lectures, Vol. 499, Springer Wien New York, 2008 

[13] M.I. Friswell, J.E. Mottershead, Finite element 

model updating in structural dynamics. Kluwer 

Academic Publishers, Dordrecht, The Netherlands, 

1995 

[14] Z.I. Praisach, P.F. Minda, G.R. Gillich, A.A. 

Minda, Relative Frequency Shift Curves Fitting 

Using FEM Modal Analyzes, 4
th
 International 

Conference on finite Differences - Finite Elements - 

Finite Volumes - Boundary Elements, Paris, 28-30 

April 2011 

Advances in Remote Sensing, Finite Differences and Information Security

ISBN: 978-1-61804-127-2 42




