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Abstract: - This paper describes how to implement efficient FIR filters on ARM Cortex-M3 microprocessors. 
Two multiply-accumulate instructions are discussed: MLA – multiply with accumulate, using 32-bit operands 

and producing a 32-bit result, and SMLAL – signed multiply with accumulate, using 32-bit operands and 
producing a 64-bit result. There are advantages and disadvantages for each instruction. It is possible, for 
example, to reuse the data loaded in memory and compute multiple output samples per iteration. MLA is more 
suitable for this technique than SMLAL. But SMLAL can provide higher accuracy than MLA. This paper gives 
also an insight on how to increase the filtering accuracy with non-uniform coefficient fractional wordlength. 
This can be useful if there are very small and very large floating-point constant coefficients. 
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1 Introduction 
ARM Cortex-M3 is a modern, high-performance 
(32-bit) processor designed for embedded 
applications (“M” comes from microcontroller). 
Though it is not primarily a DSP processor, it has 
multiply-accumulate instructions that are very 
convenient for signal processing algorithms [1]. 
Two of them are discussed in this paper: MLA – 

multiply with accumulate, using 32-bit operands and 
producing a 32-bit result, and SMLAL – signed 
multiply with accumulate, using 32-bit operands and 
producing a 64-bit result. These instructions are not 
something specific only to the ARM Cortex-M3 
processor. MLA was introduced in the ARMv2 
architecture and SMLAL was introduced in the 

ARMv3M architecture. (Cortex-M3 is based on the 
ARMv6M architecture.)  

ARM Cortex-M3 processors do not have 
floating-point coprocessors, which means that C 
compilers must emulate floating-point operations. 
This can be a problem, because even if the compiler 
libraries for floating-point are highly-optimized, for 

standard IEEE-754 accuracy results the execution 
time can be very long. In such cases it is important 
to consider if the calculations can be done in fixed-
point format [2,3]. That would mean using integer 
datatypes and operations instead of floating-point. It 
is possible to download libraries available on the 
Internet [4,5,6] or write custom routines (which can 
be made very efficient for a particular problem). 

 
 

2 Existing Libraries 
NXP Semiconductors and STMicroelectronics 
provide DSP libraries for ARM Cortex-M3 
microprocessors [4,5]. Both libraries contain FIR 
filtering routines. There are some minor differences 
between the two implementations like, for example, 
the format of input data, but in essence the 
implementations are the same.  

ARM Cortex-M3 processors cannot load from 
memory and perform arithmetic operations in 
parallel. This aspect was taken into account in the 
NXP and STM FIR filtering routines. In both cases 
the signal is filtered in blocks, in order to minimize 
the number of load and store operations (the 
samples and coefficients read from memory are 

reused). This technique is described in [7]. But there 
are some disadvantages. The signal to be filtered is 
processed entirely: if M is the length of the filter and 
N is the length of the input signal then in one call M 
by N multiply-accumulate operations are performed. 
The number of coefficients and the number of 
input/output samples must be multiples of 4 for 

MLA or multiples of 3 or 2 for SMLAL. And the 
MLA instruction produces 32-bit results – this is 
fine for applications in which the degree of accuracy 
needed is not very high. But if, for example, a filter 
with 24-bit coefficients is wanted, then MLA is 
insufficient. Switching from MLA to SMLAL is not 
very easy, because with SMLAL the register 
pressure is increased and the signal must be filtered 

in smaller blocks. 
The NXP FIR filtering routine has the following 

C declaration: 
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void vF_dspl_blockfir32(int *pi_y, int *pi_x, 

tS_blockfir32_Coeff *pS_Coeff, int i_nsamples);  

 

typedef struct  

{  

    int *pi_Coeff;  

    int NTaps;  

} tS_blockfir32_Coeff;  

 

The input signal and coefficients are declared as 

32-bit signed integers, but their values must be 

limited to a much smaller range than full 32-bit 

integer range. 

The STM FIR filtering routine has the following 

C declaration: 
 

void fir_16by16_stm32(int *a,short *x,struct 

COEFS *p,unsigned int N); 

 

typedef struct { 

    short *h; 

    unsigned int nh; 

} COEFS; 

 

The input signal and coefficients are declared as 

16-bit signed integers, which eliminates the 

possibility of multiplication overflow. The 

summation overflow is however possible, so the 

signal and/or the coefficients must be properly 

scaled. 

As an aside, the CMSIS 2.0 library provided by 
ARM [6,9] contains FIR filtering routines too. This 
library is written entirely in C for Cortex-M3 and 
Cortex-M4. There are two types of FIR filtering 
routines: normal (with SMLAL) and fast (with 

MLA). The source code does not tell anything 
directly about MLA or SMLAL; nevertheless, it is 
understandable what the compiler will do. The size 
of integer variables and explicit casts that appear in 
expressions are forcing either MLA or SMLAL. 
 

3 Coefficient Truncation with MLA 

and SMLAL 
To understand how much the coefficients of a FIR 
filter must be truncated for MLA and SMLAL 
instructions, below is presented an example: a 32-
tap filter, designed with Matlab FDATool, and a 12-
bit input signal (unsigned). The filter coefficients 
are scaled uniformly. 

 
 

3.1 MLA - multiply with accumulate, using 

32-bit operands and producing a 32-bit 

result 
Fig. 1 shows that with MLA the filter coefficients 
must be scaled in the integer interval [-16388; 
16388]. This means that maximum 14 bits can be 

kept from the floating-point representation 
significand. 

 

Figure 1: Finding the permitted interval of coefficient fixed-

point values 

In Fig. 1 the intervals are computed from bottom 
(SUM) to top (COEF). The SUM interval is set as 
the maximum signed 32-bit integer interval. The 

PRODUCT interval is computed by dividing the 
SUM interval low/high values by 32 (number of 
filter coefficients). 

In Fig. 1 the COEF interval is computed for the 
worst case, but in practice it can be two or more 
times wider, without the risk of overflow, because 
most coefficients have small amplitude. In [7] are 
given two inequalities for determining the 

accumulator (SUM) precision from the power of 
input signal and the power of filter coefficients. 

In general, if the filter order is great, then it will 
probably contain coefficients with very small 
amplitude. Such coefficients are almost lost as the 
fixed-point coefficient resolution is decreased. Fig. 
2 illustrates this. 

 

Figure 2: Coefficient bit matrix 
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Fig. 2 is constructed by extracting the significand 
bits from single precision floating-point coefficients. 
A row represents a coefficient. Each row is 
displaced horizontally for alignment (as for 
summation). White squares represent „1” bits. Most 

significant bits are located in the right hand side of 
the image. The black vertical line that separates bit 
exponent -15 from bit exponent -14 represents the 
truncation margin computed as shown in Fig. 1. 
What is located on the left of this line is lost by 
truncation. 

In Fig. 2 it can be observed the symmetry of 

coefficients. This property can be used to reduce 
somehow the number of memory accesses and 
multiplications, but here this possibility is not 
exploited. 

In Fig. 1 the resolution of the signal to be 
processed is12 bits – as if from a typical Cortex-M3 
analog to digital converter. But if the resolution 

would be greater, then the coefficients would have 
to “step back” – for every additional bit in the input 
signal the fractional wordlength of the coefficients 
must be decreased. 
 
3.2 SMLAL - signed multiply with accumulate, 

using 32-bit operands and producing a 64-bit 

result  

The FIR filter coefficients can use the full 32-bit 
signed integer range ([-2147483648; 2147483647]). 
The multiplication results cannot overflow. The 
summation results cannot overflow too, because the 
signal to be filtered has a resolution of 12 bits. It is 
interesting that with SMLAL the precision of 
coefficients can be greater than in the floating-point 

single precision format. This is easy to see: for 
SMLAL a coefficient can have up to 31 significant 
bits and the floating-point single precision format 
contains 24 significant bits (1 hidden/implicit). 

Below is given a simple FIR filtering routine that 
uses the SMLAL instruction. It is computing one 
output sample per call (unlike the NXP and STM 

FIR filtering routines). The ATPCS [8] calling 
convention is used. There is a loop inside the routine 
that contains 4 SMLAL instructions one after 
another – the purpose is to have less loop break 
tests. This puts a condition on the filter length, but is 
not a big problem. If the filter has, for example, 41 
coefficients, then the solution is to add one more 
SMLAL instructions after the loop body. 

Listing 1 (GCC assembly): 
 

# C declaration:  int64_t fir64(const int32_t* 

a, 

#       int32_t* x, uint32_t n); 

# Parameters: 

#     r0: coef ptr 

#     r1: input ptr 

#     r2: filter length (must be 4, 8, 

#                        a multiple of 4) 

 

fir64: 

    push {r4-r11} 

     

    mov r12, r2 

     

    mov r3, #0 

    mov r2, #0 

 

fir64_loop_start: 

    ldmia r0!, {r4-r7} 

    ldmia r1!, {r8-r11} 

 

    smlal r2, r3, r4, r8 

    smlal r2, r3, r5, r9 

    smlal r2, r3, r6, r10 

    smlal r2, r3, r7, r11 

 

    subs r12, r12, #4 

    bgt fir64_loop_start 

     

    mov r0, r2 

    mov r1, r3 

     

    pop {r4-r11} 

     

    bx lr 

 
Additional FIR filter implementations with 

SMLAL can be found in [7]. 
 

4 Speed and Accuracy Measurements 
A LPC1343 microcontroller is used for speed 
measurements. The test application is compiled with 

GCC with -O2 optimizations (the filtering routines 
are written in assembly, but the routines calling 
them are written in C). The filter coefficients are 
placed in SRAM (not in Flash). 

An ARM Cortex-M3 processor can have a so-
called Data Watchpoint and Trace (DWT) unit. This 
is something optional – not available on all 
processors (on LPC1343 yes). A DWT unit contains 

a 32-bit cycle counter register, named CYCCNT, 
which can be used for time measurements. The 
following code shows how to read the CYCCNT 
register: 

uint32_t cyccnt = *((uint32_t*)0xE0001004); 

Table 1. Performance results obtained with a 32-tap filter 

Code CYCLECOUNT SQNR 

(dB) 

Implementation with MLA 

instruction (STM DSP library) 

3936 

(one call) 

75.65 

Implementation with SMLAL 
instruction (Listing 1) 

10323 

(32 calls) 

177.00 

Single-precision floating-point 

expression 

175540-183764 

(32 calls) 

156.48 

 

The signal to quantization noise ratios (SQNR 
values) in Table 1 are computed on a Intel T7250 
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processor (using equivalent C code – MLA and 
SMLAL cannot be used) with the following 
formula: 
 











N

S
SQNR 10log10  (1) 

where S represents the power of the ideal signal 

(double precision floating-point code) and E 
represents the power of the error – which is 
computed as the difference between the ideal and 
the actual signal. The accuracy can also be 
estimated analytically [10]. 

The input data used to test the filtering routines 
influences the execution time. This might seem like 

a paradox at first sight; because there is no if-then-
else branching (always the same number of 
instructions is executed). The explanation lies in the 
SMLAL instruction timing [1] – it can take from 4 
to 7 cycles, depending on operands (this is called 
early termination). The cycles shown in Table 1 are 
obtained with random input data. 

The routine in that uses the SMLAL instruction 

(see Listing 1) takes 2.6 times more time than the 
STM FIR routine. On the other hand, it provides 
very high accuracy – greater than even the 
equivalent single precision floating-point code. The 
routine with the SMLAL instruction takes 
approximately 17 times less time than the equivalent 
single-precision floating-point code. 

The CYCLECOUNT values shown in Table 1 
correspond to filter coefficients placed in SRAM 
memory. It is possible to place them also in the 
Flash memory and save SRAM, but this will slightly 
decrease the execution speed. For example, the 
routine from Listing 1 executes with SRAM 
coefficients in 10323 cycles, but with Flash 
coefficients in 11571 cycles (12% more). The 

number of cycles obtained to access the Flash 
memory is the same for different system frequency 
values: 9, 18, 36, and 72MHz. 

The accuracy of the STM routine that uses the 
MLA instruction (in Table 1: 75.65dB) is obtained 
with coefficients scaled as shown in Fig. 1 and Fig. 
2. It is possible to increase the fractional wordlength 

and obtain a higher SQNR, but only by one bit. 
More than one bit is not possible, because the STM 
FIR filtering routine takes short int coefficients 
and the greatest coefficients would overflow. The 
NXP FIR filtering routine takes int coefficients. 

NOTE: There are two forms of floating-point 

code for signal filtering: as an expression (which 
can be very long if there are many coefficients) or as 
a loop (one multiplication and one summation per 
iteration). It has been observed that the accuracy of 
a loop is much lower than the accuracy of an 
expression – though in both cases the coefficients 

are identical (single-precision floating point). This 
accuracy difference might be due to accumulator 
width. In a loop the summations are performed 
consecutively using a single precision floating-point 
accumulator (declared as a float). But in an 

expression the compiler is probably using another 
type of accumulator (maybe a 32-bit integer). This 
accuracy anomaly has been observed with two 
compilers: GCC and IAR. 
 

5 Non-uniform Coefficient 

Wordlength 
In case there are very small and very large floating-
point coefficients it might be better, if possible, to 
group them by exponent, in order to increase the 
accuracy [11]. (Fixed-point constants must have the 
same fractional wordlength within a group.) In this 
way more coefficient information is used for 

multiplications, but the multiplication results must 
be aligned for summations. The cost of aligning is 
not very big, because ARM processors have 32-bit 
barrel shifters. A shift operation takes one cycle no 
matter the shift length. 

Fig. 3 illustrates the key positions of shift 
operations in a filter tap. 

 

Figure 3: There can be two bitwise shift operations per filter tap 

at runtime (SH nodes) 

When shifting integers for alignment to right it 
must be considered that for negative values this is 
not equivalent with division [12]. If the filter input 
data is non-negative, then one solution to this 
problem is to change the sign of negative 
coefficients, perform multiplications, shift 
operations, and then one or more substractions 

instead of additions. 
 

6 Conclusion 
The main idea is that with the MLA instruction it is 
possible to write high speed code and with the 
SMLAL instruction it is possible to write high 
accuracy code. A routine based on the SMLAL 
instruction is slower than a routine based on the 
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MLA instruction, because (1) SMLAL takes more 
cycles than MLA and (2) the result of SMLAL is 
64-bit and the result of MLA is 32-bit – which 
makes MLA more convenient than SMLAL for 
block filter implementations [7]. The difference in 

number of cycles is great, but the accuracy that can 
be obtained should be regarded too when deciding 
which instruction to use. The SMLAL instruction is 
ideal for high accuracy signal processing – as has 
been shown, it can be better than equivalent single 
precision floating-point C code. The accuracy with 
MLA is not so high. It can be good enough in many 

applications like, for example, to filter 10-bit or 12-
bit ADC data. However, it is easy to observe that as 
the dynamic range of the input samples grows, the 
filter coefficients must be downscaled. 

Control algorithms, though not every time non-
recursive (FIR), deserve a brief discussion. If there 
are not so many coefficients, then the code can be 

fully unrolled. By doing this, the routine becomes 
simpler and the execution time is reduced. If there 
are integrators whose values can become very large, 
then SMLAL might be the only usable instruction. 
And if the control command must be computed at 
each step, then there is no way for block filter 
implementations. 
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