
FIR Filtering on ARM Cortex-M3

ALEXANDRU BÂRLEANU, VADIM BĂITOIU, ANDREI STAN

Faculty of Automatic Control and Computer Engineering

Gheorghe Asachi University of Iași

700050, Romania

alexb@cs.tuiasi.ro, vadim.baitoiu@gmail.com, andreis@cs.tuiasi.ro

Abstract: - This paper describes how to implement efficient FIR filters on ARM Cortex-M3 microprocessors.
Two multiply-accumulate instructions are discussed: MLA – multiply with accumulate, using 32-bit operands

and producing a 32-bit result, and SMLAL – signed multiply with accumulate, using 32-bit operands and
producing a 64-bit result. There are advantages and disadvantages for each instruction. It is possible, for
example, to reuse the data loaded in memory and compute multiple output samples per iteration. MLA is more
suitable for this technique than SMLAL. But SMLAL can provide higher accuracy than MLA. This paper gives
also an insight on how to increase the filtering accuracy with non-uniform coefficient fractional wordlength.
This can be useful if there are very small and very large floating-point constant coefficients.

Key-Words: - embedded software, fixed-point arithmetic, filtering algorithms, ARM Cortex-M3

1 Introduction
ARM Cortex-M3 is a modern, high-performance
(32-bit) processor designed for embedded
applications (“M” comes from microcontroller).
Though it is not primarily a DSP processor, it has
multiply-accumulate instructions that are very
convenient for signal processing algorithms [1].
Two of them are discussed in this paper: MLA –

multiply with accumulate, using 32-bit operands and
producing a 32-bit result, and SMLAL – signed
multiply with accumulate, using 32-bit operands and
producing a 64-bit result. These instructions are not
something specific only to the ARM Cortex-M3
processor. MLA was introduced in the ARMv2
architecture and SMLAL was introduced in the

ARMv3M architecture. (Cortex-M3 is based on the
ARMv6M architecture.)

ARM Cortex-M3 processors do not have
floating-point coprocessors, which means that C
compilers must emulate floating-point operations.
This can be a problem, because even if the compiler
libraries for floating-point are highly-optimized, for

standard IEEE-754 accuracy results the execution
time can be very long. In such cases it is important
to consider if the calculations can be done in fixed-
point format [2,3]. That would mean using integer
datatypes and operations instead of floating-point. It
is possible to download libraries available on the
Internet [4,5,6] or write custom routines (which can
be made very efficient for a particular problem).

2 Existing Libraries
NXP Semiconductors and STMicroelectronics
provide DSP libraries for ARM Cortex-M3
microprocessors [4,5]. Both libraries contain FIR
filtering routines. There are some minor differences
between the two implementations like, for example,
the format of input data, but in essence the
implementations are the same.

ARM Cortex-M3 processors cannot load from
memory and perform arithmetic operations in
parallel. This aspect was taken into account in the
NXP and STM FIR filtering routines. In both cases
the signal is filtered in blocks, in order to minimize
the number of load and store operations (the
samples and coefficients read from memory are

reused). This technique is described in [7]. But there
are some disadvantages. The signal to be filtered is
processed entirely: if M is the length of the filter and
N is the length of the input signal then in one call M
by N multiply-accumulate operations are performed.
The number of coefficients and the number of
input/output samples must be multiples of 4 for

MLA or multiples of 3 or 2 for SMLAL. And the
MLA instruction produces 32-bit results – this is
fine for applications in which the degree of accuracy
needed is not very high. But if, for example, a filter
with 24-bit coefficients is wanted, then MLA is
insufficient. Switching from MLA to SMLAL is not
very easy, because with SMLAL the register
pressure is increased and the signal must be filtered

in smaller blocks.
The NXP FIR filtering routine has the following

C declaration:

Advances in Computer Science

ISBN: 978-1-61804-126-5 490

void vF_dspl_blockfir32(int *pi_y, int *pi_x,

tS_blockfir32_Coeff *pS_Coeff, int i_nsamples);

typedef struct

{

 int *pi_Coeff;

 int NTaps;

} tS_blockfir32_Coeff;

The input signal and coefficients are declared as

32-bit signed integers, but their values must be

limited to a much smaller range than full 32-bit

integer range.

The STM FIR filtering routine has the following

C declaration:

void fir_16by16_stm32(int *a,short *x,struct

COEFS *p,unsigned int N);

typedef struct {

 short *h;

 unsigned int nh;

} COEFS;

The input signal and coefficients are declared as

16-bit signed integers, which eliminates the

possibility of multiplication overflow. The

summation overflow is however possible, so the

signal and/or the coefficients must be properly

scaled.

As an aside, the CMSIS 2.0 library provided by
ARM [6,9] contains FIR filtering routines too. This
library is written entirely in C for Cortex-M3 and
Cortex-M4. There are two types of FIR filtering
routines: normal (with SMLAL) and fast (with

MLA). The source code does not tell anything
directly about MLA or SMLAL; nevertheless, it is
understandable what the compiler will do. The size
of integer variables and explicit casts that appear in
expressions are forcing either MLA or SMLAL.

3 Coefficient Truncation with MLA

and SMLAL
To understand how much the coefficients of a FIR
filter must be truncated for MLA and SMLAL
instructions, below is presented an example: a 32-
tap filter, designed with Matlab FDATool, and a 12-
bit input signal (unsigned). The filter coefficients
are scaled uniformly.

3.1 MLA - multiply with accumulate, using

32-bit operands and producing a 32-bit

result
Fig. 1 shows that with MLA the filter coefficients
must be scaled in the integer interval [-16388;
16388]. This means that maximum 14 bits can be

kept from the floating-point representation
significand.

Figure 1: Finding the permitted interval of coefficient fixed-

point values

In Fig. 1 the intervals are computed from bottom
(SUM) to top (COEF). The SUM interval is set as
the maximum signed 32-bit integer interval. The

PRODUCT interval is computed by dividing the
SUM interval low/high values by 32 (number of
filter coefficients).

In Fig. 1 the COEF interval is computed for the
worst case, but in practice it can be two or more
times wider, without the risk of overflow, because
most coefficients have small amplitude. In [7] are
given two inequalities for determining the

accumulator (SUM) precision from the power of
input signal and the power of filter coefficients.

In general, if the filter order is great, then it will
probably contain coefficients with very small
amplitude. Such coefficients are almost lost as the
fixed-point coefficient resolution is decreased. Fig.
2 illustrates this.

Figure 2: Coefficient bit matrix

Advances in Computer Science

ISBN: 978-1-61804-126-5 491

Fig. 2 is constructed by extracting the significand
bits from single precision floating-point coefficients.
A row represents a coefficient. Each row is
displaced horizontally for alignment (as for
summation). White squares represent „1” bits. Most

significant bits are located in the right hand side of
the image. The black vertical line that separates bit
exponent -15 from bit exponent -14 represents the
truncation margin computed as shown in Fig. 1.
What is located on the left of this line is lost by
truncation.

In Fig. 2 it can be observed the symmetry of

coefficients. This property can be used to reduce
somehow the number of memory accesses and
multiplications, but here this possibility is not
exploited.

In Fig. 1 the resolution of the signal to be
processed is12 bits – as if from a typical Cortex-M3
analog to digital converter. But if the resolution

would be greater, then the coefficients would have
to “step back” – for every additional bit in the input
signal the fractional wordlength of the coefficients
must be decreased.

3.2 SMLAL - signed multiply with accumulate,

using 32-bit operands and producing a 64-bit

result

The FIR filter coefficients can use the full 32-bit
signed integer range ([-2147483648; 2147483647]).
The multiplication results cannot overflow. The
summation results cannot overflow too, because the
signal to be filtered has a resolution of 12 bits. It is
interesting that with SMLAL the precision of
coefficients can be greater than in the floating-point

single precision format. This is easy to see: for
SMLAL a coefficient can have up to 31 significant
bits and the floating-point single precision format
contains 24 significant bits (1 hidden/implicit).

Below is given a simple FIR filtering routine that
uses the SMLAL instruction. It is computing one
output sample per call (unlike the NXP and STM

FIR filtering routines). The ATPCS [8] calling
convention is used. There is a loop inside the routine
that contains 4 SMLAL instructions one after
another – the purpose is to have less loop break
tests. This puts a condition on the filter length, but is
not a big problem. If the filter has, for example, 41
coefficients, then the solution is to add one more
SMLAL instructions after the loop body.

Listing 1 (GCC assembly):

C declaration: int64_t fir64(const int32_t*

a,

int32_t* x, uint32_t n);

Parameters:

r0: coef ptr

r1: input ptr

r2: filter length (must be 4, 8,

a multiple of 4)

fir64:

 push {r4-r11}

 mov r12, r2

 mov r3, #0

 mov r2, #0

fir64_loop_start:

 ldmia r0!, {r4-r7}

 ldmia r1!, {r8-r11}

 smlal r2, r3, r4, r8

 smlal r2, r3, r5, r9

 smlal r2, r3, r6, r10

 smlal r2, r3, r7, r11

 subs r12, r12, #4

 bgt fir64_loop_start

 mov r0, r2

 mov r1, r3

 pop {r4-r11}

 bx lr

Additional FIR filter implementations with

SMLAL can be found in [7].

4 Speed and Accuracy Measurements
A LPC1343 microcontroller is used for speed
measurements. The test application is compiled with

GCC with -O2 optimizations (the filtering routines
are written in assembly, but the routines calling
them are written in C). The filter coefficients are
placed in SRAM (not in Flash).

An ARM Cortex-M3 processor can have a so-
called Data Watchpoint and Trace (DWT) unit. This
is something optional – not available on all
processors (on LPC1343 yes). A DWT unit contains

a 32-bit cycle counter register, named CYCCNT,
which can be used for time measurements. The
following code shows how to read the CYCCNT
register:

uint32_t cyccnt = *((uint32_t*)0xE0001004);

Table 1. Performance results obtained with a 32-tap filter

Code CYCLECOUNT SQNR

(dB)

Implementation with MLA

instruction (STM DSP library)

3936

(one call)

75.65

Implementation with SMLAL
instruction (Listing 1)

10323

(32 calls)

177.00

Single-precision floating-point

expression

175540-183764

(32 calls)

156.48

The signal to quantization noise ratios (SQNR
values) in Table 1 are computed on a Intel T7250

Advances in Computer Science

ISBN: 978-1-61804-126-5 492

processor (using equivalent C code – MLA and
SMLAL cannot be used) with the following
formula:











N

S
SQNR 10log10 (1)

where S represents the power of the ideal signal

(double precision floating-point code) and E
represents the power of the error – which is
computed as the difference between the ideal and
the actual signal. The accuracy can also be
estimated analytically [10].

The input data used to test the filtering routines
influences the execution time. This might seem like

a paradox at first sight; because there is no if-then-
else branching (always the same number of
instructions is executed). The explanation lies in the
SMLAL instruction timing [1] – it can take from 4
to 7 cycles, depending on operands (this is called
early termination). The cycles shown in Table 1 are
obtained with random input data.

The routine in that uses the SMLAL instruction

(see Listing 1) takes 2.6 times more time than the
STM FIR routine. On the other hand, it provides
very high accuracy – greater than even the
equivalent single precision floating-point code. The
routine with the SMLAL instruction takes
approximately 17 times less time than the equivalent
single-precision floating-point code.

The CYCLECOUNT values shown in Table 1
correspond to filter coefficients placed in SRAM
memory. It is possible to place them also in the
Flash memory and save SRAM, but this will slightly
decrease the execution speed. For example, the
routine from Listing 1 executes with SRAM
coefficients in 10323 cycles, but with Flash
coefficients in 11571 cycles (12% more). The

number of cycles obtained to access the Flash
memory is the same for different system frequency
values: 9, 18, 36, and 72MHz.

The accuracy of the STM routine that uses the
MLA instruction (in Table 1: 75.65dB) is obtained
with coefficients scaled as shown in Fig. 1 and Fig.
2. It is possible to increase the fractional wordlength

and obtain a higher SQNR, but only by one bit.
More than one bit is not possible, because the STM
FIR filtering routine takes short int coefficients
and the greatest coefficients would overflow. The
NXP FIR filtering routine takes int coefficients.

NOTE: There are two forms of floating-point

code for signal filtering: as an expression (which
can be very long if there are many coefficients) or as
a loop (one multiplication and one summation per
iteration). It has been observed that the accuracy of
a loop is much lower than the accuracy of an
expression – though in both cases the coefficients

are identical (single-precision floating point). This
accuracy difference might be due to accumulator
width. In a loop the summations are performed
consecutively using a single precision floating-point
accumulator (declared as a float). But in an

expression the compiler is probably using another
type of accumulator (maybe a 32-bit integer). This
accuracy anomaly has been observed with two
compilers: GCC and IAR.

5 Non-uniform Coefficient

Wordlength
In case there are very small and very large floating-
point coefficients it might be better, if possible, to
group them by exponent, in order to increase the
accuracy [11]. (Fixed-point constants must have the
same fractional wordlength within a group.) In this
way more coefficient information is used for

multiplications, but the multiplication results must
be aligned for summations. The cost of aligning is
not very big, because ARM processors have 32-bit
barrel shifters. A shift operation takes one cycle no
matter the shift length.

Fig. 3 illustrates the key positions of shift
operations in a filter tap.

Figure 3: There can be two bitwise shift operations per filter tap

at runtime (SH nodes)

When shifting integers for alignment to right it
must be considered that for negative values this is
not equivalent with division [12]. If the filter input
data is non-negative, then one solution to this
problem is to change the sign of negative
coefficients, perform multiplications, shift
operations, and then one or more substractions

instead of additions.

6 Conclusion
The main idea is that with the MLA instruction it is
possible to write high speed code and with the
SMLAL instruction it is possible to write high
accuracy code. A routine based on the SMLAL
instruction is slower than a routine based on the

Advances in Computer Science

ISBN: 978-1-61804-126-5 493

MLA instruction, because (1) SMLAL takes more
cycles than MLA and (2) the result of SMLAL is
64-bit and the result of MLA is 32-bit – which
makes MLA more convenient than SMLAL for
block filter implementations [7]. The difference in

number of cycles is great, but the accuracy that can
be obtained should be regarded too when deciding
which instruction to use. The SMLAL instruction is
ideal for high accuracy signal processing – as has
been shown, it can be better than equivalent single
precision floating-point C code. The accuracy with
MLA is not so high. It can be good enough in many

applications like, for example, to filter 10-bit or 12-
bit ADC data. However, it is easy to observe that as
the dynamic range of the input samples grows, the
filter coefficients must be downscaled.

Control algorithms, though not every time non-
recursive (FIR), deserve a brief discussion. If there
are not so many coefficients, then the code can be

fully unrolled. By doing this, the routine becomes
simpler and the execution time is reduced. If there
are integrators whose values can become very large,
then SMLAL might be the only usable instruction.
And if the control command must be computed at
each step, then there is no way for block filter
implementations.

References:
[1] ARM, Cortex-M3 Technical Reference Manual,

2010.
[2] D. Menard, D. Chillet, F. Charot, O. Sentieys,

Automatic Floating-point to Fixed-point
Conversion for DSP Code Generation, in Proc.

of the 2002 International Conference on
Compilers, Architecture, and Synthesis for
Embedded Systems, Oct. 2002.

[3] I. Konvalinka, A. Quddus and D. Asraf, An
efficient floating-point to fixed-point
conversion process for biometric algorithm on
DaVinci DSP architecture, Proc. SPIE 7306,

73062A, 2009.
[4] NXP Semiconductors, AN10913 - DSP library

for LPC1700 and LPC1300, 2010.
[5] STMicroelectronics, UM0585 - STM32F10x

DSP library, 2010.
[6] ARM Press Release, ARM Extends Software

Interface Standard with DSP Library, 13
December 2010.

[7] Andrew N. Sloss, Dominic Symes, Chris
Wright, ARM System Developer's Guide,
Elsevier, 2004.

[8] ARM, The ARM-THUMB Procedure Call
Standard, 2009.

[9] Reinhard Keil, Digital Signal Processing with
Cortex™-M Microcontrollers, Information
Quarterly Magazine.

[10] D. Menard, R. Rocher, O. Sentieys, Analytical
Fixed-Point Accuracy Evaluation in Linear

Time-Invariant Systems, in IEEE Trans. On
Circuits and Systems I, vol. 55, issue 10, pp.
3197-308, 2008.

[11] Bolton, G. and Stewart, R.W., Non-uniform
wordlength delay lines for FIR filters,
EUSIPCO, 2009, Glasgow.

[12] R. J. Mitchell and P.R. Minchinton, A Note on

Dividing Integers by Two, The Computer
Journal, 32, No. 4, Aug 1989, 380.

Advances in Computer Science

ISBN: 978-1-61804-126-5 494

