
Software Security Analysis, Metrics, and Test Design Considerations

LJUBOMIR LAZIĆ, DŽENAN AVDIĆ AND ALDINA PLJASKOVIĆ

Department for Mathematics and Informatics

State University of Novi Pazar

SERBIA

llazic@np.ac.rs,dzavdic@np.ac.rs,apljaskovic@np.ac.rs http://www.np.ac.rs

Abstract: - Software security addresses the degree to which software can be exploited or misused. Software
development is not yet a science or a rigorous discipline, and the development process by and large is not
controlled to minimize the vulnerabilities that attackers exploit. Security is a blend of -enhanced processes and
practices—and the skilled people to perform them— which are required to build software that can be trusted
not to increase risk exposure. Three categories of analysis provide such a blend: threat modeling, risk analysis,
and security assessment and testing. This article discusses the role of software testing in a security-oriented
software development process. It focuses on two related topics: functional security testing and risk-based
security testing. Any endeavor worth pursuing is worth measuring, but software security presents new
measurement challenges: there are no established formulas or procedures for quantifying the security risk
present in a program. This paper details the importance of measuring software security and discusses the less-
than satisfying approaches that are prevalent today. A new set of metrics is then proposed for ensuring an
accurate and comprehensive view of software projects ranging from legacy systems to newly deployed web
applications. Many of the new metrics make use of source code analysis results.

Key-Words: - Security issues, security testing, security metrics, security risks

1 Introduction

Software development is not yet a science or a
rigorous discipline, and the development process by
and large is not controlled to minimize the
vulnerabilities that attackers exploit. Today, as with
cancer, vulnerable software can be invaded and
modified to cause damage to previously healthy
software, and infected software can replicate itself
and be carried across networks to cause damage in
other systems. Like cancer, these damaging
processes may be invisible to the lay person even
though experts recognize that their threat is growing.
And as in cancer, both preventive actions and
research are critical, the former to minimize damage
today and the latter to establish a foundation of
knowledge and capabilities that will assist the cyber
security professionals of tomorrow reduce risk and
minimize damage for the long term.

The software development process offers
opportunities to insert malicious code and to
unintentionally design and build software with
exploitable weaknesses. Security-enhanced
processes and practices—and the skilled people to
perform them—are required to build software that

can be trusted not to increase risk exposure. Our
research [1]1 concluded that Software testing, as
well as Security testing, as a process, has technical,
as well as financial aspects [1,2,6,24]. The financial
aspects are related to the fact that the available time
and resources given to the team are limited. In many
cases, thorough security (complete) testing is not
achievable because of financial limitations. A
company dedicated to software development must
complete the project in time, within the budget
limits, and satisfy the client’s demands [29,30].

Secure software is software that is resistant to
intentional attack as well as unintentional failures,
defects, and accidents. Software security is the
ability of software to resist, tolerate, and recover
from events that intentionally threaten its
dependability. Security in the Software Lifecycle [5]
defines software security as follows:
- Protection against intentional subversion or

forced failure.

1 This work was supported in part by the Ministry of
Education and Science of the Republic of Serbia under
Grant No. TR-35026 entitled as:“Software Development
Environment for optimal software quality design“.

Advances in Computer Science

ISBN: 978-1-61804-126-5 355

- Preservation of the three subordinate properties
that make up security—availability, integrity,
and confidentiality.

- Security manifests as the ability of the system to
protect itself from external faults that may be
accidental or deliberate (attacks).
The objective of software security is to design,

implement, configure, and support software systems
in ways that enable them to:

1. continue operating correctly in the presence
of most attacks by either resisting the exploitation of
faults or other weaknesses in the software by the
attackers or tolerating the errors and failure that
result from such exploits

2. isolate, contain, and limit the damage
resulting from any failures caused by attack-
triggered faults that the software was unable to resist
or tolerate and recover as quickly as possible from
those failures

Software security and secure software are often
discussed in the context of software assurance.
Software assurance is broader than software
security, encompassing the additional disciplines of
software safety and reliability.

A key objective of software assurance is to
provide justifiable confidence that software is free
of vulnerabilities. Another is to provide justifiable
confidence that software functions in the “intended
manner” and the intended manner does not
compromise the security and other required
properties of the software, its environment, or the
information it handles.

This paper discusses the role of software testing
in a security-oriented software development process.
It focuses on two related topics: functional security
testing and risk-based security testing.

Functional testing is meant to ensure that
software behaves as it should. Therefore, it is largely
based on software requirements. For example, if
security requirements state that the length of any
user input must be checked, then functional testing
is part of the process of determining whether this
requirement was implemented and whether it works
correctly.

Analogously, risk-based testing is based on
software risks, and each test is intended to probe a
specific risk that was previously identified through
risk analysis. A simple example is that in many web-
based applications, there is a risk of injection
attacks, where an attacker fools the server into
displaying results of arbitrary SQL queries. A risk-
based test might actually try to carry out an injection
attack, or at least provide evidence that such an
attack is possible. For a more complex example,

consider the case where risk analysis determines that
there are ambiguous requirements. In this case,
testers must determine how the ambiguous
requirements might manifest themselves as
vulnerabilities. The actual tests are then aimed at
probing those vulnerabilities.

This paper focuses on how risk-based and
functional security testing mesh into the software
development process. Many aspects of software
testing are discussed, especially in their relationship
to security testing. Nonetheless, this article is not
intended as a primer on software testing per se.

2 Approaches For Integrating Security

Into The SDLC
Regardless of the SDLC model used (e.g.

waterfall, spiral, Rational Unified Process), the
SDLC represents a phased approach to the
development of a system. An appropriate model
should facilitate the reanalysis and validation of the
plans, requirements, and design at multiple points
throughout its life cycle. Whether regarded as a
phase or discipline, an SDLC is composed of several
common groupings of activities: requirements,
design and build, test and deploy, operations and
maintenance, and disposal, with full lifecycle
support activities such as risk management, CM, and
training. Security can be integrated into these
different points of the SDLC independent of the
model.

Figure 1 describes each phase or discipline of an
SDLC with the associated security activities.

Full Life-Cycle Support Activities Risk
Management Risk management includes performing
security risk analyses at different points of the life
cycle. Security risk analysis serves to identify and
mitigate security-related risks.

Fig. 1 Phases of an SDLC

The results of the risk analysis feed into the risk
management process of identifying, controlling, and
eliminating or minimizing uncertain events that may
affect the system. Risk analysis should be repeated

Advances in Computer Science

ISBN: 978-1-61804-126-5 356

iteratively throughout the system’s life cycle as
different activities allow opportunities to identify
new or changing risks. For instance, as the project
progresses forward and activities shift from
requirements development to high-level system
design, additional information will be uncovered
about the application. This new information may
reveal risks not previously identified such as use of
vulnerable components or a flawed authentication
model. We also know that changes to design during
the build phase are almost always certain to occur.
That is why it is important to also perform a risk
analysis on the system after it has been built.

Inaccurate or incomplete CM may enable
malicious developers to exploit the shortcomings in
the CM process in order to make unauthorized or
undocumented changes to the software. Lack of
proper software change control, for example, could
allow rogue developers to insert or substitute
malicious code, introduce exploitable
vulnerabilities, or remove or modify security
controls implemented in the software. Good CM
practices also prevent the introduction of
unintentional flaws into software code. For example,
a developer makes a seemingly harmless
modification to the application’s interface before
deployment and is able to bypass the CM process.
This change unintentionally gives normal, restricted
users elevated privileges to view information they
normally would not be allowed to access. Since the
CM process was bypassed, this change was not
analyzed or tested for its security impact as it
normally should have been.

By tracking and controlling all of the artifacts of
the system development process, CM helps ensure
that changes made to those artifacts cannot
compromise the trustworthiness of the software
as it evolves through each phase of the process.
Coming from a systems development background, I
have had the opportunity to practice CM hands on.
Now that I am involved in security, I have found
that good CM is no different than CM for security.
Thus, practicing good CM is good security.

3 Metrics That Quantify Software

Security Risk
What would happen if your company cut its

security budget in half? What if the budget was
doubled instead? In most companies today, no one
knows the answers to these questions. Security
remains more art than science, and nothing is more
indicative of this fact than the inability of security
practitioners to quantify the effects of their work.

Software security is no exception: nearly every
major business critical application deployed today
contains vulnerabilities— buffer overflow and
cross-site scripting are commonplace, and so are
many other, less well-known, types of
vulnerabilities.

These problems can be exploited to cause
considerable harm by external hackers or malicious
insiders. Security teams know that these errors exist,
but are, for the most part, will equipped to quantify
the problem. Any proposed investment in improving
this situation is bound to bring up questions such as:

• Are the applications more secure today than
yesterday—or less secure?

• Does security training really make a difference?
• How will we know when our systems are

secured?
This paper examines the current state of practice

for measuring software security. It then suggests two
new approaches to the problem: quantifying the
secure development lifecycle, and focusing on the
root cause of much vulnerability using metrics built
with source code analysis results.

3.1 Approaches to Measuring Security
3.1.1. Build Then Break: Penetration Testing as a

Metric

The de facto method that most organizations use for
measuring software security today can be
summarized as “build then break.” Developers
create applications with only a minimum of
attention paid to security, and the applications are
deployed. The operations team then attempts to
compensate for the problematic software with
perimeter security. When the team takes inventory
of all of the ways that data moves through and
around the perimeter defenses, it becomes clear that
the perimeter security is insufficient. At this point,
the operations team may bring in penetration testers
to find the problems before hackers or malicious
insiders do. The penetration testers generally have a
fixed schedule for performing their work and their
goal is to find a small number of serious problems to
justify their consulting fee. Once these problems are
resolved, everyone is happy. But there’s no reason
to believe that the penetration test revealed all of the
problems with the application. In fact, subsequent
audits usually prove that it did not. There’s also very
little feedback to the developers, so penetration tests
often find the same types of problems over and over
again.

3.1.2. Measure Software Security as Part of

Software Quality

Advances in Computer Science

ISBN: 978-1-61804-126-5 357

A naive approach to software security calls for
treating security as just another aspect of software
quality. The problem is that traditional quality
assurance is aimed at verifying a set of features
against a specification. Software security, however,
requires much more than well-implemented security
features.
The reality is that a typical process for achieving
good results with respect to traditional quality issues
does not guarantee good results with respect to
security issues. In other words, you have to focus
specifically on security in order to improve it. Good
security is not a byproduct of good quality. Further
complicating this approach, the majority of Quality
Assurance (QA) departments lack the requisite
security expertise to carry out adequate security
tests. Finally, any approach to quality that is based
on the behavior of regular users will leave many
untested opportunities for attackers.

3.1.3. The Feel-Good Metric: If it Hasn’t Been

Hacked Yet, it’s Probably Okay

Because security so often goes un-quantified, the
bottom-line measure for security is often gut-feel.
Human nature and the nature of security are in
conflict on this point: people and organizations tend
to gain comfort with the status quo over time, but
security may actually degrade as time passes. New
types of attacks and new applications for old types
of attacks can harm a program’s security—even as
an organization becomes more and more complacent
because security “hasn’t been a problem yet!”

A similar fallacy holds that the security of a
program can be correlated to the breadth of its
adoption. Interestingly, this line of reasoning always
seems to work in favor of the status quo.

For applications with a small user base, people
assume that attackers will not take an interest. For
applications with a large user base, people assume
that any security issues will be flushed out of the
system shortly after release. In truth, security is no
more related to breadth of adoption than it is to
longevity. The BugTraq mailing list (where news of
many new vulnerabilities debuts) is filled with
entries about small and obscure applications.
Furthermore, the long history of buffer overflows in
widely adopted programs as varied as Send Mail and
Internet Explorer shows that neither age nor a large
install base prevents attackers from finding new
exploits.

3.2. Software Security Metrics You Can Use

Imediately

Having explained the measurement problem and
how not to solve it, we now turn to two practical
methods for measuring software security.

3.2.1. Quantify The Secure Development

Lifecycle

Software security must be addressed as part of the
software development lifecycle [2,3]. There are
practical steps that development groups can take
during each phase of the lifecycle in order to
improve the security of the resulting system. These
steps include:
• Evaluate the current state of software security and
create a plan for dealing with it throughout the
development life cycle (see Figure 2).
• Specify the threats, identify both business and
technical risks, and plan countermeasures.
• Review the code for security vulnerabilities
introduced during development.
• Test code for vulnerabilities based on the threats
and risks identified earlier.
• Build a gate to prevent applications with
vulnerabilities from going into production. Require
signoff from key development and security
personnel.
• Measure the success of the security plan so that the
process can be continually improved. Yes, your
measurement efforts should be measured!
• Educate stakeholders about security so they can
implement the security plan effectively.
Each of these steps can be measured. For example,
if your security plan includes educating developers,
you can measure what percentage of developers
have received software security
training. Of course, not all organizations will adopt
all steps to the same degree. By tracking and
measuring the adoption of secure development
practices, you will have the data to draw correlations
within your organization. For example, you will
likely find that the up-front specification of threats
and risks correlates strongly to a faster and easier
security signoff prior to release.

3.2.2. Use Source Code Analysis to Measure

Security

All software organizations, regardless of
programming language, development methodology,
or product category, have one thing in common:
they all have source code. The source code is a very
direct embodiment of the system, and many
vulnerabilities manifest themselves in the source
[19]. It follows that the source code is the one key
artifact to measure as part of assessing software
security. Of course, source code review is useful for
more than just metrics. The following sections

Advances in Computer Science

ISBN: 978-1-61804-126-5 358

discuss some source code analysis fundamentals and
then look at how source code analysis results can

provide the raw material for powerful software
security metrics.

Fig. 2 Information Security Metrics Development Process

Source code analyzers process code looking for
known types of security defects. In an abstract
sense, a source code analyzer searches the code for
patterns that represent potential vulnerabilities and
presents the code that matches these patterns to a
human auditor for review. The three key attributes
for good source code analysis are accuracy,
precision, and robustness.
A source code analyzer should accurately identify
vulnerabilities that are of concern to the type of
program being analyzed. For example, web
applications are typically at risk for SQL injection,
cross-site scripting, and access control problems,
among others. Further, the analysis results should
indicate the likely importance of each result.
The source code analyzer must also be precise,
pointing to a manageable number of issues without
generating a large number of false positives.
Furthermore, if a program is analyzed today, and
subsequently re-analyzed tomorrow, it is likely that
only a small amount of code will have changed. The
source code analyzer must be able to give the same
name to the same issue today and tomorrow,
allowing for the ability to track when issues appear
and disappear. This capability is critical for
extracting meaningful metrics from source code
analysis results.
Finally, the source code analyzer must be robust: it
must be able to deal with large, complex bodies of
code. Of course, not every issue the source code
analyzer identifies will be a true vulnerability.

Therefore, part of being robust is allowing human
auditors to evaluate and prioritize potential issues. A
preferred scenario has a human auditor classify the
output from the analyzer into 1) severe
vulnerabilities that must be corrected immediately,
2) bad practices, and 3) issues that are not relevant
to the organization. An even better application of
source code analysis allows developers to analyze
their own code as they write it, making source code
analysis part of the daily process of program
development.

3.2.3. Security Metrics Based on Source Code

Analysis

The best metrics that can be derived from source
code analysis results are, to a certain extent,
dependent upon the way in which an organization
applies source code analysis. We will consider
the following scenarios:
1. Developers use the source code analyzer on a
regular basis as part of their development work.
They are proactively coding with security in mind.
2. A software security team uses the source code
analyzer as part of a periodic code review process. A
large body of code has been created with little
regard for security. The organization plans to
remediate this code over time.

Of course, the first scenario is preferable, but most
organizations cannot achieve that overnight. For the
near future, it is likely that both scenarios will co-
exist in most organizations.

Advances in Computer Science

ISBN: 978-1-61804-126-5 359

4 The Security Causes and Errors

Taxonomy
Software acquirers want assurance that the software
products they are obtaining are reviewed for known
types of exploitable security weaknesses, and the
acquisition groups in large government and private
organizations are moving forward to use these types
of reviews as part of future contracts. Until recently
the tools and services that could be used for this type
of review were new at best and there were no
nomenclature, taxonomies, or standards to define the
capabilities and coverage of them. That made it
difficult to comparatively decide which tool or
service was best suited for a particular job. What
was needed was a standard list and classification of
software security weaknesses to serve as a unifying
language of discourse and a measuring stick for
tools and services. Common Vulnerabilities and
Exposures (CWE) [28] is a community-developed
formal list or dictionary of common software
weaknesses. Leveraging the diverse thinking on this
topic from academia, the commercial sector, and
government, CWE unites the most valuable breadth
and depth of content and structure to serve as a
unified standard. Our objective is to help shape and
mature the code security assessment industry and
also dramatically accelerate the use and utility of
software assurance capabilities for organizations in
reviewing the software systems they acquire or
develop.

4.1 Initial Weaknesses, Idiosyncrasies,

Faults, Flaws (WIFFs) Enumeration
The following section introduces the current content
we have derived through studying a large portion of
the CWE list. The listing below, which is comprised
of 290 specific types of weakness, idiosyncrasies,
faults and flaws (WIFFs) is not exhaustive and will
certainly evolve.
Our purpose in coining the term “WIFFs” is avoid
the use of the term “vulnerability” for these items.
The term “vulnerability” is frequently used in the
community to apply to other concepts including
bugs, attacks, threats, risks, and impact. Also, there
are widely varying opinions regarding what “risk
level” must be associated with a problem in order to
call it a vulnerability, e.g. in terms of denial-of-
service attacks and minor information leaks.
Finally, not every instance of the items listed below,
or those collected in this overall effort, will need to
be removed or addressed in the applications they
reside in. While they most certainly need to be
examined and evaluated for their potential impact to
the application, there will certainly be a large

number of these items that could be safely left as is,
or dealt with by making some minimal adjustments
or compensations to keep them from manifesting
into exploitable vulnerabilities. If we went forward
using the term “vulnerability” for these items, there
would be a built-in bias and predisposition to
remove and eliminate each and every one of them,
which would be a massive and unnecessary waste of
time and resources.
The items below have not been categorized except
in the most obvious and expeditious manner. With
the incorporation of the other contributions from
academia and industry sources we will most
certainly reorganize these groupings as more
examples and specifics are added. With this caveat
we provide the following summary of the 28 main
categories which contain the 290 individual types of
WIFFs we have enumerated to-date.
1. Buffer overflows, format strings, etc. [BUFF] (10

types)

These categories cover the increasingly diverse set
of WIFFs that are generally referred to as “buffer
overflows.”
The specific types in this group are: Buffer
Boundary Violations (“buffer overflow”),
Unbounded Transfer (“classic overflow”), Boundary
beginning violation (“buffer underflow”), Out-of-
bounds Read, Buffer over-read, Buffer under-read,
Array index overflow, Length Parameter
Inconsistency, Other length calculation error,
Format string vulnerability
2. Structure and Validity Problems [SVM] (10 types)

These categories cover certain ways in which
“wellformed” data could be malformed. The specific
types in this group are: Missing Value Error,
Missing Parameter Error, Missing Element Error,
Extra Value Error, Extra Parameter Error,
Undefined Parameter Error, Undefined Value Error,
Wrong Data Type, Incomplete Element, Inconsistent
Elements.
3. Special Elements (Characters or Reserved

Words) [SPEC] (19 types)

These categories cover the types of special elements
(special characters or reserved words) that become
security relevant when transferring data between
components. The specific types in this group are:
General Special Element Problems, Parameter
Delimiter, Value Delimiter, Record Delimiter, Line
Delimiter, Section Delimiter, Input Terminator,
Input Leader, Quoting Element, Escape, Meta, or
Control Character / Sequence, Comment Element,
Macro Symbol, Substitution Character, Variable
Name Delimiter, Wildcard or Matching Element,
Whitespace, Grouping Element / Paired Delimiter,

Advances in Computer Science

ISBN: 978-1-61804-126-5 360

Delimiter between Expressions or Commands, Null
Character / Null Byte.
4. Common Special Element Manipulations

[SPECM] (11 types)

These categories include different ways in which
special elements could be introduced into input to
software as it operates. The specific types in this
group are: Special Element Injection, Equivalent
Special Element Injection, Leading Special Element,
Multiple Leading Special Elements, Trailing Special
Element, Multiple Trailing Special Elements,
Internal Special Element, Multiple Internal Special
Element, Missing Special Element, Extra Special
Element, Inconsistent Special Elements
5. Technology-Specific Special Elements [SPECTS]

(17 types)

These categories cover special elements in
commonly used technologies and their associated
formats. The specific types in this group are: Cross-
site scripting (XSS), Basic XSS, XSS in error pages,
Script in IMG tags, XSS using Script in Attributes,
XSS using Script Via Encoded URI Schemes,
Doubled character XSS manipulations, e.g.
“<<script”, Null Characters in Tags, Alternate XSS
syntax, OS Command Injection, Argument Injection
or Modification, SQL injection, LDAP injection,
XML injection (aka Blind Xpath injection), Custom
Special Character Injection, CRLF Injection,
Improper Null Character Termination
6. Pathname Traversal and Equivalence Errors

[PATH] (47 types)
These categories cover the use of file and directory
names to either “escape” out of an intended
restricted directory, or access restricted resources by
using equivalent names. The specific types in this
group are: Path Traversal, Relative Path Traversal,
“/directory/../filename”, “../filedir”, “/../filedir”,
“directory/../../filename”, “..\filename” (“dot dot
backslash”), “\..\filename” (“leading dot dot
backslash”), “\directory\..\filename”,
“directory\..\..\filename”, “...” (triple dot), “....”
(multiple dot), “....//” (doubled dot dot slash),
Absolute Path Traversal, /absolute/pathname/here,
“.../...//”, \absolute\pathname\here (“backslash
absolute path”), “C:dirname” or C: (Windows
volume or “drive letter”), “\\UNC\share\name\”
(Windows UNC share), Path Equivalence, Trailing
Dot - “filedir.”, Internal Dot -“file.ordir”, Multiple
Internal Dot - “file...dir”, Multiple Trailing Dot -
“filedir....”, Trailing Space - “filedir “, Leading
Space - “ filedir”, file[SPACE]name (internal
space), filedir/ (trailing slash, trailing /),
//multiple/leading/slash (“multiple leading slash”),
/multiple//internal/slash (“multiple internal slash”),
/multiple/trailing/slash// (“multiple trailing slash”),

\multiple\\internal\backslash, filedir\ (trailing
backslash), /./ (single dot directory), filedir*
(asterisk / wildcard), dirname/ fakechild
/../realchild/filename, Windows 8.3 Filename, Link
Following, UNIX symbolic link (symlink)
following, UNIX hard link, Windows Shortcut
Following (.LNK), Windows hard link, Virtual
Files, Windows MSDOS device names, Windows
::DATA alternate data stream, Apple “.DS_Store”,
Apple HFS+ alternate data stream
7. Channel and Path Errors [CP] (13 types)

These categories cover the ways in which the use of
communication channels or execution paths could
be security-relevant. The specific types in this group
are:
Channel Errors, Unprotected Primary Channel,
Unprotected Alternate Channel, Alternate Channel
Race Condition, Proxied Trusted Channel,
Unprotected Windows Messaging Channel
(“Shatter”), Alternate Path Errors, Direct Request
aka “Forced Browsing”, Miscellaneous alternate
path errors, Untrusted Search Path, Mutable Search
Path, Uncontrolled Search Path Element, Unquoted
Search Path or Element
8. Cleansing, Canonicalization, and Comparison

Errors [CCC] (16 types)

These categories cover various ways in which inputs
are not properly cleansed or canonicalized, leading
to improper actions on those inputs. The specific
types in this group are:
Encoding Error, Alternate Encoding, Double
Encoding, Mixed Encoding, Unicode Encoding,
URL Encoding (Hex Encoding), Case Sensitivity
(lowercase, uppercase, mixed case), Early
Validation Errors, Validate-Before-Canonicalize,
Validate-Before-Filter, Collapse of Data into
Unsafe Value, Permissive Whitelist, Incomplete
Blacklist, Regular Expression Error, Overly
Restrictive Regular Expression, Partial Comparison
9. Information Management Errors [INFO] (19

types)

These categories involve the inadvertent or
intentional publication or omission of sensitive data,
which is not resultant from other types of WIFFs.
The specific types in this group are: Information
Leak (information disclosure), Discrepancy
Information Leaks, Response discrepancy
infoleak, Behavioral Discrepancy Infoleak, Internal
behavioral inconsistency infoleak, External
behavioral inconsistency infoleak, Timing
discrepancy infoleak, Product-Generated Error
Message Infoleak, Product-External Error Message
Infoleak, Cross-Boundary Cleansing Infoleak,
Intended information leak, Process information
infoleak to other processes, Infoleak Using Debug

Advances in Computer Science

ISBN: 978-1-61804-126-5 361

Information, Sensitive Information Uncleared
Before Use, Sensitive memory uncleared by
compiler optimization, Information loss or omission,
Truncation of Security-relevant Information,
Omission of Security relevant Information,
Obscured Security-relevant Information by
Alternate Name 10. Race Conditions [RACE] (6
types)
These categories cover various types of race
conditions. The specific types in this group are:
Race condition enabling link following, Signal
handler race condition, Time-of-check Time-of-use
race condition, Context Switching Race Condition,
Alternate Channel Race Condition, Other race
conditions
11. Permissions, Privileges, and ACLs [PPA] (20

types)

These categories include the improper use,
assignment, or management of permissions,
privileges, and access control lists. The specific
types in this group are: Privilege /sandbox errors,
Incorrect Privilege Assignment, Unsafe Privilege,
Privilege Chaining, Privilege Management Error,
Privilege Context Switching Error, Privilege
Dropping /Lowering Errors, Insufficient privileges,
Misc. privilege issues, Permission errors, Insecure
Default Permissions, Insecure inherited permissions,
Insecure preserved inherited permissions, Insecure
execution-assigned permissions, Fails poorly due to
insufficient permissions, Permission preservation
failure, Ownership errors, Unverified Ownership,
Access Control List (ACL) errors, User
management errors.
12. Handler Errors [HAND] (4 types)

These categories, which are not very mature, cover
various ways in which “handlers” are improperly
applied to data.
The specific types in this group are: Handler errors,
Missing Handler, Dangerous handler not
cleared/disabled during sensitive, Raw Web Content
Delivery, File Upload of Dangerous Type.
13. User Interface Errors [UI] (7 types)

These categories cover WIFFs in a product's user
interface that lead to insecure conditions. The
specific types in this group are: Product UI does not
warn user of unsafe actions, Insufficient UI warning
of dangerous operations, User interface
inconsistency, Unimplemented or unsupported
feature in UI, Obsolete feature in UI, The UI
performs the wrong action, Multiple Interpretations
of UI Input, UI Misrepresentation of Critical
Information.

5 Software Assessments and Security

Testing Framework
Testing traditionally involves exercising an
application to see if it works as it should. In contrast,
security testing entails identifying and removing
vulnerabilities that could result in security
violations. It also validates the effectiveness of
security measures that are in place [21].
Most of the testing methodologies used fall into one
of two categories: black-box or white-box testing.
Black-box tests are those whose data are derived
from the specified functional requirements in which
attention is not given to the final program structure
[22, 23]. Commonly used black-box testing
approaches for software security are penetration,
functional, risk-based, and unit testing.
White-box tests are those tests and assessment
activities where the structure and flow of the
software under review are visible to the tester.
Testing plans are made based on the details of the
software implementation and test cases are based on
the program structure [21-23].
Commonly used white-box assessment approaches
that can assess security are source code analysis and
profiling.
The method by which security assessment and
testing is carried out depends on the perspective of
the tester relative to the software component. We
developed OptimalSQM Test Framework
Architecture [1] which follows the three-tier
architecture:
front-end, middle and target system tiers (Figure 3).
Front-end tier: This provides a user-friendly
interface (GUI and/or Web browser), and allows the
tester to specify the test scenarios/cases derived
from requirements using the textual/graphical
representations, query the database, and review test
results.
Middle tier: This is divided into two internal tiers:
front-middle and back-middle tier. The front-middle
tier:

• Organizes scenario specifications in an OO
fashion such as creating testing scenario
objects, test case objects, input data objects,
method signature objects, and complex
scenario objects;

• Performs a variety of analysis, such as
completeness and consistency check,
dependency analysis;

• Executes tests (such as regression tests,
functional tests) by sending commands
cross the network using TCP/IP or SOAP;

• Performs runtime verification;
• Performs dynamic simulation.

Advances in Computer Science

ISBN: 978-1-61804-126-5 362

The back-middle tier facilitates access to the
database for storing test specifications and results.
Target system tier: In this tier, test agents act as
proxies of the test master and perform tests on the
target system on behalf of the master. The systems
can be existing ones or prototypes. Test agents carry
out test execution by collaborating with each other,
and report the test results to the test master. Our
aim is to assist clients in assessing both threat
agents and threat events that may affect the
organisation as well as identify possible causes
and scenarios for each event.
The following formula can be used as a method
to identify the level of threat for each threat

agent. Threat Agent = Capabilities + Intentions
+ Past Activities

• Capability assessment is based upon the
Threat Agent’s Resources and
Knowledge.

• Intentions assessment is based upon the
Threat Agent’s Motivation and
Incentive.

• Past Activities assessment is based upon
historical data relevant to the Threat
Agent.

Fig. 3 Overall OptimalSM Architecture of Test Framework

Test cases that are constructed based on functional
requirements without regard to specific knowledge
about software internals are known as black-box
tests; test cases that take advantage of internal
structure are known as white-box tests. Often, the
information gathered during risk analysis is used to
develop white-box and black-box test cases. In
particular, flaws identified during risk analysis can
be purposely added to a software component to
forcibly change the program state and demonstrate
the effects of a successfully exploited vulnerability.
This approach, known as fault injection, allows for
absolute worst-case prediction [24]. It gives an
insight into predictive measures such as mean-time-
to-hazard, minimum-time-to-hazard, and meantime-
to-failure; all of which quantify risk.
Three approaches are commonly taken to test the
security of a component in a black-box fashion.

Risk-based testing demonstrates that security
functionalities work as intended [25].
Penetration testing examines the ease with which a
component can be infiltrated.
Unit security testing assumes that adversaries will
take a two-stage approach to attack: First, they get
access to the software, then second, control the
software after access. As such, the assumptions that
developers make about the environment and
incorporate into the components should be checked
at the unit testing level. Attack trees have been used
by many as a method for identifying and modeling
security threats, especially those that involve many
stages for implementation [26].
Two high-leverage white-box techniques for
assessing and validating security are source code
analysis and profiling. Static analysis tools are used
to look at the text of a program while it is not
executing so that it can discover vulnerabilities

Advances in Computer Science

ISBN: 978-1-61804-126-5 363

within the program. A fixed set of patterns or rules
are used as basis for scanning the source code. For
example, many vulnerabilities are known to come
from reusable library functions such as stropy() and
stat (); so, a static analyzer could scan the programs
to see if they contain any calls to those functions.
The result of the source code analysis aids in the
development of test cases and gives a good
perspective of the security posture of the
application. White-box testing should be used to
verify that the potential vulnerabilities uncovered by
the static analysis tool will not lead to security
violations [27].
Profiling tools enable the tester to observe the
performance of an application while it is running.
This provides insight into where performance
bottlenecks may be occurring. It also enables the
tester to see and understand the sequence of function
calls and the time spent in different areas of the
software, and thereby brings it to the open areas of
vulnerability that are not apparent when using static
code analyzers [23].
Although security aspects of software should be
tested, it is also important to understand that security
is not just a function that can be checked off but is
an emergent property of the application. In other
words, this would be analogous to saying that being
dry is an emergent property of being inside a tent
during a rainstorm. The tent only keeps a person dry
if the poles are made stable, vertical, and able to
support the weight of the wet fabric; the tent also
must have waterproof fabric
(without any holes) and be large enough to protect
all those who want to remain dry.

4.1. Test Suites
Test Suites are generated by Scenario Specification.
One of key activities in testing distributed systems is
functional testing, which often involves
specification of system behavior scenarios and
development of test cases/scripts based on the
specified scenarios. Distributed systems often have
clear interface through which they interact with each
other. For example, in a supply chain system,
entities (such customers, retailers, manufacturers,
and suppliers) interact with each other through well-
defined API (Application Programming Interface).
The Web Services Interoperability (WS-I) defines
three interaction scenarios in supply-chain web
services:
• One-Way: a consumer sends a request message

to a provider without response from the provider.
• Synchronous Request/Response: a consumer

sends a request message to a provider. The

provider receives the message, processes it and
sends back a response.

• Basic Callback: At runtime a consumer sends
the initial SOAP request in a request/response
sequence to the provider, which in turn sends
back an immediate acknowledgement. At a later
time the provider will initiate the final
request/response sequence to the consumer
containing the response data for the initial
request sent by the consumer.

To derive scenarios of distributed systems, a tester
can use the following steps:
Step 1: Derive scenario specification for each sub-
system from security point of view, and formalize
the scenario specification by annotating each
scenario as a sequence of events, actions, and
associated pre-/post-conditions vulnerabilities;
Step 2: Specify the interaction between each pair of
subsystems;
Step 3: Derive the overall scenarios for the
distributed system by combining the scenarios for
individual sub-systems with the interaction from
security point of view.

Derive Scenarios for Each Sub-System

This step derives scenario specification from
subsystem requirements. Each scenario can be
classified as an atomic scenario, a sub-scenario, or a
complex scenario. The derived scenarios are
organized into a tree structure with each sub-tree
represent a group of functionally related scenarios
that the tester can analyze them together in a
hierarchical manner. Scenarios are annotated with
pre -conditions, events, actions, and post conditions,
and specified using OCL (Object Constraint
Language) and XML. The information specified is
useful in various analyses such as dependency
analysis, consistency analysis and concurrency
analysis. For example, “A customer accesses to the
retailer system with a valid customer ID” is a
scenario in Retailer system.
Test designer, who test applications that model real
security features and vulnerabilities of each
identified scenario provide:
• Configurable to be vulnerable to one or many
types of attack
• Ability to provide increasing level of defense for a
vulnerability.

4.2 Creating Security Assurance Cases
Developing a security assurance case is not a trivial
matter. In any real system the number of claims
involved and the amount of evidence required will
be significant. The effort involved is offset by an
expected decrease in effort required to find and fix

Advances in Computer Science

ISBN: 978-1-61804-126-5 364

Fig. 4. Partially expanded security assurance case that focuses on buffer overflow

security-related problems at the back end of product
development and by a reduced level of security
breaches with their attendant costs. Although we
believe that the return on investment (ROI) for

developing security cases would typically be
substantial, work is needed in the community to
gather the hard evidence necessary to support this
assumption.

Advances in Computer Science

ISBN: 978-1-61804-126-5 365

Creating and evolving the security case as the
system is being developed is highly recommended.
Developing even the preliminary outlines of an
assurance case as early as possible in the software
development life cycle (SDLC) can lead to
improvement in the development process by
focusing attention on what needs to be assured and
what evidence needs to be developed at each
subsequent stage of the SDLC. Attempting to gather
or generate the necessary security case evidence
once development is complete may not only be
much more costly, it may be impossible.

5 Conclusion

To develop software systems with security as an
emergent feature entails that the high leveraged
techniques discussed be incorporated into the whole
software development life cycle. Threat modeling
that drives risk analysis begins with the garnering of
requirements and use cases. Risks generated from
the threat modeling activities act as a barometer for
design, development of tests, and development of
rules for software code assessment and as one of the
benchmarks for testing.
Software security demands a balance of reactive and
proactive measures, and it requires that more time
be spent in determining the risks that can or will
affect the system. Software systems have to be
designed from a high enough level of abstraction
with security of the system as an emergent feature of
the system in question. The processes utilized to
create secure systems need more refinement so that
the ubiquity of software is not hampered by inherent
insecurity due to poor design. While software
security has been a universally recognized risk, there
has been an absence of established procedures for
quantifying the security risk present software. Only
by measuring can organizations conquer the
software security problem.

The first step in this journey is the adoption of
security-focused activities and deliverables
throughout each phase of the software development
process. These activities and deliverables include
risk analysis during software design, code review
during development, and security-oriented testing
that targets the risks that are specific to the
application at hand. By tracking and measuring the
security activities adopted into the development
process, an organization can begin to quantify their
software security risk.

The data produced by source code analysis tools
can be particularly useful for this purpose, giving
insight into whether or not code review is taking

place and whether or not the results of the review
are being acted upon.

This paper presents a scenario-based test
framework (OptimalSQM) for rapid distributed
system testing. Using the framework, a tester does
not need to write testing code, instead focuses on
scenario identification and specification. The frame
work generates test cases/scripts, and executes them
automatically. Whenever a change occurs, the tester
just needs to re-specify the modified scenarios so
that new test scripts can be generated to test the
modified feature. The framework can also perform
regression testing by identifying those affected
scenarios by dependency analysis. This paper used a
SCM application for illustration.

References

[1] Lj. Lazić, N. Mastorakis. ”
OptimalSQM:Integrated and Optimized
Software Quality Management”, WSEAS
TRANSACTIONS on INFORMATION
SCIENCE and APPLICATIONS, Issue 10,
Volume 6, pp 1636-1664, ISSN: 1790-0832,
October 2009.

[2] Burnstein, I., “Practical software testing : a
process-oriented approach”, 2003 Springer-
Verlag New York, Inc.

[3] Jiwnani K. and Zelkowitz M., “Maintaining
Software with a Security Perspective”, IEEE
International Conference on Software
Maintenance, Montreal Canada, October 2002.

[4] Madan B., Gosseva-Popstojanova K.,
Vaidyanathan K., and Trivedi K.S.. “Modeling
and quantification of security attributes of
software systems”. In Proc. Int. Conf. DSN,
(IPDS stream), volume 2, pages 505–514, 2002.

[5] Department of Homeland Security. Security in
the Software Lifecycle: Making Software
Development Processes – and Software
Produced by Them – More Secure, draft version
1.2. DHS, August 2006.

[6] Verdon, Denis, and Gary McGraw. “Risk
Analysis in Software Design.” IEEE Security
and Privacy 2.4 (2004).

[7] Cheswick, B, Paul Kocher, G. McGraw, and A.
Rubin. “Bacon Ice Cream: The Best Mix of
Proactive and Reactive Security?” IEEE Security
and Privacy 1.4 (2003).

[8] McGraw, Gary. “Building Secure Software:
Better Than Protecting Bad Software.” IEEE
Software 5.7 (2002).

Advances in Computer Science

ISBN: 978-1-61804-126-5 366

[9] G. Sindre, and A.L. Opdahl. Templates for
Misuse Case Description. Proc. Of the Seventh
International Workshop on Requirements
Engineering, Foundation for Software Quality
(REFSQ 2001), 4-5 June 2001, Switzerland.

[10] United States. Department of Homeland Security
(DHS). National Vulnerability Database 7 Dec.
2006, <http://nvd.nist.gov/>.

[11] OSVDB. Open Source Vulnerability Database. 8
Dec. 2006 <www.osvdb.org>.

[12] Dianxiang Xu, and Kendall Nygard. “A Threat-
Driven Approach to Modeling and Verifying
Secure Software.” Proc. of the 20th IEEE/ACM
International Conference on Automated
Software Engineering ASE, Nov. 2005, Long
Beach, CA. New York: ACM Press, 2005.

[13] Schneier, B. “Attack Trees: Modeling Security
Threats.” Dr. Dobb’s Journal Dec. 1999.

[14] McDermott, J.P. “Attack Net Penetration
Testing.” Proc. of the 2000

[15] Workshop on New Security Paradigm, Sept.
2000. Ballycotton, County Cork, Ireland. New
York: ACM Press, 2000.

[16] Gegick, M., and L. Williams. “Matching Attack
Patterns to Security Vulnerabilities in Software-
Intensive System Designs.” Proc. of the 2005
Workshop on Software Engineering For Secure
Systems; Building Trustworthy Applications, 15-
16 May 2005, St. Louis, MS. New York: ACM
Press, 2005
<http://doi.acm.org/10.1145/1083200.1083211>.

[17] Hernan, Shawn, Scott Lambert, Tomasz
Ostwald, and Adam Shostack. “Threat Modeling
– Uncover Security Design Flaws Using The
STRIDE Approach.” MSDN Magazine Nov.
2006.

[18] Steel, Christopher, Ramesh Nagappan, and Ray
Lai. Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity
Management. Prentice Hall, 2005.

[19] McGraw, Gary. Software Security: Building
Security In. Addison-Wesley Professional, 2006.

[20] United States. Department of Commerce. An
Introduction to Computer Security – The NIST
Handbook. NIST, 1995.

[21] Pan, Jiantao. “Software Testing – 18- 849
Dependable Embedded Systems.”

[22] Carnegie Mellon University, 1999
<www.ece.cmu.edu/~koopman/des_s99/sw_testi
ng>.

[23] Howard, Michael, and David C. LeBlanc.
Writing Secure Code. 2nd ed. Redmond, WA:
Microsoft Press, 2002.

[24] Hetzel, William C. The Complete Guide to
Software Testing. 2nd ed. Wellesley, MA: QED
Information Sciences, 1988.

[25] Voas, Jeffrey M., and Gary McGraw. Software
Fault Injection: Inoculating Programs Against
Errors. New York, NY: John Wiley & Sons,
1998.

[26] Michael, C.C., and Will Radosevich. “Risk-
Based and Functional Security Testing.” DHS.
Build Security In Portal,
<https://buildsecurityin.us-cert.gov/portal/article/
bestpractices/security_testing/
overview.xml#Risk-Based-Testing>.

[27] Schneier, B. Secrets and Lies: Digital Security in
a Networked World. New York: John Wiley &
Sons, 2000.

[28] cwe.mitre.org.

[29] Hope, Paco, Gary McGraw, and Annie I. Anto’n.
“Misuse and Abuse Cases: Getting Past the
Positive.” IEEE Security and Privacy 2.3 (2003).

[30] Defense Information Systems Agency,
“Application SecurityAssessment Tool Market
Survey,” Version 3.0 July 29, 2004.

Advances in Computer Science

ISBN: 978-1-61804-126-5 367

