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Abstract: - Software security addresses the degree to which software can be exploited or misused. Software 
development is not yet a science or a rigorous discipline, and the development process by and large is not 
controlled to minimize the vulnerabilities that attackers exploit. Security is a blend of -enhanced processes and 
practices—and the skilled people to perform them— which are required to build software that can be trusted 
not to increase risk exposure. Three categories of analysis provide such a blend: threat modeling, risk analysis, 
and security assessment and testing. This article discusses the role of software testing in a security-oriented 
software development process. It focuses on two related topics: functional security testing and risk-based 
security testing. Any endeavor worth pursuing is worth measuring, but software security presents new 
measurement challenges: there are no established formulas or procedures for quantifying the security risk 
present in a program. This paper details the importance of measuring software security and discusses the less-
than satisfying approaches that are prevalent today. A new set of metrics is then proposed for ensuring an 
accurate and comprehensive view of software projects ranging from legacy systems to newly deployed web 
applications. Many of the new metrics make use of source code analysis results. 
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1 Introduction 

Software development is not yet a science or a 
rigorous discipline, and the development process by 
and large is not controlled to minimize the 
vulnerabilities that attackers exploit. Today, as with 
cancer, vulnerable software can be invaded and 
modified to cause damage to previously healthy 
software, and infected software can replicate itself 
and be carried across networks to cause damage in 
other systems. Like cancer, these damaging 
processes may be invisible to the lay person even 
though experts recognize that their threat is growing. 
And as in cancer, both preventive actions and 
research are critical, the former to minimize damage 
today and the latter to establish a foundation of 
knowledge and capabilities that will assist the cyber 
security professionals of tomorrow reduce risk and 
minimize damage for the long term.  

The software development process offers 
opportunities to insert malicious code and to 
unintentionally design and build software with 
exploitable weaknesses. Security-enhanced 
processes and practices—and the skilled people to 
perform them—are required to build software that 

can be trusted not to increase risk exposure. Our 
research [1]1 concluded that Software testing, as 
well as Security testing, as a process, has technical, 
as well as financial aspects [1,2,6,24]. The financial 
aspects are related to the fact that the available time 
and resources given to the team are limited. In many 
cases, thorough security (complete) testing is not 
achievable because of financial limitations. A 
company dedicated to software development must 
complete the project in time, within the budget 
limits, and satisfy the client’s demands [29,30]. 

Secure software is software that is resistant to 
intentional attack as well as unintentional failures, 
defects, and accidents. Software security is the 
ability of software to resist, tolerate, and recover 
from events that intentionally threaten its 
dependability. Security in the Software Lifecycle [5] 
defines software security as follows: 
- Protection against intentional subversion or 

forced failure.  

                                                 
1 This work was supported in part by the Ministry of 
Education and Science of  the Republic of Serbia under 
Grant No. TR-35026 entitled as:“Software Development 
Environment for optimal software quality design“.  

Advances in Computer Science

ISBN: 978-1-61804-126-5 355



- Preservation of the three subordinate properties 
that make up security—availability, integrity, 
and confidentiality. 

- Security manifests as the ability of the system to 
protect itself from external faults that may be 
accidental or deliberate (attacks).  
The objective of software security is to design, 

implement, configure, and support software systems 
in ways that enable them to: 

1. continue operating correctly in the presence 
of most attacks by either resisting the exploitation of 
faults or other weaknesses in the software by the 
attackers or tolerating the errors and failure that 
result from such exploits  

2. isolate, contain, and limit the damage 
resulting from any failures caused by attack-
triggered faults that the software was unable to resist 
or tolerate and recover as quickly as possible from 
those failures  

Software security and secure software are often 
discussed in the context of software assurance. 
Software assurance is broader than software 
security, encompassing the additional disciplines of 
software safety and reliability. 

A key objective of software assurance is to 
provide justifiable confidence that software is free 
of vulnerabilities. Another is to provide justifiable 
confidence that software functions in the “intended 
manner” and the intended manner does not 
compromise the security and other required 
properties of the software, its environment, or the 
information it handles. 

This paper discusses the role of software testing 
in a security-oriented software development process. 
It focuses on two related topics: functional security 
testing and risk-based security testing.  

Functional testing is meant to ensure that 
software behaves as it should. Therefore, it is largely 
based on software requirements. For example, if 
security requirements state that the length of any 
user input must be checked, then functional testing 
is part of the process of determining whether this 
requirement was implemented and whether it works 
correctly.  

Analogously, risk-based testing is based on 
software risks, and each test is intended to probe a 
specific risk that was previously identified through 
risk analysis. A simple example is that in many web-
based applications, there is a risk of injection 
attacks, where an attacker fools the server into 
displaying results of arbitrary SQL queries. A risk-
based test might actually try to carry out an injection 
attack, or at least provide evidence that such an 
attack is possible. For a more complex example, 

consider the case where risk analysis determines that 
there are ambiguous requirements. In this case, 
testers must determine how the ambiguous 
requirements might manifest themselves as 
vulnerabilities. The actual tests are then aimed at 
probing those vulnerabilities. 

This paper focuses on how risk-based and 
functional security testing mesh into the software 
development process. Many aspects of software 
testing are discussed, especially in their relationship 
to security testing. Nonetheless, this article is not 
intended as a primer on software testing per se.  

2 Approaches For Integrating Security 

Into The SDLC 
Regardless of the SDLC model used (e.g. 

waterfall, spiral, Rational Unified Process), the 
SDLC represents a phased approach to the 
development of a system. An appropriate model 
should facilitate the reanalysis and validation of the 
plans, requirements, and design at multiple points 
throughout its life cycle. Whether regarded as a 
phase or discipline, an SDLC is composed of several 
common groupings of activities: requirements, 
design and build, test and deploy, operations and 
maintenance, and disposal, with full lifecycle 
support activities such as risk management, CM, and 
training. Security can be integrated into these 
different points of the SDLC independent of the 
model. 

Figure 1 describes each phase or discipline of an 
SDLC with the associated security activities. 

Full Life-Cycle Support Activities Risk 
Management Risk management includes performing 
security risk analyses at different points of the life 
cycle. Security risk analysis serves to identify and 
mitigate security-related risks. 

  

 
Fig. 1 Phases of an SDLC 
 

The results of the risk analysis feed into the risk 
management process of identifying, controlling, and 
eliminating or minimizing uncertain events that may 
affect the system. Risk analysis should be repeated 
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iteratively throughout the system’s life cycle as 
different activities allow opportunities to identify 
new or changing risks. For instance, as the project 
progresses forward and activities shift from 
requirements development to high-level system 
design, additional information will be uncovered 
about the application. This new information may 
reveal risks not previously identified such as use of 
vulnerable components or a flawed authentication 
model. We also know that changes to design during 
the build phase are almost always certain to occur. 
That is why it is important to also perform a risk 
analysis on the system after it has been built.  

Inaccurate or incomplete CM may enable 
malicious developers to exploit the shortcomings in 
the CM process in order to make unauthorized or 
undocumented changes to the software. Lack of 
proper software change control, for example, could 
allow rogue developers to insert or substitute 
malicious code, introduce exploitable 
vulnerabilities, or remove or modify security 
controls implemented in the software. Good CM 
practices also prevent the introduction of 
unintentional flaws into software code. For example, 
a developer makes a seemingly harmless 
modification to the application’s interface before 
deployment and is able to bypass the CM process. 
This change unintentionally gives normal, restricted 
users elevated privileges to view information they 
normally would not be allowed to access. Since the 
CM process was bypassed, this change was not 
analyzed or tested for its security impact as it 
normally should have been. 

By tracking and controlling all of the artifacts of 
the system development process, CM helps ensure 
that changes made to those artifacts cannot 
compromise the trustworthiness of the software 
as it evolves through each phase of the process. 
Coming from a systems development background, I 
have had the opportunity to practice CM hands on. 
Now that I am involved in security, I have found 
that good CM is no different than CM for security. 
Thus, practicing good CM is good security. 
 

3 Metrics That Quantify Software 

Security Risk 
What would happen if your company cut its 

security budget in half? What if the budget was 
doubled instead? In most companies today, no one 
knows the answers to these questions. Security 
remains more art than science, and nothing is more 
indicative of this fact than the inability of security 
practitioners to quantify the effects of their work. 

Software security is no exception: nearly every 
major business critical application deployed today 
contains vulnerabilities— buffer overflow and 
cross-site scripting are commonplace, and so are 
many other, less well-known, types of 
vulnerabilities. 

These problems can be exploited to cause 
considerable harm by external hackers or malicious 
insiders. Security teams know that these errors exist, 
but are, for the most part, will equipped to quantify 
the problem. Any proposed investment in improving 
this situation is bound to bring up questions such as: 

• Are the applications more secure today than 
yesterday—or less secure? 

• Does security training really make a difference? 
• How will we know when our systems are 

secured? 
This paper examines the current state of practice 

for measuring software security. It then suggests two 
new approaches to the problem: quantifying the 
secure development lifecycle, and focusing on the 
root cause of much vulnerability using metrics built 
with source code analysis results. 

3.1 Approaches to Measuring Security 
3.1.1. Build Then Break: Penetration Testing as a 

Metric 

The de facto method that most organizations use for 
measuring software security today can be 
summarized as “build then break.” Developers 
create applications with only a minimum of 
attention paid to security, and the applications are 
deployed. The operations team then attempts to 
compensate for the problematic software with 
perimeter security. When the team takes inventory 
of all of the ways that data moves through and 
around the perimeter defenses, it becomes clear that 
the perimeter security is insufficient. At this point, 
the operations team may bring in penetration testers 
to find the problems before hackers or malicious 
insiders do. The penetration testers generally have a 
fixed schedule for performing their work and their 
goal is to find a small number of serious problems to 
justify their consulting fee. Once these problems are 
resolved, everyone is happy. But there’s no reason 
to believe that the penetration test revealed all of the 
problems with the application. In fact, subsequent 
audits usually prove that it did not. There’s also very 
little feedback to the developers, so penetration tests 
often find the same types of problems over and over 
again. 
 
3.1.2. Measure Software Security as Part of 

Software Quality 
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A naive approach to software security calls for 
treating security as just another aspect of software 
quality. The problem is that traditional quality 
assurance is aimed at verifying a set of features 
against a specification. Software security, however, 
requires much more than well-implemented security 
features. 
The reality is that a typical process for achieving 
good results with respect to traditional quality issues 
does not guarantee good results with respect to 
security issues. In other words, you have to focus 
specifically on security in order to improve it. Good 
security is not a byproduct of good quality. Further 
complicating this approach, the majority of Quality 
Assurance (QA) departments lack the requisite 
security expertise to carry out adequate security 
tests. Finally, any approach to quality that is based 
on the behavior of regular users will leave many 
untested opportunities for attackers. 
 
3.1.3. The Feel-Good Metric: If it Hasn’t Been 

Hacked Yet, it’s Probably Okay 

Because security so often goes un-quantified, the 
bottom-line measure for security is often gut-feel. 
Human nature and the nature of security are in 
conflict on this point: people and organizations tend 
to gain comfort with the status quo over time, but 
security may actually degrade as time passes. New 
types of attacks and new applications for old types 
of attacks can harm a program’s security—even as 
an organization becomes more and more complacent 
because security “hasn’t been a problem yet!” 

A similar fallacy holds that the security of a 
program can be correlated to the breadth of its 
adoption. Interestingly, this line of reasoning always 
seems to work in favor of the status quo. 

For applications with a small user base, people 
assume that attackers will not take an interest. For 
applications with a large user base, people assume 
that any security issues will be flushed out of the 
system shortly after release. In truth, security is no 
more related to breadth of adoption than it is to 
longevity. The BugTraq mailing list (where news of 
many new vulnerabilities debuts) is filled with 
entries about small and obscure applications. 
Furthermore, the long history of buffer overflows in 
widely adopted programs as varied as Send Mail and 
Internet Explorer shows that neither age nor a large 
install base prevents attackers from finding new 
exploits. 

 
3.2. Software Security Metrics You Can Use 

Imediately 

Having explained the measurement problem and 
how not to solve it, we now turn to two practical 
methods for measuring software security. 
 
3.2.1. Quantify The Secure Development 

Lifecycle 

Software security must be addressed as part of the 
software development lifecycle [2,3]. There are 
practical steps that development groups can take 
during each phase of the lifecycle in order to 
improve the security of the resulting system. These 
steps include: 
• Evaluate the current state of software security and 
create a plan for dealing with it throughout the 
development life cycle (see Figure 2). 
• Specify the threats, identify both business and 
technical risks, and plan countermeasures. 
• Review the code for security vulnerabilities 
introduced during development. 
• Test code for vulnerabilities based on the threats 
and risks identified earlier. 
• Build a gate to prevent applications with 
vulnerabilities from going into production. Require 
signoff from key development and security 
personnel. 
• Measure the success of the security plan so that the 
process can be continually improved. Yes, your 
measurement efforts should be measured! 
• Educate stakeholders about security so they can 
implement the security plan effectively. 
Each of these steps can be measured. For example, 
if your security plan includes educating developers, 
you can measure what percentage of developers 
have received software security 
training. Of course, not all organizations will adopt 
all steps to the same degree. By tracking and 
measuring the adoption of secure development 
practices, you will have the data to draw correlations 
within your organization. For example, you will 
likely find that the up-front specification of threats 
and risks correlates strongly to a faster and easier 
security signoff prior to release. 
 
3.2.2. Use Source Code Analysis to Measure 

Security 

All software organizations, regardless of 
programming language, development methodology, 
or product category, have one thing in common: 
they all have source code. The source code is a very 
direct embodiment of the system, and many 
vulnerabilities manifest themselves in the source 
[19]. It follows that the source code is the one key 
artifact to measure as part of assessing software 
security. Of course, source code review is useful for 
more than just metrics. The following sections 
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discuss some source code analysis fundamentals and 
then look at how source code analysis results can 

provide the raw material for powerful software 
security metrics. 

 

 
Fig. 2 Information Security Metrics Development Process 

Source code analyzers process code looking for 
known types of security defects. In an abstract 
sense, a source code analyzer searches the code for 
patterns that represent potential vulnerabilities and 
presents the code that matches these patterns to a 
human auditor for review. The three key attributes 
for good source code analysis are accuracy, 
precision, and robustness. 
A source code analyzer should accurately identify 
vulnerabilities that are of concern to the type of 
program being analyzed. For example, web 
applications are typically at risk for SQL injection, 
cross-site scripting, and access control problems, 
among others. Further, the analysis results should 
indicate the likely importance of each result. 
The source code analyzer must also be precise, 
pointing to a manageable number of issues without 
generating a large number of false positives. 
Furthermore, if a program is analyzed today, and 
subsequently re-analyzed tomorrow, it is likely that 
only a small amount of code will have changed. The 
source code analyzer must be able to give the same 
name to the same issue today and tomorrow, 
allowing for the ability to track when issues appear 
and disappear. This capability is critical for 
extracting meaningful metrics from source code 
analysis results. 
Finally, the source code analyzer must be robust: it 
must be able to deal with large, complex bodies of 
code. Of course, not every issue the source code 
analyzer identifies will be a true vulnerability. 

Therefore, part of being robust is allowing human 
auditors to evaluate and prioritize potential issues. A 
preferred scenario has a human auditor classify the 
output from the analyzer into 1) severe 
vulnerabilities that must be corrected immediately, 
2) bad practices, and 3) issues that are not relevant 
to the organization. An even better application of 
source code analysis allows developers to analyze 
their own code as they write it, making source code 
analysis part of the daily process of program 
development. 
 
3.2.3. Security Metrics Based on Source Code 

Analysis 

The best metrics that can be derived from source 
code analysis results are, to a certain extent, 
dependent upon the way in which an organization 
applies source code analysis. We will consider 
the following scenarios: 
1. Developers use the source code analyzer on a 
regular basis as part of their development work. 
They are proactively coding with security in mind. 
2. A software security team uses the source code 
analyzer as part of a periodic code review process. A 
large body of code has been created with little 
regard for security. The organization plans to 
remediate this code over time. 

Of course, the first scenario is preferable, but most 
organizations cannot achieve that overnight. For the 
near future, it is likely that both scenarios will co-
exist in most organizations. 
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4 The Security Causes and Errors 

Taxonomy 
Software acquirers want assurance that the software 
products they are obtaining are reviewed for known 
types of exploitable security weaknesses, and the 
acquisition groups in large government and private 
organizations are moving forward to use these types 
of reviews as part of future contracts. Until recently 
the tools and services that could be used for this type 
of review were new at best and there were no 
nomenclature, taxonomies, or standards to define the 
capabilities and coverage of them. That made it 
difficult to comparatively decide which tool or 
service was best suited for a particular job. What 
was needed was a standard list and classification of 
software security weaknesses to serve as a unifying 
language of discourse and a measuring stick for 
tools and services. Common Vulnerabilities and 
Exposures (CWE) [28] is a community-developed 
formal list or dictionary of common software 
weaknesses. Leveraging the diverse thinking on this 
topic from academia, the commercial sector, and 
government, CWE unites the most valuable breadth 
and depth of content and structure to serve as a 
unified standard. Our objective is to help shape and 
mature the code security assessment industry and 
also dramatically accelerate the use and utility of 
software assurance capabilities for organizations in 
reviewing the software systems they acquire or 
develop. 
 
4.1 Initial Weaknesses, Idiosyncrasies, 

Faults, Flaws (WIFFs) Enumeration 
The following section introduces the current content 
we have derived through studying a large portion of 
the CWE list. The listing below, which is comprised 
of 290 specific types of weakness, idiosyncrasies, 
faults and flaws (WIFFs) is not exhaustive and will 
certainly evolve. 
Our purpose in coining the term “WIFFs” is avoid 
the use of the term “vulnerability” for these items. 
The term “vulnerability” is frequently used in the 
community to apply to other concepts including 
bugs, attacks, threats, risks, and impact. Also, there 
are widely varying opinions regarding what “risk 
level” must be associated with a problem in order to 
call it a vulnerability, e.g. in terms of denial-of-
service attacks and minor information leaks. 
Finally, not every instance of the items listed below, 
or those collected in this overall effort, will need to 
be removed or addressed in the applications they 
reside in. While they most certainly need to be 
examined and evaluated for their potential impact to 
the application, there will certainly be a large 

number of these items that could be safely left as is, 
or dealt with by making some minimal adjustments 
or compensations to keep them from manifesting 
into exploitable vulnerabilities. If we went forward 
using the term “vulnerability” for these items, there 
would be a built-in bias and predisposition to 
remove and eliminate each and every one of them, 
which would be a massive and unnecessary waste of 
time and resources. 
The items below have not been categorized except 
in the most obvious and expeditious manner. With 
the incorporation of the other contributions from 
academia and industry sources we will most 
certainly reorganize these groupings as more 
examples and specifics are added. With this caveat 
we provide the following summary of the 28 main 
categories which contain the 290 individual types of 
WIFFs we have enumerated to-date. 
1. Buffer overflows, format strings, etc. [BUFF] (10 

types)  

These categories cover the increasingly diverse set 
of WIFFs that are generally referred to as “buffer 
overflows.” 
The specific types in this group are: Buffer 
Boundary Violations (“buffer overflow”), 
Unbounded Transfer (“classic overflow”), Boundary 
beginning violation (“buffer underflow”), Out-of-
bounds Read, Buffer over-read, Buffer under-read, 
Array index overflow, Length Parameter 
Inconsistency, Other length calculation error, 
Format string vulnerability 
2. Structure and Validity Problems [SVM] (10 types) 

These categories cover certain ways in which 
“wellformed” data could be malformed. The specific 
types in this group are: Missing Value Error, 
Missing Parameter Error, Missing Element Error, 
Extra Value Error, Extra Parameter Error, 
Undefined Parameter Error, Undefined Value Error, 
Wrong Data Type, Incomplete Element, Inconsistent 
Elements. 
3. Special Elements (Characters or Reserved 

Words) [SPEC] (19 types) 

These categories cover the types of special elements 
(special characters or reserved words) that become 
security relevant when transferring data between 
components. The specific types in this group are: 
General Special Element Problems, Parameter 
Delimiter, Value Delimiter, Record Delimiter, Line 
Delimiter, Section Delimiter, Input Terminator, 
Input Leader, Quoting Element, Escape, Meta, or 
Control Character / Sequence, Comment Element, 
Macro Symbol, Substitution Character, Variable 
Name Delimiter, Wildcard or Matching Element, 
Whitespace, Grouping Element / Paired Delimiter, 
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Delimiter between Expressions or Commands, Null 
Character / Null Byte. 
4. Common Special Element Manipulations 

[SPECM] (11 types)  

These categories include different ways in which 
special elements could be introduced into input to 
software as it operates. The specific types in this 
group are: Special Element Injection, Equivalent 
Special Element Injection, Leading Special Element, 
Multiple Leading Special Elements, Trailing Special 
Element, Multiple Trailing Special Elements, 
Internal Special Element, Multiple Internal Special 
Element, Missing Special Element, Extra Special 
Element, Inconsistent Special Elements 
5. Technology-Specific Special Elements [SPECTS] 

(17 types) 

These categories cover special elements in 
commonly used technologies and their associated 
formats. The specific types in this group are: Cross-
site scripting (XSS), Basic XSS, XSS in error pages, 
Script in IMG tags, XSS using Script in Attributes, 
XSS using Script Via Encoded URI Schemes, 
Doubled character XSS manipulations, e.g. 
“<<script”, Null Characters in Tags, Alternate XSS 
syntax, OS Command Injection, Argument Injection 
or Modification, SQL injection, LDAP injection, 
XML injection (aka Blind Xpath injection), Custom 
Special Character Injection, CRLF Injection, 
Improper Null Character Termination 
6. Pathname Traversal and Equivalence Errors 

[PATH] (47 types) 
These categories cover the use of file and directory 
names to either “escape” out of an intended 
restricted directory, or access restricted resources by 
using equivalent names. The specific types in this 
group are: Path Traversal, Relative Path Traversal, 
“/directory/../filename”, “../filedir”, “/../filedir”, 
“directory/../../filename”, “..\filename” (“dot dot 
backslash”), “\..\filename” (“leading dot dot 
backslash”), “\directory\..\filename”, 
“directory\..\..\filename”, “...” (triple dot), “....” 
(multiple dot), “....//” (doubled dot dot slash), 
Absolute Path Traversal, /absolute/pathname/here, 
“.../...//”, \absolute\pathname\here (“backslash 
absolute path”), “C:dirname” or C: (Windows 
volume or “drive letter”), “\\UNC\share\name\” 
(Windows UNC share), Path Equivalence, Trailing 
Dot - “filedir.”, Internal Dot -“file.ordir”, Multiple 
Internal Dot - “file...dir”, Multiple Trailing Dot - 
“filedir....”, Trailing Space - “filedir “, Leading 
Space - “ filedir”, file[SPACE]name (internal 
space), filedir/ (trailing slash, trailing /), 
//multiple/leading/slash (“multiple leading slash”), 
/multiple//internal/slash (“multiple internal slash”), 
/multiple/trailing/slash// (“multiple trailing slash”), 

\multiple\\internal\backslash, filedir\ (trailing 
backslash), /./ (single dot directory), filedir* 
(asterisk / wildcard), dirname/ fakechild 
/../realchild/filename, Windows 8.3 Filename, Link 
Following, UNIX symbolic link (symlink) 
following, UNIX hard link, Windows Shortcut 
Following (.LNK), Windows hard link, Virtual 
Files, Windows MSDOS device names, Windows 
::DATA alternate data stream, Apple “.DS_Store”, 
Apple HFS+ alternate data stream 
7. Channel and Path Errors [CP] (13 types) 

These categories cover the ways in which the use of 
communication channels or execution paths could 
be security-relevant. The specific types in this group 
are: 
Channel Errors, Unprotected Primary Channel, 
Unprotected Alternate Channel, Alternate Channel 
Race Condition, Proxied Trusted Channel, 
Unprotected Windows Messaging Channel 
(“Shatter”),  Alternate Path Errors, Direct Request 
aka “Forced Browsing”, Miscellaneous alternate 
path errors, Untrusted Search Path, Mutable Search 
Path, Uncontrolled Search Path Element, Unquoted 
Search Path or Element 
8. Cleansing, Canonicalization, and Comparison 

Errors [CCC] (16 types) 

These categories cover various ways in which inputs 
are not properly cleansed or canonicalized, leading 
to improper actions on those inputs. The specific 
types in this group are: 
Encoding Error, Alternate Encoding, Double 
Encoding, Mixed Encoding, Unicode Encoding, 
URL Encoding (Hex Encoding), Case Sensitivity 
(lowercase, uppercase, mixed case), Early 
Validation Errors, Validate-Before-Canonicalize, 
Validate-Before-Filter, Collapse of Data into 
Unsafe Value, Permissive Whitelist, Incomplete 
Blacklist, Regular Expression Error, Overly 
Restrictive Regular Expression, Partial Comparison 
9. Information Management Errors [INFO] (19 

types) 

These categories involve the inadvertent or 
intentional publication or omission of sensitive data, 
which is not resultant from other types of WIFFs. 
The specific types in this group are: Information 
Leak (information disclosure), Discrepancy 
Information Leaks, Response discrepancy 
infoleak, Behavioral Discrepancy Infoleak, Internal 
behavioral inconsistency infoleak, External 
behavioral inconsistency infoleak, Timing 
discrepancy infoleak, Product-Generated Error 
Message Infoleak, Product-External Error Message 
Infoleak, Cross-Boundary Cleansing Infoleak, 
Intended information leak, Process information 
infoleak to other processes, Infoleak Using Debug 
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Information, Sensitive Information Uncleared 
Before Use, Sensitive memory uncleared by 
compiler optimization, Information loss or omission, 
Truncation of Security-relevant Information, 
Omission of Security relevant Information, 
Obscured Security-relevant Information by 
Alternate Name 10. Race Conditions [RACE] (6 
types) 
These categories cover various types of race 
conditions. The specific types in this group are: 
Race condition enabling link following, Signal 
handler race condition, Time-of-check Time-of-use 
race condition, Context Switching Race Condition, 
Alternate Channel Race Condition, Other race 
conditions  
11. Permissions, Privileges, and ACLs [PPA] (20 

types) 

These categories include the improper use, 
assignment, or management of permissions, 
privileges, and access control lists. The specific 
types in this group are: Privilege /sandbox errors, 
Incorrect Privilege Assignment, Unsafe Privilege, 
Privilege Chaining, Privilege Management Error, 
Privilege Context Switching Error, Privilege 
Dropping /Lowering Errors, Insufficient privileges, 
Misc. privilege issues, Permission errors, Insecure 
Default Permissions, Insecure inherited permissions, 
Insecure preserved inherited permissions, Insecure 
execution-assigned permissions, Fails poorly due to 
insufficient permissions, Permission preservation 
failure, Ownership errors, Unverified Ownership, 
Access Control List (ACL) errors, User 
management errors. 
12. Handler Errors [HAND] (4 types) 

These categories, which are not very mature, cover 
various ways in which “handlers” are improperly 
applied to data. 
The specific types in this group are: Handler errors, 
Missing Handler, Dangerous handler not 
cleared/disabled during sensitive, Raw Web Content 
Delivery, File Upload of Dangerous Type. 
13. User Interface Errors [UI] (7 types) 

These categories cover WIFFs in a product's user 
interface that lead to insecure conditions. The 
specific types in this group are: Product UI does not 
warn user of unsafe actions, Insufficient UI warning 
of dangerous operations, User interface 
inconsistency, Unimplemented or unsupported 
feature in UI, Obsolete feature in UI, The UI 
performs the wrong action, Multiple Interpretations 
of UI Input, UI Misrepresentation of Critical 
Information. 
 

5 Software Assessments and Security 

Testing Framework 
Testing traditionally involves exercising an 
application to see if it works as it should. In contrast, 
security testing entails identifying and removing 
vulnerabilities that could result in security 
violations. It also validates the effectiveness of 
security measures that are in place [21]. 
Most of the testing methodologies used fall into one 
of two categories: black-box or white-box testing. 
Black-box tests are those whose data are derived 
from the specified functional requirements in which 
attention is not given to the final program structure 
[22, 23]. Commonly used black-box testing 
approaches for software security are penetration, 
functional, risk-based, and unit testing. 
White-box tests are those tests and assessment 
activities where the structure and flow of the 
software under review are visible to the tester. 
Testing plans are made based on the details of the 
software implementation and test cases are based on 
the program structure [21-23]. 
Commonly used white-box assessment approaches 
that can assess security are source code analysis and 
profiling. 
The method by which security assessment and 
testing is carried out depends on the perspective of 
the tester relative to the software component. We 
developed OptimalSQM Test Framework 
Architecture [1] which follows the three-tier 
architecture: 
front-end, middle and target system tiers (Figure 3). 
Front-end tier: This provides a user-friendly 
interface (GUI and/or Web browser), and allows the 
tester to specify the test scenarios/cases derived 
from requirements using the textual/graphical 
representations, query the database, and review test 
results. 
Middle tier: This is divided into two internal tiers: 
front-middle and back-middle tier. The front-middle 
tier: 

• Organizes scenario specifications in an OO 
fashion such as creating testing scenario 
objects, test case objects, input data objects, 
method signature objects, and complex 
scenario objects; 

• Performs a variety of analysis, such as 
completeness and consistency check, 
dependency analysis; 

• Executes tests (such as regression tests, 
functional tests) by sending commands 
cross the network using TCP/IP or SOAP; 

• Performs runtime verification; 
• Performs dynamic simulation. 
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The back-middle tier facilitates access to the 
database for storing test specifications and results. 
Target system tier: In this tier, test agents act as 
proxies of the test master and perform tests on the 
target system on behalf of the master. The systems 
can be existing ones or prototypes. Test agents carry 
out test execution by collaborating with each other, 
and report the test results to the test master. Our 
aim is to assist clients in assessing both threat 
agents and threat events that may affect the 
organisation as well as identify possible causes 
and scenarios for each event. 
The following formula can be used as a method 
to identify the level of threat for each threat 

agent. Threat Agent = Capabilities + Intentions 
+ Past Activities 

• Capability assessment is based upon the 
Threat Agent’s Resources and 
Knowledge.  

• Intentions assessment is based upon the 
Threat Agent’s Motivation and 
Incentive.  

• Past Activities assessment is based upon 
historical data relevant to the Threat 
Agent.  

 
Fig. 3 Overall OptimalSM Architecture of Test Framework 

 
Test cases that are constructed based on functional 
requirements without regard to specific knowledge 
about software internals are known as black-box 
tests; test cases that take advantage of internal 
structure are known as white-box tests. Often, the 
information gathered during risk analysis is used to 
develop white-box and black-box test cases. In 
particular, flaws identified during risk analysis can 
be purposely added to a software component to 
forcibly change the program state and demonstrate 
the effects of a successfully exploited vulnerability. 
This approach, known as fault injection, allows for 
absolute worst-case prediction [24]. It gives an 
insight into predictive measures such as mean-time-
to-hazard, minimum-time-to-hazard, and meantime- 
to-failure; all of which quantify risk. 
Three approaches are commonly taken to test the 
security of a component in a black-box fashion. 

Risk-based testing demonstrates that security 
functionalities work as intended [25]. 
Penetration testing examines the ease with which a 
component can be infiltrated. 
Unit security testing assumes that adversaries will 
take a two-stage approach to attack: First, they get 
access to the software, then second, control the 
software after access. As such, the assumptions that 
developers make about the environment and 
incorporate into the components should be checked 
at the unit testing level. Attack trees have been used 
by many as a method for identifying and modeling 
security threats, especially those that involve many 
stages for implementation [26]. 
Two high-leverage white-box techniques for 
assessing and validating security are source code 
analysis and profiling. Static analysis tools are used 
to look at the text of a program while it is not 
executing so that it can discover vulnerabilities 
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within the program. A fixed set of patterns or rules 
are used as basis for scanning the source code. For 
example, many vulnerabilities are known to come 
from reusable library functions such as stropy() and 
stat (); so, a static analyzer could scan the programs 
to see if they contain any calls to those functions. 
The result of the source code analysis aids in the 
development of test cases and gives a good 
perspective of the security posture of the 
application. White-box testing should be used to 
verify that the potential vulnerabilities uncovered by 
the static analysis tool will not lead to security 
violations [27]. 
Profiling tools enable the tester to observe the 
performance of an application while it is running. 
This provides insight into where performance 
bottlenecks may be occurring. It also enables the 
tester to see and understand the sequence of function 
calls and the time spent in different areas of the 
software, and thereby brings it to the open areas of 
vulnerability that are not apparent when using static 
code analyzers [23]. 
Although security aspects of software should be 
tested, it is also important to understand that security 
is not just a function that can be checked off but is 
an emergent property of the application. In other 
words, this would be analogous to saying that being 
dry is an emergent property of being inside a tent 
during a rainstorm. The tent only keeps a person dry 
if the poles are made stable, vertical, and able to 
support the weight of the wet fabric; the tent also 
must have waterproof fabric 
(without any holes) and be large enough to protect 
all those who want to remain dry. 
 
4.1. Test Suites 
Test Suites are generated by Scenario Specification. 
One of key activities in testing distributed systems is 
functional testing, which often involves 
specification of system behavior scenarios and 
development of test cases/scripts based on the 
specified scenarios. Distributed systems often have 
clear interface through which they interact with each 
other. For example, in a supply chain system, 
entities (such customers, retailers, manufacturers, 
and suppliers) interact with each other through well-
defined API (Application Programming Interface). 
The Web Services Interoperability (WS-I) defines 
three interaction scenarios in supply-chain web 
services: 
• One-Way: a consumer sends a request message 

to a provider without response from the provider. 
• Synchronous Request/Response: a consumer 

sends a request message to a provider. The 

provider receives the message, processes it and 
sends back a response. 

• Basic Callback: At runtime a consumer sends 
the initial SOAP request in a request/response 
sequence to the provider, which in turn sends 
back an immediate acknowledgement. At a later 
time the provider will initiate the final 
request/response sequence to the consumer 
containing the response data for the initial 
request sent by the consumer. 

To derive scenarios of distributed systems, a tester 
can use the following steps: 
Step 1: Derive scenario specification for each sub-
system from security point of view, and formalize 
the scenario specification by annotating each 
scenario as a sequence of events, actions, and 
associated pre-/post-conditions vulnerabilities; 
Step 2:  Specify the interaction between each pair of 
subsystems; 
Step 3:  Derive the overall scenarios for the 
distributed system by combining the scenarios for 
individual sub-systems with the interaction from 
security point of view. 
 
Derive Scenarios for Each Sub-System 

This step derives scenario specification from 
subsystem requirements. Each scenario can be 
classified as an atomic scenario, a sub-scenario, or a 
complex scenario. The derived scenarios are 
organized into a tree structure with each sub-tree 
represent a group of functionally related scenarios 
that the tester can analyze them together in a 
hierarchical manner. Scenarios are annotated with 
pre -conditions, events, actions, and post conditions, 
and specified using OCL (Object Constraint 
Language) and XML. The information specified is 
useful in various analyses such as dependency 
analysis, consistency analysis and concurrency 
analysis. For example, “A customer accesses to the 
retailer system with a valid customer ID” is a 
scenario in Retailer system. 
Test designer, who test applications that model real 
security features and vulnerabilities of each 
identified scenario provide: 
• Configurable to be vulnerable to one or many 
types of attack 
• Ability to provide increasing level of defense for a 
vulnerability. 
 
4.2 Creating Security Assurance Cases 
Developing a security assurance case is not a trivial 
matter. In any real system the number of claims 
involved and the amount of evidence required will 
be significant. The effort involved is offset by an 
expected decrease in effort required to find and fix  
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Fig. 4. Partially expanded security assurance case that focuses on buffer overflow  

security-related problems at the back end of product 
development and by a reduced level of security 
breaches with their attendant costs. Although we 
believe that the return on investment (ROI) for 

developing security cases would typically be 
substantial, work is needed in the community to 
gather the hard evidence necessary to support this 
assumption. 
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Creating and evolving the security case as the 
system is being developed is highly recommended. 
Developing even the preliminary outlines of an 
assurance case as early as possible in the software 
development life cycle (SDLC) can lead to 
improvement in the development process by 
focusing attention on what needs to be assured and 
what evidence needs to be developed at each 
subsequent stage of the SDLC. Attempting to gather 
or generate the necessary security case evidence 
once development is complete may not only be 
much more costly, it may be impossible. 
 

5 Conclusion 

To develop software systems with security as an 
emergent feature entails that the high leveraged 
techniques discussed be incorporated into the whole 
software development life cycle. Threat modeling 
that drives risk analysis begins with the garnering of 
requirements and use cases. Risks generated from 
the threat modeling activities act as a barometer for 
design, development of tests, and development of 
rules for software code assessment and as one of the 
benchmarks for testing. 
Software security demands a balance of reactive and 
proactive measures, and it requires that more time 
be spent in determining the risks that can or will 
affect the system. Software systems have to be 
designed from a high enough level of abstraction 
with security of the system as an emergent feature of 
the system in question. The processes utilized to 
create secure systems need more refinement so that 
the ubiquity of software is not hampered by inherent 
insecurity due to poor design. While software 
security has been a universally recognized risk, there 
has been an absence of established procedures for 
quantifying the security risk present software. Only 
by measuring can organizations conquer the 
software security problem. 

The first step in this journey is the adoption of 
security-focused activities and deliverables 
throughout each phase of the software development 
process. These activities and deliverables include 
risk analysis during software design, code review 
during development, and security-oriented testing 
that targets the risks that are specific to the 
application at hand. By tracking and measuring the 
security activities adopted into the development 
process, an organization can begin to quantify their 
software security risk. 

The data produced by source code analysis tools 
can be particularly useful for this purpose, giving 
insight into whether or not code review is taking 

place and whether or not the results of the review 
are being acted upon. 

This paper presents a scenario-based test 
framework (OptimalSQM) for rapid distributed 
system testing. Using the framework, a tester does 
not need to write testing code, instead focuses on 
scenario identification and specification. The frame 
work generates test cases/scripts, and executes them 
automatically. Whenever a change occurs, the tester 
just needs to re-specify the modified scenarios so 
that new test scripts can be generated to test the 
modified feature. The framework can also perform 
regression testing by identifying those affected 
scenarios by dependency analysis. This paper used a 
SCM application for illustration. 
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