
Solving TSP using Genetic Algorithms - Case of Kosovo

AVNI REXHEPI, AGNI DIKA, ADNAN MAXHUNI

Department of computerics

Faculty of Electrical and Computer Engineering

University of Prishtina

Kodra e Diellit, p.n. 10000 Prishtina

KOSOVO

avni.rexhepi@uni-pr.edu, agni.dika@uni-pr.edu, adnan.maxhuni@uni-pr.edu

http://www.uni-pr.edu/fiek

Abstract: In this paper we describe the use of a Genetic Algorithm to solve the TSP problem for Kosovo

Cities/Municipalities, where one has to minimize the travelling distance between the cities (locations). Since

the TSP problem is a NP problem, approaches such as dynamic programming, backtracking, branch and bound,

etc. are not very useful for solving it. For problems traditionally thought of as computationally infeasible such

as the TSP, Genetic Algorithms prove to be the best approach in obtaining solutions.

John Holland's book “Adaptation in Natural and Artificial Systems” (1975, 1992) showed how the evolutionary

process can be applied to solve a wide variety of problems using a highly parallel technique that is called the

“Genetic Algorithm” (GA). The genetic algorithm transforms a population (set) of individual objects, each with

an associated fitness value, into a new generation of the population using the Darwinian principle of

reproduction and survival of the fittest and analogs of naturally occurring genetic operations such as crossover

(sexual recombination) and mutation. Each individual in the population represents a possible solution to a given

problem. The genetic algorithm attempts to find a very good (or best) solution to the problem by genetically

breeding the population of individuals over a series of generations.

Kosova is a relatively small country, in aspect of territory size, which is 10887 Km2. Besides capital Prishtina,

there are six other bigger cities and about 23 smaller cities, while the rest of locations are villages. Basiclly,

there are 30 municipalities, with 1467 localities, in total, with about two milion residents. Recently, seven

localities are proposed to be recognised as municipalities and are in the process of transformation.

For solving the problem, we designed an application in C#, which will use a genetic algorithm to find the best

possible solution for TSP Kosova problem.

The first part of this paper is a brief presentation Kosovo and Kosova municipalities.

Key-Words: - Genetic Agorithms, TSP, C#, Kosovo.

1 Introduction
Kosovo is the newest country in Europe and as per

size of the territory, belongs to the small countries

(169 in a world rank for territory size). It has 10887

Sq Km. Kosovo is located in Southeast Europe, in

Balkan Peninsula, in geographic coordinates 42 35

N and 21 00 E, between Albania, Montenegro,

Serbia and Macedonia,. The total border line is 702

km, with border countries: Albania 112 km,

Macedonia 159 km, Montenegro 79 km and Serbia

352km.

There are 7 big cities in Kosovo, with capital

Prishtina and 30 municipalities in total. Most of the

roads are paved. There are around 2000 km of road-

ways and 94% of them are paved. Only 2% are

international highways, while 66% are national and

32% are regional ways.

Fig.1 – Kosovo position in Balkan Peninsula

In this paper we descripe the Traveling Salesman

Problem (TSP) for Kosovo municipalities, using the

genetic algorithm.

Advances in Computer Science

ISBN: 978-1-61804-126-5 256

2 Traveling Salesman Problem
TSP is a problem, where traveling salesman wants

to visit each of a set of cities exactly once, starting

from hometown and returning to his hometown. His

problem is to find the shortest route for such a trip.

TSP has a model character in many branches of

Mathematics, Computer Science, Operations

Research, etc. Linear programing, heuristics and

branch and bound which are main components for

the most succesful approaches to hard combinatorial

optimization problems, were first formulated for the

TSP and used to solve practical problem instances in

1954 by Dantzig, Fulkerson and Johnson.

When the theory of NP-completeness developed, the

TSP was one of the first problems to be proven NP-

hard by Karp in 1972. New algorithmic techniques

have first been developed for or at least have been

applied to the TSP to show their effectiveness. Such

examples are branch and bound, Lagrangean

relaxation, Lin-Karneghan type methods, simulated

annealing, etc [3].

Representation model is: Let Kn=(Vn, En) be the

complete undirected graph with n=|Vn| nodes and

m=|En|= 







2

n
 edges. An edge e with endpoints i and

j is also denoted by ij, or by (i,j). We denote by R
En

the space of real vectors whose components are

indexed by the elements of En. The component of

any vector nz ER ∈ indexed by the edge e=ij is

denoted by ze, zij, or z(i,j).

Given an objective function nc ER ∈ , that

associates a “length” ce with every edge e of Kn, the

symmetric traveling salesman problem consists of

finding a Hamiltonian cycle such that its c-length

(the sum of the lengths of its edges) is as small as

possible.

Of special interest are the Euclidean instances of

the traveling salesman problem. In these instances

the nodes defining the problem correspond to points

in the two-dimensional plane and the distance

between two nodes is the Euclidean distance

between their corresponding points. More generally,

instances that satisfy the triangle inequality, i.e.,

ikjkij ccc ≥+ for all the three distinct i,j and k, are

of particular interest.

For our case, we consider the locations of the

cities/municipalities in Kosovo map as nodes of the

graph. For to do this, we take their geographic

coordinates and than based on that, we calculate

their position in our map scaled to a smaller size, for

to calculate the real positions and distances, by

using the real life values for distances in kilometres

between the cities.

3 Genetic Algorithms
Genetic Algorithms (GA) [1,2] are computer

algorithms that search for good solutions to a

problem within a large number of possible solutions.

They were proposed and developed in the 1960s by

John Holland, his students, and his colleagues at the

University of Michigan. These computational

paradigms were inspired by the mechanics of

natural evolution, including survival of the fittest,

reproduction, and mutation. These mechanics are

well suited to resolve a variety of practical

problems, including computational problems, in

many fields. Some applications of GAs are

optimization, automatic programming, machine

learning, economics, immune systems, population

genetic, and social system.

GAs have been successfully applied to many

problems of business, engineering, and science.

Because of their operational simplicity and wide

applicability, GAs play an important role in

computational optimization and operations research

[6].

The genetic algorithm transforms a population

(set) of individual objects, each with an associated

fitness value, into a new generation of the

population using the Darwinian principle of

reproduction and survival of the fittest and analogs

of naturally occurring genetic operations such as

crossover (sexual recombination) and mutation.

Each individual in the population represents a

possible solution to a given problem. The genetic

algorithm attempts to find a very good (or best)

solution to the problem by genetically breeding the

population of individuals over a series of

generations.

3.1 Basic elements of GAs
Most GAs methods are based on the following

elements: populations of chromosomes, selection

according to fitness, crossover to produce new

offspring, and random mutation of new offspring.

The chromosomes in GAs represent the space of

candidate solutions. Possible chromosomes

encodings are binary, permutation, value, and tree

encodings. GAs require a fitness function which

allocates a score to each chromosome in the current

population. Thus, it can calculate how well the

solutions are coded and how well they solve the

problem [2].

The selection process is based on fitness.

Chromosomes that are evaluated with higher values

(fitter) will most likely be selected to reproduce,

whereas, those with low values will be discarded.

Advances in Computer Science

ISBN: 978-1-61804-126-5 257

The fittest chromosomes may be selected several

times, however, the number of chromosomes

selected to reproduce is equal to the population size,

therefore, keeping the size constant for every

generation. This phase has an element of

randomness just like the survival of organisms in

nature. The most used selection methods, are

roulette-wheel, rank selection, steady-state

selection, and some others. Moreover, to increase

the performance of GAs, the selection methods are

enhanced by eiltism. Elitism is a method, which first

copies a few of the top scored chromosomes to the

new population and then continues generating the

rest of the population. Thus, it prevents loosing the

few best found solutions.

Crossover is the process of combining the bits of

one chromosome with those of another to create an

offspring for the next generation that inherits traits

of both parents. For example, consider the following

parents and a crossover point at position 3:

Parent 1 1 0 0 | 0 1 1 1

Parent 2 1 1 1 | 1 0 0 0

Offspring 1 1 0 0 1 0 0 0

Offspring 2 1 1 1 0 1 1 1

In this example, Offspring 1 inherits bits in

position 1, 2, and 3 from the left side of the

crossover point from Parent 1 and the rest from the

right side of the crossover point from Parent 2.

Similarly, Offspring 2 inherits bits in position 1, 2,

and 3 from Parent 2 and the rest from Parent 1.

Mutation is performed after crossover to prevent

falling all solutions in the population into a local

optimum of solved problem. Mutation changes the

new offspring by flipping bits from 1 to 0 or from 0

to 1. Mutation can occur at each bit position in the

string with some probability, usually very small

(e.g. 0.001). For example, consider the following

chromosome with mutation point at position 3:

Not mutated chromosome: 1 0 0 0 1 1 1

Mutated chromosome: 1 0 1 0 1 1 1

The 0 at position 3 flips to 1 after mutation.

So, general outline of basic GA:

1. Start: Randomly generate a population of N

chromosomes.

2. Fitness: Calculate the fitness of all chromosomes.

3. Create a new population:

a.Selection: According to the selection method

select 2 chromosomes from the population.

b.Crossover: Perform crossover on the 2

chromosomes selected.

c.Mutation: Perform mutation on the

chromosomes obtained.

4. Replace: Replace the current population with the

new population.

5. Test: Test whether the end condition is satisfied.

If so, stop. If not, return the best solution in current

population and go to Step 2.

Each iteration of this process is called

generation.The genetic algorithm object determines

which individuals should survive, which should

reproduce, and which should die. It also records

statistics and decides how long the evolution should

continue. A typical genetic algorithm will run

forever, so we must build functions for specifying

when the algorithm should terminate. These include

terminate-upon generation, in which you specify a

certain number of generations for which the

algorithm should run, and terminate-upon-

convergence, in which you specify a value to which

the best-of-generation score should converge. One

can customize the termination function to use own

stopping criterion and must tell the algorithm when

to stop. Often the number-of generations is used as a

stopping measure, but you can use goodness-of-

best-solution, convergence-of-population, or any

problem-specific criterion if you prefer.

There are some flavors of genetic algorithms. For

example, the first is the standard 'simple genetic

algorithm' described by Goldberg in his book [2].

This algorithm uses nonoverlapping populations and

optional elitism. Each generation the algorithm

creates an entirely new population of individuals.

The second is a 'steady-state genetic algorithm' that

uses overlapping populations. In this variation, you

can specify how much of the population should be

replaced in each generation. The third variation is

the 'incremental genetic algorithm', in which each

generation consists of only one or two children. The

incremental genetic algorithms allow custom

replacement methods to define how the new

generation should be integrated into the population.

So, for example, a newly generated child could

replace its parent, replace a random individual in the

population, or replace an individual that is most like

it. The fourth type is the 'deme' genetic algorithm.

This algorithm evolves multiple populations in

parallel using a steady-state algorithm. Each

generation the algorithm migrates some of the

individuals from each population to one of the other

populations.

The base genetic algorithm class contains

operators and data common to most genetic

algorithms. The genetic algorithm contains the

statistics, replacement strategy, and parameters for

running the algorithm. the population object, a

container for genomes, also contains some statistics

as well as selection and scaling operators.

The number of function evaluations is a good

way to compare different genetic algorithms with

Advances in Computer Science

ISBN: 978-1-61804-126-5 258

various other search methods[3]. The basic

algorithm is as follows:

Fig.2 – Genetic Algorithm

4 TSP Kosovo
In order to calculate the shortest traveling distance

from an initial city, by visiting each one only once

and returning to the initial one, we consider the

locations as nodes of the graph, in the graph model.

In the meantime, the distances between the cities are

edges of the graph.

For length of edges we take inter-city distances

in kilometres. We have created a matrix of distances

between all the municipalities, where the matrix

elements cij are elements of the square symetrical

matrix, since distance ij is equal to the distance in

the other side ji. The diagonal of the matrix will

contain zero values, since diagonal elements of the

matrix cij, where i=j, will represent the distance of

the city to itself, so in fact it will be the traveling

distance of zero kilometres, therefore these elements

will be equal to cij=0.

By using complete graph in the definition of the

TSP, the existence of a feasible solution is

guaranteed, while for general graphs deciding the

existence of a Hamiltonian cycle is an NP-complete

problem.The number of Hamiltonian cycles in Kn,

i.e. the size of the set of feasible solutions of the

TSP is (n-1)!/2.

The algorithmic treatment of the TSP ensures an

approximation algorithm that cannot guarantee to

find the optimum, but wich is the only available

technique to find a good solution to a large problem

instances. To assess the quality of a solution, one

has to be able to compute a lower bound on the

value of the shortest Hamiltonian cycle.

We collected the data for inter-city distances

from official site of the “Ministry of transport and

telecommunications”, from municipality web-pages

and some of them we calculated using Google-Earth

path-calculation of routes in the map.

Table 1 – Distances between 30 municipalities

Table 2 – Distances between the 7 biggest cities

5 Application
We have built an application in C#, with an image

with the small-scaled size of the Kosov map, with

depicted municipality boundaries and locations.

It is possible to select a particular city by clicking on

the map and we have also added to buttons that

make it possible to create locations for seven biggest

cities and locations for all thirty municipalities.

Fig.3 – Kosovo map, in the application

We used a table with geographical coordinates of

the cities, to calculate their positions.

Advances in Computer Science

ISBN: 978-1-61804-126-5 259

Table 3 – Geographical coordinates, positions

By running the application, we can calculate the

shortest traveling distance between the selected

cities, by finding a solution of the TSP using a

genetic algorithm.

We also use two lists, where the first one will

show the selected cities, while the second one will

show the sequnce of the cities in the found solution.

Applicacion will calculate and show the total

traveling distance in kilometres.

User can set up the numbers for initial

population, maximal number of generations, size of

the group, percentage of mutations and number of

close cities/locations (used by the algorithm, while

finding closest locations).

Fig.4 – TSP Solution for 30 municipalities

6 Conclusion
Finding a best solution for NP-hard problems is not

possible by using standard mathematical approach.

Genetic Algorithms are computer algorithms that

search for good solutions to a problem within a

large number of possible solutions.

Traveling Salesman Problem is a NP-Hard

problem. Using a genetic algorithm, we can find a

feasible solution, which will not have guaranty to be

the best possible solution, but will be the good one,

found in reasonable time.

•In order to find the shortest traveling distance

between Kosovo cities/municipalities we use a

genetic algorithm, in an application built in C#.

•We use geographical coordinates to calculate

locations of the nodes/cities in the graph/image.

•We use a matrix of inter-city distances to calculate

the length of the traveling distance.

•Application will find the shortest traveling distance

between the selected cities.

References:

[1] J. H. Holland, Adaptation in natural and

artificial systems. Ann Arbor, MI: University

of Michigan Press, 1975.

[2] D. E. Goldberg, Genetic algorithms in search,

optimization, and machine learning. Reading,

MA: Addison-Wesley, 1989.

[3] Michael Junger, Gerhard Reinelt, Giofanni

Rinaldi, The Traveling Salesman Problem,

M.O. Ball et all, Eds. Handbooks in OR & Ms,

Vol. 7, Elsevier Science, B.V. 1997

[4] T.-L. Yu, D. E. Goldberg, and Y.-P. Chen, “A

genetic algorithm design inspired by

organizationaltheory: A pilot study of a

dependency structure matrix driven genetic

algorithm,” IlliGAL Report No. 2003007,

University of Illinois at Urbana-Champaign,

Illinois Genetic Algorithms Laboratory,

Urbana, IL, 2003.

[5] K. Sastry, D. E. Goldberg, and G. Kendall,

“Genetic algorithms: A tutorial,” in

Introductory Tutorials in Optimization, Search

and Decision Support Methodologies, ch. 4, pp.

97–125, Springer, 2005.

[6] Martin Pelikan, Genetic Algorithms, MEDAL

Report No. 2010007, 2010

Advances in Computer Science

ISBN: 978-1-61804-126-5 260

