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Abstract: A linear vector equation is considered defined in terms of idempotent mathematics. To solve the
equation, we apply an approach that is based on the analysis of distances between vectors in idempotent vector
spaces and reduces the solution of the equation to that of a tropical optimization problem. Based on the approach,
existence and uniqueness conditions are established for the solution, and a general solution to the equation is given.
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1 Introduction
Many applications of tropical mathematics [1–7] in-
volve the solution of linear equations defined on finite-
dimensional semimodules over idempotent semifields
(idempotent vector spases). One of the equation that
often arise in the applications has the form

Ax = d,

where A and d are given matrix and vector, x is an
unknown vector, and multiplication is thought of in
terms of idempotent algebra. Since the equation can
be considered as representing linear dependence be-
tween vectors, efficient solution methods for the equa-
tion are of both practical and theoretical interest.

There are several existing solution methods, in-
cluding those in [1–3]. In this paper another solution
approach is described which uses the analysis of dis-
tances between vectors in idempotent vector spaces.
The results presented are based on implementation
and further refinement of solutions first published in
the papers [8–10] and not available in English.

We start with a brief overview of preliminary al-
gebraic definitions and results. Furthermore, the prob-
lem of solving the equation under study reduces to an
optimization problem of finding the minimal distance
from a vector to a linear span of vectors. We derive a
comprehensive solutions to the optimization problem
under quite general conditions. The obtained results
are applied to give existence and uniqueness condition
as well as to offer a general solution of the equation.

2 Preliminaries
In this section, we present algebraic definitions, nota-
tions, and results based on [8, 10] to provide a back-
ground for subsequent analysis and solutions. Addi-
tional details and further results are found in [1–7].

We consider a set X endowed with addition ⊕
and multiplication ⊗ and equipped with the zero 0

and the identity 1 . The system 〈X,0, 1,⊕,⊗〉 is as-
sumed to be a linearly ordered radicable commutative
semiring with idempotent addition and invertible mul-
tiplication, commonly called idempotent semifield.

Idempotency of addition implies that x ⊕ x = x
for all x ∈ X . For any x ∈ X+ , where X+ = X\{0} ,
there exists an inverse x−1 such that x−1 ⊗ x = 1 .
Furthermore, the power xq is defined for any x ∈ X+

and a rational q . Specifically, for any integer p ≥ 0 ,
we have x0 = 1 , xp = xp−1x , x−p = (x−1)p .

In what follows, we drop the multiplication sign
⊗ and use the power notation only in the above sense.

The linear order defined on X is assumed to be
consistent with a partial order that is induced by idem-
potent addition and involves that x ≤ y if and only if
x⊕ y = y . Below, the relation symbols and the oper-
ator min are thought in terms of this linear order.

Note that we have x ≥ 0 for all x ∈ X . We also
assume that the set X can always be extended by an
element ∞ such that x ≤ ∞ for all x ∈ X .

As an example of the semifields under consider-
ation, one can consider a semifield of real numbers
Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉 .
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2.1 Idempotent Vector Space
Consider the Cartesian power Xm with column vec-
tors as its elements. A vector with all components
equal to 0 is called the zero vector. A vector is regu-
lar if it has no zero components.

For any two vectors a = (ai) and b = (bi) in
X
m , and a scalar x ∈ X , addition and scalar multipli-

cation are defined component-wise as

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.

Endowed with these operations, the set Xm forms
a semimodule over the idempotent semifield X , which
is referred to as the idempotent vector space.

Fig. 1 illustrates the operations in the space
R
2
max,+ with the Cartesian coordinates on the plane.
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Figure 1: Vector addition (left) and multiplication by
scalars (right) in R

2
max,+ .

Multiplication of a matrix A = (aij) ∈ Xm×n by
a vector x = (xi) ∈ Xn is routinely defined to result
in a vector with components

{Ax}i = ai1x1 ⊕ · · · ⊕ ainxn.

All above operations are component-wise isotone
in each argument.

A matrix is regular if it has no zero rows.
For any nonzero column vector x = (xi) ∈ X

n ,
we define a row vector x− = (x−i ) , where x−i = x−1i

if xi 6= 0 , and x−i = 0 otherwise.
For any regular vectors x and y , the component-

wise inequality x ≤ y implies x− ≥ y− .
If x is a regular vector, then x−x = 1 and

xx− ≥ I , where I is an identity matrix with the ele-
ments equal to 1 on the diagonal, and 0 elsewhere.

2.2 Linear Dependence
Consider a system of vectors a1, . . . ,an ∈ X

m . As
usual, a vector b ∈ X

m is linearly dependent on the

system if it admits representation as a linear combina-
tion b = x1a1 ⊕ · · · ⊕ xnan , where x1, . . . xn ∈ X .

The set of all linear combinations of a1, . . . ,an

forms a linear span denoted by span{a1, . . . ,an} .
A geometrical example of a linear span in R

2
max,+ is

given in Fig. 2.
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Figure 2: A linear span of vectors a1,a2 in R
2
max,+ .

A system of vectors a1, . . . ,an is linearly depen-
dent if at least one its vector is linearly dependent on
others, and it is linear independent otherwise.

A system of nonzero vectors a1, . . . ,an is a min-
imal generating system for a vector b , if this vector is
linearly dependent on the system and independent of
any of its subsystems.

Let us verify that if vectors a1, . . . ,an are a min-
imal generating system for a vector b , then represen-
tation of b as a linear combination of a1, . . . ,an is
unique. Suppose there are two linear combinations

b = x1a1 ⊕ · · · ⊕ xnan = x′1a1 ⊕ · · · ⊕ x′nan,

where x′i 6= xi for some index i = 1, . . . , n .
Assuming for definiteness that x′i < xi , we have

b ≥ xiai > x′iai . Therefore, the term x′iai does
not affect b and so may be omitted, which contradicts
with the minimality of the system a1, . . . ,an .

2.3 Distance Function
For any vector a ∈ X

m , we introduce the support as
the index set supp(a) = {i|ai 6= 0} .

The distance between nonzero vectors a, b ∈ Xm

with supp(a) = supp(b) is defined by a function

ρ(a, b) =
⊕

i∈supp(a)

(
b−1i ai ⊕ a−1i bi

)
. (1)

We put ρ(a, b) =∞ if supp(a) 6= supp(b) , and
ρ(a, b) = 1 if a = b = 0 .

Note that in R
m
max,+ , the function ρ coincides for

all vectors a, b ∈ Rm with the Chebyshev metric

ρ∞(a, b) = max
1≤i≤m

|bi − ai|.
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3 Evaluation of Distances
Let a1, . . . ,an ∈ X

m be given vectors. Denote by
A = (a1, . . . ,an) a matrix composed of the vectors,
and by A = span{a1, . . . ,an} their linear span.

Take a vector d ∈ Xm and consider the problem
of computing the distance from d to A defined as

ρ(A,d) = min
a∈A

ρ(a,d).

Taking into account that every vector a ∈ A can
be represented as a = Ax for some vector x ∈ X

n ,
we arrive at the problem of calculating

ρ(A,d) = min
x∈Xn

ρ(Ax,d). (2)

Suppose d = 0 . Considering that A always con-
tains the zero vector, we obviously get ρ(A,d) = 1 .

Let some of the vectors a1, . . . ,an be zero.
Since zero vectors do not affect the linear span A ,
they can be removed with no change of distances.
When all vectors are zero and thus A = {0} , we have
ρ(A,d) = 0 if d = 0 , and ρ(A,d) =∞ otherwise.

From here on we assume that d 6= 0 and ai 6= 0

for all i = 1, . . . , n .
Suppose the vector d = (di) may have zero com-

ponents and so be irregular. For the matrix A = (aij) ,
we introduce a matrix Â = (âij) as follows. We
define two sets of indices I = {i|di = 0} and
J = {j|aij > 0, i ∈ I} , and then determine the en-
tries in Â according to the conditions

âij =

{
0, if i /∈ I and j ∈ J,
aij , otherwise.

The matrix A may differ from Â only in those
columns that have nonzero intersections with the rows
corresponding to zero components in d . In the matrix
Â , these columns have all entries that are not located
at the intersections set to zero. The matrix Â and the
vector d are said to be consistent with each other.

Note that when d is regular, we have Â = A .

Proposition 1. For all x = (xi) ∈ Xn it holds that

ρ(Ax,d) = ρ(Âx,d).

Proof. With a regular d the statement becomes trivial
and so assume d 6= 0 to have zero components.

Suppose that ρ(Ax,d) < ∞ , which occurs only
under the condition supp(Ax) = supp(d) . The ful-
fillment of the condition is equivalent to equalities

ai1x1 ⊕ · · · ⊕ ainxn = 0 that must be true whenever
di = 0 . To provide the equalities, we must put xj = 0

for all indices j such that aij 6= 0 for at least one in-
dex i with di = 0 . In this case, replacing A with Â
leaves the value of ρ(Ax,d) <∞ unchanged.

Since the condition supp(Ax) 6= supp(d) im-
plies supp(Âx) 6= supp(d) and vice versa, the state-
ment is also true when ρ(Ax,d) =∞ .

With the above result, we may now concentrate
only on the problems when A is consistent with d .

In order to describe the solution of problem (2),
we need the following notation. For any consistent
matrix A and a vector d , we define a residual value

∆A(d) =
√

(A(d−A)−)−d

if A is regular, and ∆A(d) =∞ otherwise.
In what follows, we drop subscripts and argu-

ments in ∆A(d) and write ∆ if no confusion arises.
Below we find the solution when the vector d is

regular and then extend this result to irregular vectors.

3.1 Regular Vector
Suppose that d is a regular vector. First we verify
that the minimum of ρ(Ax,d) over Xn in (2) can be
found by examining only regular vectors x ∈ Xn

+ .

Proposition 2. If the vector d is regular, then

ρ(A,d) = min
x∈Xn

+

ρ(Ax,d).

Proof. Take a vector y = Ax such that ρ(Ax,d)
achieves the minimum value. If y is irregular and so
has zero components, then supp(y) 6= supp(d) , and
thus ρ(Ax,d) =∞ for all x , including regular x .

Suppose y = (y1, . . . , ym)T is regular. Assume
a corresponding vector x to have a zero component,
say xj = 0 . We define the set I = {i|aij > 0} 6= ∅
and find the number ε = min{a−1ij yi|i ∈ I} > 0 .

It remains to note that with xj = ε in place of
xj = 0 , all components of y together with the mini-
mum value of ρ(Ax,d) remain unchanged.

The next statement reveals the meaning of the
residual ∆ = ∆A(d) in terms of distances.

Lemma 1. If the vector d is regular, then it holds that

ρ(A,d) = min
x∈Xn

+

ρ(Ax,d) = ∆,

where the minimum is attained at x = ∆(d−A)− .
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Proof. Let the matrix A be irregular. Then we have
supp(Ax) 6= supp(d) and ρ(A,d) = ∞ . Since, by
definition, ∆ =∞ , the statement is true in this case.

Suppose A is regular. Taking into account (1) and
(2), we arrive at an optimization problem to find

min
x∈Xn

+

(d−Ax⊕ (Ax)−d).

Take any vector y = Ax such that x > 0 , and
define r = d−Ax⊕ (Ax)−d > 0 .

From the definition of r , we have two inequalities

r ≥ d−Ax, r ≥ (Ax)−d.

Right multiplication of the first inequality by x−

gives rx− ≥ d−Axx− ≥ d−A . Then we obtain
x ≤ r(d−A)− and (Ax)− ≥ r−1(A(d−A)−)− .

Substitution into the second inequality results in
r ≥ r−1(A(d−A)−)−d = r−1∆2 , and so in r ≥ ∆ .

It remains to verify that r = ∆ when we take
x = ∆(d−A)− . Indeed, substitution of the x gives
r = ∆d−A(d−A)− ⊕∆−1(A(d−A)−)−d = ∆ .

Finally note that the above vector x corresponds
to the vector y = ∆A(d−A)− ∈ A .

Examples of a linear span A = span(a1,a2) and
vectors d in the space R2

max,+ are given in Fig. 3.
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Figure 3: A linear span A and vectors d in R
2
max,+

when ∆ = 1 (left) and ∆ > 1 (right).

3.2 Arbitrary Nonzero Vector
Now we examine the distance between the linear span
A and a vector d 6= 0 . It will suffice to consider only
the case when the matrix A is consistent with d .

Theorem 1. Suppose the matrix A is consistent with
the vector d 6= 0 . Then it holds that

ρ(A,d) = min
x∈Xn

+

ρ(Ax,d) = ∆,

where the minimum is attained at x = ∆(d−A)− .

Proof. Note that for the case when d is regular, the
proof is given in Lemma 1. Now we suppose that the
vector d 6= 0 has zero components. We define sets of
indices I = {i|di = 0} and J = {j|aij > 0, i ∈ I} .

To provide minimum of ρ(Ax,d) , we have to set
xj = 0 for all j ∈ J . This makes it possible to ex-
clude from consideration all components of d and the
rows of A with indices in I , as well as all columns of
A with indices in J . By eliminating these elements,
we obtain a new matrix A′ and a new vector d′ .

Denote the linear span of the columns in A′ by
A′ . Considering that the vector d′ has no zero com-
ponents, we apply Lemma 1 to get

ρ(A,d) = ρ(A′,d′) = ∆A′(d′) = ∆′.

Furthermore, we note that the minimum
ρ(A′x′,d′) is attained if x′ = ∆′(d′−A′)− , where
x′ is a vector of order less than n .

The matrix A differs from A′ only in that it has
extra zero rows and columns. Clearly, both matrices
appear to be regular or irregular simultaneously.

Suppose that both matrices are regular. Taking
into account that the vector d′ is obtained from d by
removing zero components, we have

∆′ =
√

(A′(d′−A′)−)−d′ =
√

(A(d−A)−)−d = ∆.

Since the optimal vector x differs from x′ only
in extra zero components, we conclude that ρ(Ax,d)
achieves minimum at x = ∆(d−A)− .

In the next sections, we consider applications of
the above result to analysis of linear dependence and
to solution of linear equations.

4 Linear Dependence
First we give conditions for a vector d ∈ X

m to be
linearly dependent on vectors a1, . . . ,an ∈ X

m , or
equivalently, to admit a representation in the form of
a linear combination d = x1a1 ⊕ · · · ⊕ xnan .

We define the matrix A = (a1, . . . ,an) and then
calculate the residual ∆ =

√
(A(d−A)−)−d .

It follows from Lemma 1 that ∆ ≥ 1 . The equal-
ity ∆ = 1 means that the vector d belongs to the
linear span A = span{a1, . . . ,an} , whereas the in-
equality ∆ > 1 implies that d is outside A . In other
words, we have the following statement.

Lemma 2. A vector d is linearly dependent on vec-
tors a1, . . . ,an if and only if ∆ = 1 .
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Now we formulate a criterion that a system
a1, . . . ,an is linearly independent. We denote by
Ai = (a1, . . . ,ai−1,ai+1, . . . ,an) a matrix obtained
from A by removing column i , and introduce

δ(A) = min
1≤i≤n

∆Ai(ai).

Lemma 3. The system of vectors a1, . . . ,an is lin-
early independent if and only if δ(A) > 1 .

Proof. Clearly, the condition δ(A) > 1 involves that
∆Ai(ai) > 1 for all i = 1, . . . , n . It follows from
Theorem 1 that here none of the vectors a1, . . . ,an

is a linear combination of others, and therefore, the
system of the vectors is linearly independent.

Let a1, . . . ,an and b1, . . . , bk be two systems
of nonzero vectors. These systems are considered to
be equivalent if each vector of one system is a linear
combination of vectors of the other system.

Consider a system a1, . . . ,an that can include
linearly dependent vectors. To construct an equivalent
linearly independent system, we implement a sequen-
tial procedure that examines the vectors one by one to
decide whether to remove a vector or not.

At each step i = 1, . . . , n , the vector ai is re-
moved if ∆

Ãi
(ai) = 1 , where the matrix Ãi is com-

posed of those columns in Ai , that are retained after
the previous steps. Upon completion of the procedure,
we get a new system ã1, . . . , ãk , where k ≤ n .

Proposition 3. The system ã1, . . . , ãk is a linearly
independent system that is equivalent to a1, . . . ,an .

Proof. According to the way of constructing the sys-
tem ã1, . . . , ãk , each vector ãi coincides with a vec-
tor of the system a1, . . . ,an . Since at the same time,
for each aj , it holds that aj ∈ span{ã1, . . . , ãk} ,
both systems are equivalent. Finally, due to Lemma 3,
the system ã1, . . . , ãk is linearly independent.

5 Linear Equations
Given a matrix A ∈ X

m×n and a vector d ∈ X
m ,

consider the problem of finding an unknown vector
x ∈ Xn to satisfy the equation

Ax = d. (3)

In what follows, we assume that the matrix A is
already put into a form where it is consistent with d ,
and use the notation ∆ = ∆A(d) .

If a matrix A = (a1, . . . ,an) has a zero column,
say ai , then the solution of equation (3) reduces to
that of an equation that is obtained from (3) by re-
moving the component xi in the vector x together
with eliminating the column ai in A . Each solution
of the reduced equation causes equation (3) to have a
set of solutions, where xi takes all values in X .

Suppose that A = 0 . In this case, any vector
x ∈ X

n is a solution provided that d = 0 , and there
is no solution otherwise. If d = 0 , then equation (3)
has a trivial solution x = 0 , which is unique when
the matrix A has no zero columns.

From here on we assume that the vector d and all
columns in the matrix A are nonzero.

In the following, we examine conditions for the
solution to exist and to be unique, and then describe
the general solution to the equation.

5.1 Existence and Uniqueness of Solution
Application of previous results brings us to a position
to arrive at the next assertion.

Theorem 2. If a matrix A is consistent with a vector
d 6= 0 , then the following statements are valid:

(1) Equation (3) has solutions if and only if ∆ = 1 .

(2) If solvable, the equation has a solution

x = (d−A)−.

(3) If all columns in A form a minimal system that
generates d , then the above solution is unique.

Proof. The existence condition and the form of a solu-
tion result from Theorem 1. The uniqueness condition
follows from representation of a vector as a unique lin-
ear combination of its minimal set of generators.

We define a pseudo-solution to equation (3) as a
vector that satisfies the equation Ax = ∆A(d−A)− .

Note that the last equation always has a solution
that is given by x = ∆(d−A)− . Clearly, when
∆ = 1 this pseudo-solution becomes an actual so-
lution. Moreover, it follows from Theorem 1 that the
pseudo-solution provides the minimum distance to the
vector d over all vectors in the linear span of columns
of the matrix A in the sense of the metric ρ .
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5.2 General Solution
To describe a general solution to equation (3), we first
prove an auxiliary result.

Lemma 4. Suppose that I is a subset of column in-
dices of a matrix A and d ∈ span{ai|i ∈ I} .

Then any vector xI = (xi) with components
xi = (d−ai)

− if i ∈ I , and xi ≤ (d−ai)
− other-

wise, is a solution to equation (3).

Proof. To verify the statement, we first consider that
d ∈ span{ai|i ∈ I} ⊂ span{a1, . . . ,an} and thus
equation (3) has a solution xI . For the components
xi of the solution, we can write

d =
n⊕

i=1

xiai =
⊕
i∈I

xiai ⊕
⊕
i6∈I

xiai.

We note that the condition d ∈ span{ai|i ∈ I}
is equivalent to an equality

d =
⊕
i∈I

xiai,

which is valid when xi = (d−ai)
− for all i ∈ I .

The remaining components with indices i 6∈ I
must be set so as to satisfy inequalities

d ≥
⊕
i6∈I

xiai ≥ xiai.

It remains to solve the inequalities to conclude
that for all i 6∈ I , we can take any xi ≤ (d−ai)

− .

Now suppose that the columns with indices in I
form a minimal generating system for d . Denote by
I a set of all such index sets I . Clearly, I 6= ∅ only
when equation (3) has at least one solution.

By applying Lemma 4, it is not difficult to verify
that the following statement holds.

Theorem 3. The general solution to equation (3) is a
(possible empty) family of solutions x = {xI |I ∈ I} ,
where each solution xI = (xi) is given by

xi = (d−ai)
−, if i ∈ I,

xi ≤ (d−ai)
−, if i 6∈ I.

Consider a case when the family reduces to one
solution set. Let the columns in A are linearly in-
dependent. Then there may exist only one subset of
columns that form a minimal generating system for d .
If the subset coincides with the set of all columns, then
the solution reduces to a unique vector x = (d−A)− .

Graphical illustration of unique and non-unique
solutions to equation (3) are given in Fig. 4.
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Figure 4: A unique (left) and non-unique (middle and
right) solutions to linear equations in R

2
max,+ .
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