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Abstract: We consider a multidimensional extremal problem formulated in terms of tropical mathematics. The
problem is to minimize a nonlinear objective function, which is defined on a finite-dimensional semimodule over
an idempotent semifield, subject to linear inequality constraints. An efficient solution approach is developed
which reduces the problem to that of solving a linear inequality with an extended set of unknown variables. We
use the approach to obtain a complete solution to the problem in a closed form under quite general assump-
tions. To illustrate the obtained results, a two-dimensional problem is examined and its numerical solution is given.
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1 Introduction

Models and methods of tropical (idempotent) math-
ematics [1–7] find expanding applications in many
fields including engineering, computer science and
operations research. There are a variety of real-life
problems that can be represented and solved as trop-
ical extremal problems. As related examples one can
take idempotent algebra based solutions to scheduling
[1, 5, 7–10] and location [2, 11–16] problems.

The tropical extremal problems are usually for-
mulated as to minimize functionals, which are defined
on finite-dimensional semimodules over idempotent
semifields, subject to linear constraints in the form of
equalities or inequalities. The problems under study
may have linear objective functions as in [7, 10, 11]
or nonlinear function as in [12–15, 17–22]. In some
cases both the objective function and the constraints in
the problems appear to be nonlinear (see, e.g. [9, 16]).

Many existing solution techniques [7, 9, 10, 16,
17] offer an iterative algorithm that gives particular
solutions if any, and indicates that there is no solution
otherwise. Other approaches [11–15, 19–22] allow
one to get direct solutions in a closed form. However,
in most cases only partial solutions are given leaving
the problems without complete solution.

In this paper, we consider a multidimensional
problem with a nonlinear objective function under lin-
ear inequality constraints. The problem is actually a
constrained extension of the unconstrained problems
in [12–14, 19–21]. A solution approach is developed
which reduces the problem to solving a linear inequal-
ity with an extended set of unknown variables. We use
the approach to obtain a complete solution to the prob-
lem in a closed form under quite general assumptions.

First we outline basic algebraic facts and present
preliminary results that underlie subsequent develop-
ments. Together with an overview of known results
including the solution of linear equations, a new bino-
mial identity for matrix traces is presented. Further-
more, we formulate the extremal problem of interest
and then derive a complete solution. To illustrate the
obtained results, a two-dimensional problem is exam-
ined and its numerical solution is given.

2 Preliminary Results
The aim of this section is to provide a basis for further
analysis and solution of tropical extremal problems.
We briefly outline key algebraic facts and present pre-
liminary results from [18, 21]. For further details and
considerations, one can refer to [1–7].
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2.1 Idempotent Semifield
Let X be a set that is endowed with addition ⊕ and
multiplication ⊗ and contains the zero element 0 and
the identity 1 . We suppose that both operations are as-
sociative and commutative, and multiplication is dis-
tributive over addition. Moreover, addition is idem-
potent, which means that x ⊕ x = x for all x ∈ X ,
and multiplication is invertible; that is there exist an
inverse x−1 for any x ∈ X+ , where X+ = X \ {0} .
Due to the above properties, 〈X,0,1,⊕,⊗〉 is usually
referred to as the idempotent commutative semifield.

The power notation with integer exponents is rou-
tinely defined in the semifield. For any x ∈ X+ and
an integer p ≥ 1 , we have x0 = 1 , 0p = 0 ,

xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p.

Moreover, we assume that the rational powers are
also defined which makes the semifield radicable.

In what follows, the multiplication sign ⊗ is
omitted as is common in conventional algebra. The
power notation is used only in the above sense.

Idempotent addition induces a partial order on X

so that x ≤ y if and only if x ⊕ y = y . We assume
that the partial order can always be extended to a total
order and so consider the semifield as linearly ordered.
From here on, the relation symbols and the operator
min are thought of in terms of this linear order.

An example of a commutative idempotent semi-
field that is radicable and linearly ordered is the real
semifield Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉 .

2.2 Idempotent Semimodule
Consider the Cartesian product Xn with column vec-
tors as its elements. For any vectors x = (xi) and
y = (yi) from X

n , and a scalar c ∈ X , vector ad-
dition and scalar multiplication are routinely defined
component-wise

{x⊕ y}i = xi ⊕ yi, {cx}i = cxi.

A geometric interpretation of the operations for
the semimodule R

2
max,+ is given in the Cartesian co-

ordinates in Fig. 1.
Equipped with these operations, the set Xn forms

a semimodule over the idempotent semifield X .
A vector with all zero elements is called the zero

vector. A vector is regular if it has no zero elements.
The set of all regular vectors in X

n is denoted by X
n
+ .

For any nonzero column vector x = (xi) , we
define a row vector x− = (x−i ) with the elements
x−i = x−1

i if xi > 0 , and x−i = 0 otherwise.
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Figure 1: Vector addition (left) and scalar multiplica-
tion (right) in R

2
max,+ .

For any regular vectors x and y , the component-
wise inequality x ≤ y implies x− ≥ y− .

A vector y is linearly dependent on vectors
x1, . . . ,xm if y = c1x1 ⊕ · · · ⊕ cmxm for some
scalars c1, . . . , cm . Specifically, vectors y and x are
collinear if there exists a scalar c such that y = cx .

Given vectors x1, . . . ,xm , the set of linear com-
binations c1x1 ⊕ · · · ⊕ cmxm for all c1, . . . , cm is
a linear span of the vectors, which forms a subsemi-
module. A graphical example of the linear span of two
vectors is shown in Fig. 2.
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Figure 2: Linear span of two vectors in R
2
max,+ .

2.3 Matrix Algebra
Let Xn×n be the set of square matrices of order n
with entries in X . For any matrices A = (aij) and
B = (bij) from X

n×n , and a scalar c ∈ X , matrix
addition and multiplication together with scalar mul-
tiplication follow the conventional rules

{A⊕B}ij = aij ⊕ bij , {AB}ij =
n⊕

k=1

aikbkj ,

{cA}ij = caij .

A matrix with all zero entries is called the zero
matrix and denoted by 0 . A matrix with all off-
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diagonal entries equal to 0 is a diagonal matrix. If
all entries of a matrix above or below the diagonal are
zero, the matrix is triangular. A diagonal matrix with
1 on the diagonal is the identity matrix denoted by I .

A matrix is reducible if it can be put into a block-
triangular form by simultaneous permutations of rows
and columns. Otherwise, the matrix is irreducible.

The matrix power is introduced in the regular
way. For any matrix A and integer p ≥ 1 , we have

A0 = I, Ap = Ap−1A = AAp−1.

2.3.1 Matrix Trace
For any matrix A , the trace of A is routinely given by

trA = a11 ⊕ · · · ⊕ ann.

It is not difficult to verify that for any matrices A
and B , and a scalar c it holds

tr(A⊕B) = trA⊕ trB, tr(AB) = tr(BA),

tr(cA) = c tr(A).

We apply the above properties to derive a bino-
mial identity for traces to be used below.

Lemma 1. For any matrices A and B , and an integer
m ≥ 1 it holds that

tr(A⊕B)m = trBm

⊕
m⊕
k=1

⊕
i1+···+ik=m−k

tr(ABi1 · · ·ABik). (1)

Proof. First we note that the power (A⊕B)m can nat-
urally be expanded as the sum of 2m products formed
by k matrices A and m − k matrices B taken in all
possible orders for all k = 0, 1, . . .m .

Furthermore, we take trace of the sum and con-
sider those terms that have at least one matrix A as
a factor. Since two matrices commute under the trace
operator, all these terms can be rearranged so that each
term has A as the first factor. It remains to see that any
product with k ≥ 1 matrices A is then represented as
(ABi1) · · · (ABik) , where i1, . . . , ik are nonnegative
integers such that i1 + · · ·+ ik = m− k .

2.3.2 Spectral Radius
As usual, a scalar λ is an eigenvalue of a matrix A , if
there exists a nonzero vector x such that

Ax = λx.

Every irreducible matrix has only one eigenvalue,
whereas reducible matrices may have several eigen-
values. The maximal eigenvalue (in the sense of the
linear order on X) is called the spectral radius of A .
It is directly calculated as

λ =
n⊕

m=1

tr1/m(Am).

The spectral radius λ of a matrix A offers a use-
ful extremal property, which holds that

min x−Ax = λ,

where the minimum is over all regular vectors x .

2.4 Linear Inequalities
Let A ∈ X

n×n be a given matrix, x ∈ X
n be the

unknown vector. Consider the problem of finding reg-
ular solutions x to the inequality

Ax ≤ x. (2)

For any matrix A , the solution of the inequality
involves a function that is given by

Tr(A) = trA⊕ · · · ⊕ trAn,

and a star operator that is defined as

A∗ = I ⊕A⊕ · · · ⊕An−1.

In the case of irreducible matrices, the solution is
given by the following result.

Theorem 1. Let x be the general regular solution of
inequality (2) with an irreducible matrix A .

Then the following statements hold:

1. If Tr(A) ≤ 1 , then x = A∗u for all u ∈ Xn
+ .

2. If Tr(A) > 1 , then there is no regular solution.

Fig. 3 offers an example of solution of a linear
inequality with a matrix A = (a1,a2) in R

2
max,+ .

3 A Constrained Extremal Problem
Given matrices A,B ∈ X

n×n , the problem is to find
all regular solutions x ∈ Xn

+ so as to provide

min x−Ax,

Bx ≤ x.
(3)

Below we give a general solution to the problem
and then illustrate the solution with numerical exam-
ples in the framework of the semifield Rmax,+ .
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Figure 3: Solution to a linear inequality in R
2
max,+ .

3.1 The Main Result
A complete direct solution to the problem under quite
general conditions is given as follows.

Theorem 2. Suppose that at least one of matrices A
and B is irreducible, λ > 0 is a spectral radius of
the matrix A , and Tr(B) ≤ 1 .

Then the minimum in (3) is equal to

θ =
n⊕

k=1

⊕
0≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik) (4)

and it is attained if and only if

x = (θ−1A⊕B)∗u (5)

for all regular vectors u .

Proof. First we introduce an additional variable and
then reduce problem (3) to an inequality. Existence
conditions for solutions of the inequality is used to
evaluate the variable, whereas the solution of the in-
equality is taken as the solution of the problem.

Suppose θ is the minimum of the objective func-
tion in problem (3) and note that θ ≥ λ > 0 .

The set of regular vectors x that yield the mini-
mum is determined by the system

x−Ax = θ,

Bx ≤ x.

Let us examine the first equality x−Ax = θ .
Since x−Ax ≥ θ for all x ∈ X

n
+ , the equality can

be replaced by the inequality x−Ax ≤ θ .
Furthermore, we multiply the inequality by θ−1x

from the left. Since x−x = 1 and xx− ≥ I for all
regular x , we have θ−1Ax ≤ θ−1xx−Ax ≤ x and
so get the inequality θ−1Ax ≤ x . Considering that

left multiplication of the last inequality by θx− gives
the first one, both inequalities prove to be equivalent.

Now the solution set of the problem is given by
the system of inequalities

θ−1Ax ≤ x,

Bx ≤ x.

The above system is equivalent to one inequality

(θ−1A⊕B)x ≤ x, (6)

which takes the form (2) with an irreducible matrix.
It follows from Theorem 1 that inequality (6) has

regular solutions if and only if

Tr(θ−1A⊕B) ≤ 1. (7)

Consider the function Tr(θ−1A ⊕ B) and repre-
sent it in the form

Tr(θ−1A⊕B) =

n⊕
m=1

tr(θ−1A⊕B)m.

By applying binomial identity (1) to the right-
hand side, we have

Tr(θ−1A⊕B) = TrB

⊕
n⊕

m=1

m⊕
k=1

⊕
i1+···+ik=m−k

θ−k tr(ABi1 · · ·ABik).

Furthermore, rearrangement of terms in the last
sum gives the following expression

Tr(θ−1A⊕B) = TrB

⊕
n⊕

k=1

⊕
0≤i1+···+ik≤n−k

θ−k tr(ABi1 · · ·ABik).

Considering that TrB ≤ 1 by the conditions of
the theorem, inequality (7) reduces to inequalities⊕

0≤i1+···+ik≤n−k

θ−k tr(ABi1 · · ·ABik) ≤ 1,

which must be valid for all k = 1, . . . , n .
By solving the inequalities with respect to θ , we

get inequalities

θ ≥
⊕

0≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik),
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or equivalently, one inequality

θ ≥
n⊕

k=1

⊕
0≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik).

In order for θ to be the minimum in problem (3),
the last inequality must be satisfied as an equality,
which gives (4).

It remains to apply Theorem 1 to inequality (6) so
as to arrive at the solution in the form (5).

As a particular case of the result, a solution to
problem 3 without linear constraints can be derived.

Corollary 1. Let, in addition to the assumptions of
Theorem 2, A be an irreducible matrix and B = 0 .

Then the minimum in (3) is equal to λ and it is
attained if and only if

x = (λ−1A)∗u

for all regular vectors u .

Proof. It is sufficient to verify that we have θ = λ .
For this purpose we rewrite (4) in the form

θ =
n⊕

k=1

tr1/k(Ak)

⊕
n−1⊕
k=1

⊕
1≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik).

With B = 0 we arrive at the desired result.

Note that this result is consistent with that in [22].

3.2 Illustrative Examples
Consider problem (3) in R

2
max,+ with matrices

A =

(
0 −3
−5 −2

)
, B =

(
0 −8
5 −3

)
.

First we apply Corollary 1 to solve the problem
without constraints. We calculate the matrix

A2 =

(
0 −3
−5 −4

)
and then find

λ = trA⊕ tr1/2(A2) = 0 = 1.

Since λ−1A = A , we have

(λ−1A)∗ = A∗ = I ⊕A =

(
0 −3
−5 0

)
.

The solution to the problem takes the form

x =

(
0 −3
−5 0

)
u, ∀u ∈ R2.

Note that in a similar way, one can obtain the so-
lution to the inequality Bx ≤ x in the form

x =

(
0 −8
5 0

)
u, ∀u ∈ R2.

A graphical illustration of the solutions on a plane
with the Cartesian coordinates is given in Fig. 4.
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Figure 4: Solutions to an unconstrained problem (left)
and inequality constraints (right) in R

2
max,+ .

Now we use Theorem 2 to handle the constrained
problem. We get the matrix

AB =

(
2 −6
3 −5

)
and then calculate

θ = trA⊕ tr1/2(A2)⊕ tr(AB) = 2.

Furthermore, we have

θ−1A⊕B =

(
0 −5
5 −3

)
and then arrive at

(θ−1A⊕B)∗ =

(
0 −5
5 0

)
.

Since the columns in the obtained matrix are
collinear, we take only one of them, say the first. The
solution set is then given by

x =

(
0
5

)
u = ux0

for any nonzero number u ∈ Rmax,+ .
Fig. 5 combines the solutions to the unconstrained

problem and to the constraints with that of the con-
strained problem. The solution of the last problem is
depicted with a double-thick line that is drawn through
the end point of the vector x0 and coincides with a
border of the feasible area defined by the constraints.
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[7] P. Butkovič, Max-Linear Systems: Theory and
Algorithms, Springer, London, 2010.

[8] N. Krivulin, Algebraic solutions to scheduling
problems in project management, Recent Re-
searches in Communications, Electronics, Sig-
nal Processing and Automatic Control, WSEAS
Press, 2012, pp. 161–166.
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