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Abstract: A multidimensional extremal problem in the idempotent algebra setting is considered which consists in
minimizing a nonlinear functional defined on a finite-dimensional semimodule over an idempotent semifield. The
problem integrates two other known problems by combining their objective functions into one general function and
includes these problems as particular cases. A new solution approach is proposed based on the analysis of linear
inequalities and spectral properties of matrices. The approach offers a comprehensive solution to the problem in
a closed form that involves performing simple matrix and vector operations in terms of idempotent algebra and
provides a basis for the development of efficient computational algorithms and their software implementation.
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1 Introduction
The development of solution methods and compu-
tational algorithms for solving multidimensional ex-
tremal problems is one of the important concerns
in the linear tropical (idempotent) algebra [1–7].
The problems under consideration involve the mini-
mization of linear and nonlinear functionals defined
on finite-dimensional semimodules over idempotent
semifields and may have additional constraints im-
posed on the feasible solution set in the form of lin-
ear tropical equalities and inequalities. Among these
problems are idempotent analogues of the linear pro-
gramming problems [7–9] and their extensions with
nonlinear objective functions [10–18]. There are so-
lutions to certain problems where both objective func-
tion and constraints appear to be nonlinear [20, 21].

Many extremal problems are formulated and
solved only in terms of one idempotent semifield, say
the classical semifield Rmax,+ in [7, 8, 10]. Some
other problems including those considered in [9, 13–
18] are treated in a more general setting, which in-
cludes the semifield Rmax,+ as a particular case. Fur-
thermore, proposed solutions frequently take (see,
e.g. [7, 8, 10, 20, 21]) the form of an iterative al-
gorithm that produces a solution if any, or indicates
that there is no solutions, otherwise. In other cases,

as in [9, 11, 13–18], direct solutions are given in
closed form. Finally, note that most of the existing
approaches offer some particular solutions rather than
give comprehensive solutions to the problems.

In this paper, we consider a multidimensional ex-
tremal problem that is a generalization of the prob-
lems examined in [11, 13–18]. Particular cases of
the problem arise in various applications including
growth rate estimation for the state vector in stochastic
dynamic systems with event synchronization [11, 14]
and single facility location with Chebyshev and rec-
tilinear metrics [16, 17]. On the basis of implemen-
tation and further development of methods and tech-
niques proposed in [11–19], we give a complete solu-
tion to the problem in a closed form that provides an
appropriate basis for both formal analysis and devel-
opment of efficient computational procedures.

The rest of the paper is as follows. We begin with
an introduction to idempotent algebra and outline ba-
sic results that underlie the subsequent solutions. Fur-
thermore, examples of tropical extremal problems are
presented and their solutions are briefly discussed. A
new extremal problem is then introduced and a closed-
form solution to the problem under general conditions
is established. Finally, solutions to some particular
cases and extensions of the problem are given.
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2 Basic Definitions and Results
We begin with basic algebraic definitions and prelim-
inary results from [12–14] to provide a formal frame-
work for subsequent analysis and solutions presented
in the paper. Additional details and thorough investi-
gation of the theory can be found in [1–7].

2.1 Idempotent Semifield
We consider a set X that is closed under binary
operations, addition ⊕ and multiplication ⊗ , and
equipped with their related neutral elements, zero 0

and identity 1 . We suppose that the algebraic system
〈X,0, 1,⊕,⊗〉 is a commutative semiring with idem-
potent addition and invertible multiplication. Since
for all x ∈ X+ , where X+ = X \ {0} , there exists its
multiplicative inverse x−1 , the semiring is commonly
referred to as the idempotent semifield.

The integer power is introduced in the usual way
to represent iterated multiplication. Moreover, we as-
sume that the power with rational exponent is also de-
fined and so consider the semifield to be radicable.

In what follows we omit the multiplication sign ⊗
as it is usual in the conventional algebra. The power
notation is always used in the above sense.

The idempotent addition naturally induces a par-
tial order on the semifield. Furthermore, we assume
that the partial order can be completed to a total order,
thus allowing the semifield to be linearly ordered. In
the following, the relation signs and the min symbol
are thought of as in terms of this linear order.

Examples of linearly ordered radicable idempo-
tent semifields include

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉,
Rmin,+ = 〈R ∪ {+∞},+∞, 0,min,+〉,
Rmax,× = 〈R+ ∪ {0}, 0, 1,max,×〉,
Rmin,× = 〈R+ ∪ {+∞},+∞, 1,min,×〉,

where R is the set of reals, R+ = {x ∈ R|x > 0} .

2.2 Idempotent Semimodule
Consider the Cartesian product Xn with column vec-
tors as its elements. A vector with all components
equal to 0 is called the zero vector and denoted by 0 .
The operations of vector addition ⊕ and scalar mul-
tiplication ⊗ are routinely defined component-wise
through the scalar operations introduced on X .

The set Xn with these operations forms a finite-
dimensional idempotent semimodule over X .

A vector is called regular if it has no zero compo-
nents. The set of all regular vectors of order n over
X+ is denoted by X

n
+ .

For any nonzero column vector x = (xi) ∈ X
n

we define a row vector x− = (x−i ) , where x−i = x−1i
if xi 6= 0 , and x−i = 0 otherwise, i = 1, . . . , n .

2.3 Matrix Algebra
For conforming matrices with entries from X , addi-
tion and multiplication of matrices together with mul-
tiplication by scalars follow the conventional rules us-
ing the scalar operations defined on X .

A matrix with all entries that are equal to 0 is
called the zero matrix and denoted by 0 . A matrix is
row (column) regular if it has no zero rows (columns).

Consider the set of square matrices Xn×n . As in
the conventional algebra, a matrix is diagonal if its
off-diagonal entries are equal to 0 . A diagonal matrix
that has only 1 as the diagonal entries is the identity
matrix and denoted by I . Finally, the exponent nota-
tion stands for repeated multiplication for any square
matrix A with the obvious condition that A0 = I .

The set Xn×n with the matrix addition and multi-
plication forms an idempotent semiring with identity.

For any matrix A = (aij) its trace is given by

trA =

n⊕
i=1

aii.

A matrix is called reducible if simultaneous per-
mutations of rows and columns put it into a block-
triangular normal form, and irreducible otherwise.
The normal form of a matrix A ∈ Xn×n is given by

A =


A11 0 . . . 0

A21 A22 0

...
...

. . .
As1 As2 . . . Ass

 , (1)

where Aii is either irreducible or zero matrix of order
ni , whereas Aij is an arbitrary matrix of size ni×nj
for all i = 1, . . . , s , j < i , and n1 + · · ·+ ns = n .

2.4 Spectrum of Matrices
Any matrix A ∈ X

n×n defines on the semimodule
X
n a linear operator with certain spectral properties.

Specifically, if the matrix A is irreducible, it has a
unique eigenvalue that is given by

λ =

n⊕
m=1

tr1/m(Am) (2)
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whereas all corresponding eigenvectors are regular.
Let the matrix A be reducible and have the form

(1). All eigenvalues of A are among the eigenvalues
λi of the diagonal blocks Aii , i = 1, . . . , s . The
value λ = λ1⊕ · · · ⊕ λs is always an eigenvalue, it is
calculated by (2) and called the spectral radius of A .

2.5 Linear Inequalities
Suppose there are a matrix A ∈ X

m×n and a regular
vector d ∈ Xm+ . The problem is to solve with respect
to the unknown vector x ∈ Xn the linear inequality

Ax ≤ d. (3)

Clearly, if A = 0 , then any vector x is a solu-
tion. Assume now the matrix A 6= 0 to have zero
columns. It is easy to see that each zero column in A
allows the corresponding element of the solution vec-
tor x to take arbitrary values. The other elements can
be found from a reduced inequality with a matrix that
is formed by omitting zero columns from A and so
becomes column-regular. The solution to the inequal-
ity for column-regular matrices is as follows.

Lemma 1. A vector x is a solution of inequality (3)
with a column-regular matrix A and a regular vector
d if and only if

x ≤ (d−A)−.

For a given square matrix A ∈ Xn×n and a vector
b ∈ Xn , we now find all regular solutions x ∈ Xn+ to
the inequality

Ax⊕ b ≤ x. (4)

To solve the problem, we follow an approach
based on the implementation of the function Tr that
maps each square matrix A ∈ Xn×n to a scalar

Tr(A) =

n⊕
m=1

trAm.

For any matrix A ∈ Xn×n , we introduce a matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Assume a matrix A to be represented in its nor-
mal form (1). We define a diagonal matrix

D =

 A11 0

. . .
0 Ass

 ,

and a low triangular matrix

T =


0 . . . . . . 0

A21
. . .

...
...

. . . . . .
...

As1 . . . As,s−1 0

 ,

which present the diagonal and triangular parts of the
decomposition of A in the form

A = D ⊕ T. (5)

Note that if the matrix A is irreducible, we put
D = A and T = 0 .

Theorem 1. Let x be the general regular solution of
inequality (4) with a matrix A in the form of (5). Then
the following statements are valid:

1. If Tr(A) ≤ 1 , then x = (D∗T )∗D∗u for all
u ∈ Xn+ such that u ≥ b .

2. If Tr(A) > 1 , then there is no regular solution.

3 Tropical Extremal Problems
We now turn to the discussion of multidimensional ex-
tremal problems formulated in terms of idempotent al-
gebra. The problems are established to minimize both
linear and nonlinear functionals defined on semimod-
ules over idempotent semifields, subject to constraints
in the form of linear equalities and inequalities.

In this section, the symbols A and C stand for
given matrices, b , d , p , q , g and h for vectors, and
r and s for numbers. We start with an idempotent
analogue of linear programming problems examined
in [7, 8] and defined in terms of the semifield Rmax,+

to find the solution x to the problem

min (pTx⊕ r),
Ax⊕ b ≤ Cx⊕ d.

A solution technique that is based on an iterative
algorithm and called the alternating method is pro-
posed which produces a solution if any, or indicates
that there is no solution otherwise.

The technique is extended in [10] to provide an it-
erative computational scheme for a problem with non-
linear objective function given by

min (pTx⊕ r)(qTx⊕ s)−1,
Ax⊕ b ≤ Cx⊕ d.
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There are certain problems which can be solved
directly in a closed form. Specifically, an explicit for-
mula is proposed in [9] within the framework of op-
timization of max-separable functions under disjunc-
tive constraints for the solution of the problem

min pTx,

Cx ≥ b,

g ≤ x ≤ h.

Furthermore, in [11, 13–16], a problem is exam-
ined which is to find regular solutions x that provide

min x−Ax.

To get a closed form solution to the problem, an
approach is applied that uses results of the spectral
theory of linear operators in idempotent algebra.

Finally, a closed form solution based on a tech-
nique of solving linear equations and inequalities is
derived in [18] for the problem

min (x−p⊕ q−x),

Ax ≤ x.

In the rest of the paper, we consider a problem
with a general objective function that actually con-
tains the objective functions of the last two problems
as particular cases. For the problem when there are
no additional constraints imposed on the solution, a
general solution is given in a closed form.

4 A New General Extremal Problem
Given a matrix A ∈ X

n×n and vectors p, q ∈ X
n ,

consider the problem to find x that provides

min
x∈Xn

+

(x−Ax⊕ x−p⊕ q−x). (6)

A complete explicit solution to the problem under
general conditions as well as to some particular cases
and extensions is given in the subsequent sections.

4.1 The Main Result
We start with a solution to the problem in a general
setting that is appropriate for many applications.

Theorem 2. Suppose A is a matrix in the form (1),
p is a vector, q is a regular vector, λ is the spectral
radius of A , and

∆ = (q−p)1/2, µ = λ⊕∆ 6= 0.

Define a matrix

Aµ = µ−1A = Dµ ⊕ Tµ,

where Dµ and Tµ are respective diagonal and lower
triangular parts of Aµ , and a matrix

B = (D∗µTµ)∗D∗µ.

Then the minimum in (6) is equal to µ and at-
tained if and only if

x = Bu

for all regular vectors u such that

µ−1p ≤ u ≤ µ(q−B)−.

Proof. We show that both λ and ∆ are lower bounds
for the objective function in (6), and then get all reg-
ular vectors x that yield the value µ = λ ⊕∆ of the
function. To verify that λ is a lower bound, we write

x−Ax⊕ x−p⊕ q−x ≥ x−Ax.

Assume the matrix A to be irreducible and λ to
be its unique eigenvalue. We take a corresponding
eigenvector x0 and note that for all x ∈ Xn+ ,

x−0 x0 = 1, xx−0 ≥ (x−x0)
−1I.

Furthermore, we have

x−Ax = x−Axx−0 x0 = x−A(xx−0 )x0

≥ x−Ax0(x
−x0)

−1 = λx−x0(x
−x0)

−1 = λ.

Consider an arbitrary matrix A taking the form
(1). Any vector x now admits a decomposition into
subvectors x1, . . . ,xs according to the decomposi-
tion of A into column blocks. With the above result
for irreducible matrices, we obtain

x−Ax =

s⊕
i=1

i⊕
j=1

x−i Aijxj

≥
s⊕
i=1

x−i Aiixi ≥
s⊕
i=1

λi = λ.

Now we show that ∆ = (q−p)1/2 is also a lower
bound for the objective function. We have

x−Ax⊕ x−p⊕ q−x ≥ x−p⊕ q−x.
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Let us take any vector x ∈ Xn+ and denote

r = x−p⊕ q−x.

The last equality leads to two inequalities

r ≥ q−x > 0, r ≥ x−p.

Multiplication of the first inequality by r−1x−

from the right gives x− ≥ r−1q−xx− ≥ r−1q− .
Substitution of x− ≥ r−1q− into the second results
in r ≥ r−1q−p = r−1∆2 , whence it follows that

x−p⊕ q−x = r ≥ ∆.

By combining both bounds, we conclude that

x−Ax⊕ x−p⊕ q−x ≥ λ⊕∆ = µ.

It remains to find all regular solutions x of the
equation

x−Ax⊕ x−p⊕ q−x = µ.

Since x−Ax⊕x−p⊕q−x ≥ µ for all x ∈ Xn+ ,
the set of regular solutions of the equation coincides
with that of the inequality

x−Ax⊕ x−p⊕ q−x ≤ µ,

which itself is equivalent to the system of inequalities

x−Ax⊕ x−p ≤ µ, (7)

q−x ≤ µ. (8)

Let us consider inequality (7). After multiplica-
tion of the inequality by µ−1x from the left, we write

Aµx⊕ µ−1p ≤ µ−1xx−Ax⊕ µ−1xx−p ≤ x,

and then arrive at the inequality

Aµx⊕ µ−1p ≤ x.

On the other hand, left multiplication of the ob-
tained inequality by µx− directly yields inequality
(7), and thus both inequalities are equivalent.

Since Tr(Aµ) = Tr(µ−1A) ≤ 1 , we can apply
Theorem 1 to the last inequality so as to get the gen-
eral solution of inequality (7) in the form

x = (D∗µTµ)∗D∗µu = Bu,

where u ∈ Xn+ is any vector such that u ≥ µ−1p .

Substitution of the solution into inequality (8)
gives an inequality q−Bu ≤ µ . Application of
Lemma 1 to the last inequality yields u ≤ µ(q−B)− .

By combining lower and upper bounds obtained
for the vector u , we finally arrive at the solution

x = Bu,

for all u ∈ Xn+ such that

µ−1p ≤ u ≤ µ(q−B)−.

4.2 Particular Cases and Extensions
Consider problem (6) with an irreducible matrix A .
Since in this case D = A , T = 0 , and B = A∗ , the
statement of Theorem 2 takes a reduced form.

Corollary 1. If A is an irreducible matrix, then the
solution set of (6) is given by

x = A∗u,

for all u ∈ Xn+ such that

µ−1p ≤ u ≤ µ(q−A∗)−.

Specifically, when A = 0 , we have B = A∗ = I
and µ = ∆ . The solution set is further reduced to

∆−1p ≤ u ≤ ∆q,

which coincides with that in [18].
Suppose the vector q in problem (6) is irregular.

In this case, the matrix q−B in the inequality

q−Bu ≤ µ

may be not column-regular, which prevents direct ap-
plication of Lemma 1 as in Theorem 2.

Let J = supp(q−B) be the set of indices of
nonzero elements in the row vector q−B . Denote by
(q−B)J and uJ subvectors that have only compo-
nents with indices from J . The solution of the above
inequality is given by the constraints uJ ≤ µ(q−B)−J
for the subvector uJ , whereas the rest components of
the vector u can take arbitrary values.

Now we can somewhat weaken conditions of
Theorem 2 as follows.

Theorem 3. Under the assumptions of Theorem 2, let
q 6= 0 be arbitrary vector and J = supp(q−B) .

Then the minimum in (6) is equal to µ and at-
tained if and only if

x = Bu

for all regular vectors u such that

µ−1p ≤ u, uJ ≤ µ(q−B)−J .
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Finally note, that when q = 0 we have J = ∅
and so the upper bound for u disappears.

5 Conclusion
A complete closed-form solution has been derived for
a tropical extremal problem with nonlinear objective
function and without constraints. The solution actu-
ally involves performing simple matrix and vector op-
erations in terms of idempotent algebra and provides
a basis for the development of efficient computational
algorithms and their software implementation.

As a suggested line of further research, solutions
to the problems under constraints in the form of trop-
ical linear equalities and inequalities are to be consid-
ered. Practical examples of successful application of
the results obtained are also of great interest.
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