

GPGPU accelerated optimization method
of Interconnection Network Topology

VLADIMÍR SILÁDI1, LADISLAV HURAJ2, MICHAL POVINSKÝ1

1Department of Computer Science
University of Matej Bel

Tajovskeho 40, 97401 Banska Bystrica
SLOVAK REPUBLIC

vladimir.siladi@umb.sk, antihutka@gmail.com
2Department of Applied Informatics and Mathematics

University of SS. Cyril and Methodius in Trnava
Nám. J. Herdu 2, 917 01 Trnava

SLOVAK REPUBLIC
ladislav.huraj@ucm.sk

Abstract: The optimization of the irregular connection network of the multiprocessor systems with the
distributed memory is the NP complete problem which is generally compute-intensive process. Graphics
processing units provide a large computational power at a very low price allowing the fine-grained parallelism.
This work investigates the use of the GPU in the parallelisation of the optimal irregular network configurations
up to 128 processors. We used a modified hill climbing optimization technique for finding better solutions for
interconnection network topology. Using NVIDIA’s Compute Unified Device Architecture, our
implementation achieves a processing speed up of 1.71 to 7.96 times over a sequential Central Processing Unit
approach and it is comparable to existing approaches.

Key-Words: interconnection networks, irregular topology, optimization algorithm, GPGPU

1 Introduction
Graphics Processing Units (GPUs) are widely used
among developers and researchers as accelerators
for applications outside the domain of traditional
computer graphics. In particular, GPUs have
become a viable parallel accelerator for scientific
computing with low investment in the necessary
hardware [1,2]. After the establishment of the first
official version of the application interface for
general computing on graphics cards in 2007, the
usage of GPUs for acceleration of general
computations has expanded massively. This trend
largely results from the great improvements in GPU
programmability (i.e. GPGPU or use of GPUs for
general purpose applications) [3]. CUDA (Compute
Unified Device Architecture) is a parallel computing
architecture developed by NVIDIA for graphics
processing which presents to the programmer a
fairly generic abstraction of a many-core
architecture supporting fine-grained parallelism.
CUDA and the GPU therefore provide massive,
general purpose parallel computation resources with
the potential for speedups of data processing.

In our article we focus on utilization of GPUs in
the area of the multiprocessor computer architecture

design. Building of multiprocessor system with
hundreds of processors is achievable in the present
day. The interconnection network is an essential
element of designed multiprocessor systems and it is
critical to determine its performance [4]. The
optimization of the irregular connection network of
the multiprocessor systems with a distributed
memory is included among the NP-complete
problems.

Principles and practices of interconnection
networks have been studied in the past, e.g. [6]. To
provide low latency and high bandwidth
communication in interconnection networks, many
researches have been carried out to optimize the
network in various approaches such as designing
new network topologies, e.g. [5,7,8].

This work details the GPU parallelisation of the
optimization process of the irregular connection
network of the multiprocessor systems with the
distributed memory.

The rest of the paper is organized as follows.
First we briefly review the CUDA programming
model and we introduce the background of
interconnection network problem in section 2.

Advances in Computer Science

ISBN: 978-1-61804-126-5 95

Section 3 describes the algorithms and their
mapping on the GPU. Section 4 shows our
experimental results. The conclusion comes in
section 5 with an outlook to further work.

2 Background
This section provides the basic background for the
further discussions in the later sections of this
article. Section 2.1 details GPGPU principles and
the architecture of CUDA. The concept of
interconnection network, graph representation as
well as the basic optimization techniques are
introduced in section 2.2.

2.1 General Purpose computing on Graphics
Processing Units
Graphic cards, especially GPUs, represent quite new
possibility for high performance computing (HPC).
On the other hand, using of GPGPU is purposeful
only if the larger amounts of data are processed.

Parallel computing architecture developed by
NVIDIA named CUDA allows programmers to use
the graphic cards for parallel programming. The
Compute Unified Device Architecture (CUDA)
allows developers to use the C programming
language for the development of general-purpose
applications using fine-grain parallelism. A simple
extension to C has invoked that more non-graphics
developers port their existing applications to
CUDA. CUDA consists of a runtime library and an
expanded version of C. CUDA gives developers
access to the native instruction set and memory of
the parallel computational elements in CUDA
GPUs. It includes the CUDA Instruction Set
Architecture (ISA) and the parallel compute engine
in the GPU [10].

To support a heterogeneous system architecture
combining CPU and GPU, a single source program
contains both the host (CPU) code and the device
(GPU) code which are automatically separated and
compiled by the CUDA compiler tool chain.

CUDA is based on the notion of a core code
called kernel function, which is a single routine that
is invoked concurrently across many thread
instances; a software controlled scratchpad, which
CUDA calls the “shared memory”, in a Single
Instruction Multiple Data (SIMD) fashion for each
SIMD core; and barrier synchronization. Each GPU
thread in the thread block processes as a fully
independent, scalar, and can execute arbitrary code
and access arbitrary addresses. Moreover, each of

the GPU threads is given a unique ID that is
accessible within the kernel through the built-in
threadIdx variable [11].

2.2 Interconnection Networks
Basically, an interconnection network is a system
formed by nodes and links among the nodes. There
are two classes of interconnection network
topologies, static and dynamic. Networks with static
linking, also called direct networks, are applied in
networks where the communications among nodes
are known, or can be estimated. The links are
permanent and unchanging over time. Otherwise, in
the dynamic topology there are changes of
connections among processors. The algorithm
proposed in this paper deals only with static network
topology.

An interconnection network of a multiprocessor
architecture can be represented by an undirected
graph. Vertices of the graph represent computing
nodes and edges of the graph represent
communication links between the nodes. The graph
used for representation of the topology is undirected
- messages may pass between connected processors
in both directions. Maximum valence l of vertices is
given by number of communication links of
processors. Two vertices have to have valence l – 1
because corresponding processors of the
configuration have to be connected to the control
processor. Such a graph is called the topological
structure of the interconnection network.

Some interconnection network topologies are
designed and some borrow from nature. For instance
hypercubes, complete binary trees, butterflies and
torus networks are some of the designed
architectures. On the other hand, grids, hexagonal
networks, honeycomb networks and diamond
networks are called natural architectures [9].

One of the important criteria for optimizing the
network configuration is the maximum distance m
as well as the average distance p, which must be
overcome between the processors by the message.
The average inter-process distance is equivalent to
the average number of links through which the
message has to go on the path from any source
processor to the target processor.

Topology of the network can be formed as
regular or irregular. The regular topology is
characterized by its regularity; structure of irregular
topology is not regular. While minimizing the
distance between processors, irregular topologies
that optimize the above mentioned criteria should be

Advances in Computer Science

ISBN: 978-1-61804-126-5 96

formed. Such architectures provide a better
alternative to the extensive regular topologies for
parallel solutions of real computing problems.

The optimization effort lies in searching a graph
with minimal diameter, because the diameter
represents the largest distance which the message
has to traverse. The maximum distance can be
formally described as:

m = max d(u, v) (1)
and average distance as:

 (2)

where d distance between vertices, u and v are
vertices, and n is the number of vertices. The graph's
diameter is the largest number of vertices which
must be traversed in order to travel from one vertex
to another when paths which backtrack, detour, or
loop are excluded from consideration.

The main goal of the work is to design an
optimization algorithm of static interconnection
network among processors which can be accelerated
with graphics cards and to compare the sequential
and parallel implementation of the algorithm.
Mono-processor computer is fundamentally suitable
for sequential (consecutive) data processing. On the
other hand, the solving of computationally intensive
tasks as the optimal irregular network configuration
requires increasing of performance, which can be
done through parallel processing of the data. And
just GPGPU represents new technical means to
manage time-critical computing tasks.

3 Optimal irregular configurations
The design of irregular interconnection networks
requires finding an optimal irregular configuration
over a very large search space, the space of the
order of 1047 for 32 processors and 10369 for 128
processors [12]. The size of the solution space is too
large to use the exhaustive search algorithm, so a
hill climbing modified algorithm was used based on
finding better solutions lying near to the best actual
solution. Moreover, the CPU based approach has
been significantly modified into parallel approach to
suit the GPU computing paradigm.

The hill climbing algorithm as a mathematical
optimization technique, is an iterative algorithm
used as a local search technique. The algorithm
starts with an arbitrary solution to a problem, then
attempts to find a better solution by incrementally
changing a single element of the solution. If the
change produces a better solution, an incremental
change is made to the new solution, being repeated

until no further improvements can be found. In
generally, hill climbing algorithm strives to escape
local optima by accepting inferior solutions in an
effort to reach a global optimum.

As a starting point the undirected complete graph
was chosen. Consequently, the randomly chosen
edges are removed respectively. The number of
connections of vertices connected by edge is taken
into account when the edge is removing from the
graph as well as the number of paths passing
through the edge and the length of the longest path
passing through the edge. There is monitoring of
average distance and diameter during edges’
removing. Using of such monitoring ensures that the
graph is all the time connected. The maximum
tolerable diameter as well as initial average distance
is predetermined. In case of multiple failure of
edges’ removing, the value of initial average
distance increases.

If more than one vertex is less than the set degree
after edges’ removing, an edge is added between
these vertices. After reaching of the required
number of edges, an optimization of the pairs’
exchange is made. The optimization of the pairs’
exchange consists of random selection of a group of
four vertices A, B, C, D, connected by edges A-B C-
D. Edges between them are swapped to A-D, B-C
and the maximum and the average distance is
determined.

If the distance is better than the distance before
the change, the change is kept, if not, the state is
returned to the state before the change. Search
continues until a predefined amount of trials without
improvement is performed. If the solution is better
than the existing one, it is marked as the best
solution. Otherwise, the existing best solution is
kept. Then the edges between vertices with a
maximum distance are added and algorithm is
repeated till predefined number of repetitions. The
number of edges added at each repetition decreases.

The Floyd-Warshall algorithm to evaluate the
average and maximum distance between vertices in
the graph was used; the Floyd-Warshall algorithm is
an algorithm designed to find the shortest paths
between all pairs of vertices in graph [13].

In order to take advantage of the GPU, the hill
climbing algorithm was reinterpreted in a data
parallel fashion. The reinterpretation has a
significant impact on the performance of the final
GPU implementation.

Furthermore, the proposed algorithm consists of
matrix operations which allow faster processing on
graphics cards.

Advances in Computer Science

ISBN: 978-1-61804-126-5 97

3.1 Implementation of the optimization
algorithms on graphics cards

The above described algorithm was identified
into several algorithmic building blocks and
implemented them as separate functions.

Using the kernel function floydwarshall_kernel
the Floyd-Warshall algorithm runs on matrix and
the distances and paths between vertices are
calculated. Modified kernel function
floydwarshall_kernel_nopaths only counts the
distances. Kernel floydwarshall_kernel_paths
calculates the next vertex’s path for each pair of
vertices from the data calculated by Floyd-Warshall
algorithm. Kernel floydwarshall_kernel_longest
computes the length of the longest path through
each edge. Kernel floydwarshall_kernel_numpaths
determines the number of paths through each edge.
Kernel graph_count_edges_kernel calculates the
degree of each node. Kernel function
graph_remove_edges_kernel randomly removes
edges from the graph. Kernel function
graph_add_edges_kernel randomly adds edges to
the graph.

There are several supporting matrix kernel
functions to perform basic matrix operations:
matica_set_kernel, matica_diag_kernel, matica_co-
py_ones_kernel, matica_sum_max_kernel.

An example of parallelization of Floyd-Warshall
algorithm is illustrated on the flowcharts, Fig. 2 a,b.

4 Experimental Results
Testing was carried out on a single CPU personal
computer with a single GPU. The experiment was
designed to test the algorithm in terms of speeding
up calculations using the graphics card compared to
the CPU. The experiment was realized in an
NVIDIA CUDA environment on a graphics card
GeForce 9800 GT and on processor Intel Core2 Duo
E7400. The program was written in C language.

The number of nodes in the graph was
designated to value 32, 53, 64 and 128; 4 edges for
each node. In Table 1 are described the parameters
of detected networks – the maximum and the
average distance of nodes for all selected numbers
of nodes as well as running time on the CPU and
GPU in minutes.

The Speed up column describes the acceleration
of calculation on the graphics processor compared
with the CPU for the topology. The acceleration was
achieved for each number of nodes, the higher
number of nodes, the higher efficiency factor.

Table 2 and Figure 1 compare the obtained
results of our experiment with the theoretical

minimum values and with six other algorithms for
interconnection network topology optimization. The
algorithms are as follows [12]:
Alg. 1. backtracking search algorithm,
Alg. 2. the classical genetic algorithm,
Alg. 3. the genetic algorithm with mutation

operator,
Alg. 4. the genetic algorithm with simulated

annealing,
Alg. 5. the genetic algorithm with crossover

operator,
Alg. 6. the genetic algorithm with crossover

operator with limited local search,
Alg. 7. our algorithm performed on GPU.

Figure 3 shows the generated interconnection
network topology with the shortest achieved average
distance among nodes for the value of 53 nodes.

Table 1: Experimental results

nodes

Distance Time (min) Speed
up Max. Avg. CPU GPU

32 3 2.3548 24 14 1.71
53 4 2.7235 82 36 2.27
64 4 2.8918 140 32 4.34

128 5 3.5153 1082 136 7.96

Table 2: Comparison of different algorithms
 Number of vertices
 Alg. 32 53 64 128
 Theor. 3 2.291 4 2.578 4 2.824 5 3.409
 Alg. 1 4 2.31 4 2.76 4 2.92 5 3.58
 Alg. 2 4 2.30 4 2.72 5 2.92 6
 Alg. 3 4 2.47
 Alg. 4 3 2.30 4 2.693 4 2.88 5 3.52
 Alg. 5 3 2.297 4 2.693 4 2.878 5 3.511
 Alg. 6 3 2.297 4 2.685 4 2.873 5 3.499
 Alg. 7 3 2.355 4 2.727 4 2.898 5 3.515

Fig. 1 Graph of comparison of different algorithms

Advances in Computer Science

ISBN: 978-1-61804-126-5 98

5 Conclusion
The experiment was designed to test the algorithm
in terms of speeding up the calculations through the
graphics card compared to the CPU implementation
for the multiprocessor computer architecture design.
The experiment was realized in an NVIDIA CUDA
environment, written in C language; 32, 53, 64 and
128 number of nodes; 4 edges for each node.
Results of the experiment of the proposed algorithm
were compared to existing published algorithms.
The proposed algorithm is based on hill climbing
algorithm and its results are mainly for larger
number of nodes comparable to existing
algorithms, Fig. 1. The implementation of
optimization method through the GPGPU shows one
of the feasible ways to improve the processing.

Moreover, the perspective for additional
acceleration can be assumed in the handling of the
program for more efficient memory access. Running
of the program was successful even for 4 245 nodes.
Graphs with larger amount of vertices could be
processed by using GPU with larger memory, by
transferring unused matrixes in system memory, or
by processing of matrixes in parts.

Furthermore, another possibility to escape from a
local optimum for the algorithm will be tempt
[14,15]. An open issue is an adapting of the
algorithm for parallel processing on multiple
graphics cards.

Acknowledgements: This work was supported in
part by the University of SS. Cyril and Methodius in
Trnava under project FPPV-13-2012.

References:
[1] Owens, J.D., Luebke, D., Govindaraju, N.,

Harris, M., Krger, J., Lefohn, A.E., Purcell,
T.J.: A survey of general-purpose computation
on graphics hardware. Computer Graphics
Forum 26(1), 80, 2007.

[2] Huraj, L., Siládi, V, Siláči, J.: Comparison of
Design and Performance of Snow Cover
Computing on GPUs and Multi-core
processors. In: WSEAS Transactions on
Information Science and Applications, Issue
10, Volume 7, October 2010, pp. 1284-1294.

[3] T.D. Han, T. S. Abdelrahman. hiCUDA: High-
Level GPGPU Programming. In: IEEE
Transactions on Parallel and Distributed
Systems, 31 Mar. 2010.

[4] V. Puente, J. Gregorio, and R. Beivide.
SICOSYS: an integrated framework for
studying interconnection network performance
in multiprocessor systems. In Parallel,

Distributed and Network-based Processing,
2002. Proceedings. 10th Euromicro Workshop
on, pages 15–22.

[5] W. J. Dally. Express Cubes: Improving the
Performance of k-ary n-cube Interconnection
Networks. IEEE Trans. on Computers,
40(9):1016-1023, 1991.

[6] W. J. Dally and B. Towles. Principles and
Practices of Interconnection Networks. Morgan
Kaufmann Pub., San Francisco, CA, 2003.

[7] J. Kim, J. Balfour, and W. J. Dally. Flatterned
Butterfly Topology for On-Chip Networks.
Proc. of the 40th Int. Sym. on
Microarchitecture, pp. 172-182, 2007.

[8] Yuanping Mu and Keqiu Li. Extended Folded
Cube: A Improved Hierarchical
Interconnection Network. In: Parallel
Architectures, Algorithms and Programming
(PAAP), 2011 Fourth International Symposium
on Parallel Architectures, Algorithms and
Programming, pp.77-81, Dec. 2011

[9] Indra Rajasingh, Bharati Rajan, and S.Teresa
Arockiamary: Irregular Total Labeling of Grid
Networks. Journal of Computer and
Mathematical Sciences, Vol. 2, Issue 6, 31
December, 2011, pp. 780-898.

[10] Wang, Y., Feng, Z., Guo, H., Ch. Yang, He, Y.,
“Scene Recognition Acceleration Using CUDA
and OpenMP,” pp.1422-1425, First IEEE
International Conference on Information
Science and Engineering, 2009.

[11] “NVIDIA CUDA Programming Guide v2.0,”
Availabe on:
http://developer.download.nvidia.com/compute
/cuda/2_0/docs/NVIDIA_CUDA_Programmin
g_Guide_2.0.pdf , July 2008.

[12] Colin J. Burgess, Alan G. Chalmers,
Optimisation of irregular multiprocessor
computer architectures using genetic
algorithms. Annals of Operations Research, 86,
ISSN 0254-5330, pp. 239–257. February 1999.

[13] Wr04, Wróblewski P. 2004. Algoritmy, datové
štruktury a programovací techniky. Brno:
Computer Press, 2004. 351 s. ISBN 80-251-
0343-9.

[14] OLEJ, V.: Modelovanie ekonomických
procesov na báze výpočtovej inteligencie.
Hradec Králové: M&V, 2003, 160 pp, ISBN
80-903024-9-1.

[15] Tanuska, Pavol - Skripcak, Tomas: The
Proposal of Functional User Requirements
Generation. In: ICCRD 2011 : 3rd
International Conference on Computer
Research and Development. China, IEEE,
2011, ISBN 978-1-61284-840-2. - pp. 39-42

Advances in Computer Science

ISBN: 978-1-61804-126-5 99

Fig. 2 Flowchart of the Floyd-Warshall algorithm a) sequential and b) parallel.

 Fig. 3 Final interconnection network for 53 nodes.

Advances in Computer Science

ISBN: 978-1-61804-126-5 100

