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Abstract: -The present paper proposes and evaluates a decentralized control method for water distribution 

networks. With the objective of leakage reduction in distribution systems, it is hoped that pressure optimization 

control will be realized. The present paper proposes an overlapping control structure based on a sensitivity 

matrix. Convergence of control is evaluated from a mathematical perspective for a centralized control structure, 

an overlapping control structure, and a separated control structure. The results show that convergence of control 

using an overlapping structure is superior to a separated structure. 
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1 Introduction 
Along with sufficient maintenance of urban 

infrastructure, the need for water distribution using 

appropriate pressure aimed at reducing leakage is 

strongly required. If water pressure in a distribution 

pipeline is too high, leakage from places such as 

pipe joints will occur easily. However, if the 

pressure is too low, the water supply may be cut off 

at the demand end due to insufficient pressure even 

when a faucet is open. Therefore, a problem exists 

in that it is necessary to maintain an appropriate 

pressure by opening and closing multiple valves at 

the operation end in the distribution pipe network in 

response to temporal variations in demand.  

In order to avoid this difficulty, we propose that a 

method of decentralized control be adopted, in 

which the system in question is decomposed and an 

adaptive controller is placed in each subsystem. In 

the present paper, changes in measured variables in 

response to changes in manipulated variables were 

first examined as a sensitivity matrix, in order to 

answer the question of decomposition of the system. 

Based on the results, a characteristic of the pipe 

network is found to be that the relationship between 

manipulated variables and measured variables 

simultaneously includes disjoint connection areas 

and tightly coupled relationships. Therefore, it is 

decided that an overlapping control structure would 

be constructed as a method that reflects this 

characteristic. Furthermore, the sensitivity matrix 

changes according to changes in demand, so that an 

adaptive control method that carries out pressure-

fixation control while successively estimating the 

sensitivity matrix is proposed, convergence is 

evaluated mathematically. 

In Section 2, an overlapping control structure 

based on a sensitivity matrix is proposed. 

Convergence of control is evaluated from a 

mathematical perspective for a centralized control 

structure, an overlapping control structure, and a 

separated control structure.  

Section 3 shows a pipe network adaptive control 

strategy for a control system installed in 

decentralized controllers based on a linearized 

adaptive control model that carries out control while 

adaptively and successively estimating control 

gains.  

 

 

2 Overlapping decomposition method 
 

2.1 Formulation of distribution control 

problem 
Pipe network analysis using minimum cost flow 

calculus is used in the analysis of steady flow in a 

water distribution network [1]. 

In an attempt to realize the general mathematical 

model for pipe networks, a distribution control 

model is constructed from the viewpoint of 

conducting distribution control using controllers, as 
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follows. Temporally fluctuating demand is rewritten 

as m

D Rk ∈)(u  
by inserting time variable k. In 

addition, due to temporally fluctuating demand, a 

pressure change occurs in the pipe network. The 

objective of distribution control is to fix this 

pressure change using controllers. The variable that 

the controller can operate in order to fix the pressure 

is the resistance coefficient of valves (manipulated 

variable) l

V Rk ∈)(u . When described within the 

range required to develop the discussion in the 

present paper, the physical properties of the 

distribution pipe network can be expressed as a 

nonlinear pipe network state equation, as follows: 

0uuxf =))(),(),(( kkk DVC        (1) 

where l

C Rk ∈)(x  is a co-tree flow, l  is the 

number of co-tree pipes, l

V Rk ∈)(u  is the resistance 

coefficient of the valves (manipulated variable), n  

is the number of valves, m

D Rk ∈)(u  
is the demand, 

m is the number of demand ends, and k  is the time. 

The vector dimension of this function f is l , 

which means that function f consists of l nonlinear 

algebraic equations. 

Information obtained from pressure gauges in the 

pipe network can be expressed as a measurement 

system observation equation, as follows: 

))(),(),(()( kkkxk DVC uuhz =           (2)  

where sRk ∈)(z  is the measurement information. 

The vector dimension of Equation (2) is s, which 

means that s items of information are measured 

simultaneously. 

The general pipe network equations can be 

rewritten as Equations (1) and (2) from the 

perspective of distribution control. However, note 

that Equations (1) and (2) are still nonlinear. 

Because the objective of distribution control is 

pressure fixation, the following mathematical 

control index is taken: 

))(())(( 00 kkJ
T

zzzz −−=              (3) 

where 
sR∈0z  is the control target value for 

pressure. 

Thus, the manipulated variable that minimizes the 

control target equation (3) is determined from the 

pipe network equation (1) and the observation 

equation (2). 

In regard to the control problem, linear control 

laws are presented next. When deriving control laws 

for online control, it is permissible to take the 

demand as constant, taking into account the 

slowness of change of state of the pipe network due 

to changes in demand compared to the control cycle. 

If demand 
Du  

is assumed to be constant in the pipe 

network equation (1), then the flow 
Cx  

becomes a 

function of manipulated variable 
Vu , and so 

observation equation (2) also becomes a function of 

Vu . Therefore, Equation (2) may be written as 

  
))(()( kHk Vuz =                (4) 

If this is linearized by )(kVu , we have: 

)())(()( kk
H

k VV

V

uu
u

z ∆
∂
∂

=∆            (5) 

If the above equation is used to find the 

manipulated variable that minimizes the control 

target of equation (3): 
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(6) 

where k  is the calculation step, and each time 

instant of the system is taken as one calculation step. 

 

 

2.2 Basic study of decomposition 
Generally, when considering system decomposition, 

the multiple subsystems obtained by decomposition 

do not intersect. In other words, full decomposition, 

in which subsystems do not overlap each other, has 

often been studied. However, in the decomposition 

of real systems, it may sometimes be more natural to 

carry out overlapping decomposition due to the 

physical properties of the system. Here, due to 

differences in information structure, overlapping 

control and separated control are established as 

decomposition methods, and a comparative 

evaluation of these methods is conducted for 

convergence while matching the case of centralized 

control. 

As a basic examination, a distribution system 

with a simple structure, as shown in Fig.1, is 

considered: 
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(7) 

 

The input-output structure of the control object H 

illustrated in Fig.1 shows that there is not a mutually 

disjoint connection. On the other hand, observation 

point z1, for example, is not influenced by 

manipulated variable u2, which shows that some 

disjoint connection areas are inherent in the 

structure. Thus, the characteristics of the pipe 

network structure are represented by Equation (7) in 
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preparation for the mathematical analysis that will 

be discussed later. 
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(a) Fully connected control

（Centralized control ）    
(b) Partially connected control

（Overlapping connected control ）  
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(c) Separated control  

    Fig.1 Scheme of Control  
 

Taking the control target value as z0, the linear 

control strategy can generally be expressed as 

follows: 

 

)))(())((()()1( 0 kHkQkk uzuuu −+=+
      

(8) 

:))(( kQ u  First derivative at u(k) 

 

First, if control is carried out using one controller, 

as in the centralized control in Fig.1(a), the control 

law is the same as Equation (6). 

Next, in Fig.1(b), the structure is such that each 

controller performs control by receiving information 

from observation points that are influenced by a 

manipulated variable controlled by the respective 

controller, and the measurement information is 

overlapped in this control (referred to as 

overlapping control). The control laws for each 

controller can be written as follows:  
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 These laws can be combined and expressed by 

the following equation: 
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Next, respective control laws for separated control, 

as shown in Fig.1(c), can be expressed as follows: 
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These equations can be combined and rewritten as 

follows: 
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(14) 

A basic study of control convergence for the 

above three control structures shall be carried out. 

Here, it is assumed that 

)(0, 32 ε～　
ii u

h

u

h

∂

∂

∂
∂   2,1=i       

   (15) 

This means that the manipulated variables u1 and u2 
are loosely coupled to control variables z1 and z2. 
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The linear control strategy equation (8) is rewritten 

as an equation that represents convergence towards 

the optimum point *)(0 uz H= . 
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                                                                             (16)                                
where )(ξS  is taken as the second derivative of 

)(uH with respect to ξ between *u and )(ku . 

Using this equation, first, in order to examine the 

convergence of centralized control: 

   +

∂
∂

= ))(())(( k
H

kQ u
u

u . 

Thus, Equation (16) becomes as follows: 

 

))(*))((*)(())((*)1( kkSkQk uuuuuuu −−=−+ ξ      (17) 

 

Taking this absolute value, convergence in the 

neighborhood of the optimum point can be written 

as follows: 

   
2

)(**)1( kCk uuuu −−+ ≦            (18) 

Here, C is taken to be CSkuQ <)())(( ξ . 

Therefore, in centralized control, the manipulated 

variable converges to *u  by the speed of the 

square. 

In overlapping control, from Equation (11), we 

obtain 
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Here, convergence can be examined using Equation 

(16) by writing the following: 
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Here, 'C is taken as the product of ))(( kQ u in 

Equation (16) and the second derivative of )(uH . 

Taking the absolute value, convergence of 

overlapping control is as follows: 
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Furthermore, from Equation (14), separated control 

can be written as follows: 
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Substituting the above expression into Equation 

(12), we obtain: 
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Here, "C is taken as the product of ))(( kuQ in 

Equation (18) and the second derivative of )(uH . 

Comparing the convergence of Equations (18), (21), 

and (23), Equation (18) does not contain the first-

order term )(* kuu − , and the order of the 

coefficient of *)( uu −k  is lower in Equation (21) 

than in Equation (23). Therefore, convergence can 

be evaluated as follows: 

Centralized   ≻ Overlapping  ≻   Separated    (24) 

 

 

3 Strategy for pipe network adaptive 

control  
 

3.1 Control model for an adaptive controller 
It was shown in the previous section that 

overlapping control, in which controllers are placed 

in each overlapping decomposed subsystem, is 

effective in terms of convergence for controllers that 

do not have the computing power to be able to cover 

the entire system. However, this is the case when 

the demand is constant and the sensitivity 

coefficient for this demand is known. In real 

problems, the sensitivity coefficient gradually 
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changes along with changes in demand. Therefore, 

we describe the control model that each controller 

should possess in this case: 

iiiii tHtS cuz +=+ )()1(: ⊿⊿             (25) 

where 
ic  is an interference term between 

subsystems, summarized as variables, that are not 

explained by the manipulated variables covered by 

the controller in question, when information for 

manipulated variables covered by other controllers 

cannot be obtained. As the control method in each 

controller, the sensitivity coefficient and the 

interference term are estimated from manipulated 

variable information and measurement information 

that is available to the controller in question, and 

control is performed on this basis. 

Next, an adaptive control strategy is derived using 

the self-tuning regulator (STR) method in which 

control is performed by estimating process 

parameters 
iiH c,  in Equation (25) and determining 

the control parameters. 

 

 

3.2 Pipe network adaptive control strategy 
First, we show a process identification part for 

estimating, from process input-output, the 

sensitivity coefficient Hi and ic , which are 

unknown parameters among the parameters 

comprising the adaptive control law. In Equation 

(25), if 1,,2,1 −= kt ⋯ , the following equation is 

obtained: 
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where )(tiε  is the measurement noise at time t, 

)(~ tz⊿  is the measurement at time t, )(ˆ kiΘ  is the 

estimated value for 
iΘ  at time k , is determined so as 

to minimize the difference between 

)(ˆ)()(ˆ kkUkZ T

iii Θ=  and )(
~

kZ i
. Specifically, the 

evaluation function of the square error is set as 

follows: 
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Here, the value to be estimated,
iΘ , changes slowly 

with time, so that a weighting 01 >iλ≧  was 

introduced. Applying the method of least squares to 

the above equation, if a sequential form is taken for 

real-time estimation, the following estimation 

equation can be derived: 
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where [ ])1(ˆ)1(ˆ)1(ˆ ++=+Θ kHkk iii c             (32) 

 

Next, we show the control law for the controller 

unit. The control index of divided subsystem i is set 

as follows: 

Min.
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where Pi and Wi are positive definite. 

Using the above-mentioned estimated value, the 

subsystem control model is as follows: 

)1(ˆ)1()1(ˆ)1( ++++=+ kkkHk iiii cuz ⊿⊿        (34) 

Next, )1( +kiu⊿ , which minimizes control index, 

iI , is found. The decrease in Equation (33), 
iI⊿ , 

can be written as follows:  
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In addition, if Equation (34) is substituted into 

Equation (35) and partial differentiation with respect 

to )1( +kiu⊿ is carried out, setting       
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)())1(ˆ)1(~)(1(ˆ)1( 0 kkkkGk iiiii uczzu ++−+−+=+    (38) 

where   
T

i

T

iiii

T

i PkHWkHPkHkG )1(ˆ)3)1(ˆ)1(ˆ()1(ˆ 1 ++++=+ −  

                                                                         (39) 

Equation (38) is the control law of the controller 

unit, and )1(ˆ +kGi
 is the control gain. 

Above is the control strategy for an adaptive 

controller placed in a decomposed subsystem. Next, 

this method is applied to a large-scale pipe network 

and verified through simulation. 

 

 

4 Conclusion 
We proposed an overlapping adaptive method in 

which overlapping decomposition of the system is 

carried out and adaptive controllers are placed in 

each decomposed subsystem. Overlapping 

decomposition was shown to be the best method for 

decomposing the system in order to implement the 

proposed method. The pipe network in question has 

a structure in which the sensitivity of measured 

variables z to manipulated variables u includes 

strong nonlinear relationships and disjoint 

connections. In other words, the input-output 

structure of the control object H is a nonlinear 

tightly coupled system that includes partial disjoint 

connections. By representing the characteristics of 

this pipe network structure as shown in Equation 

(7), a mathematical analysis of convergence was 

prepared. In addition, as shown in Figs.1(a), 1(b), 

and 1(c), the information structures of centralized 

control, overlapping control, and separated control 

were defined. In particular, in the information 

structure of overlapping control, measurement 

information is overlapped and measured by multiple 

controllers. The same linear control strategy was 

used to study convergence to the optimum point 

*)(0 uHz =  in these three control structures. The 

results showed that, even though the linear control 

strategy was the same, due to differences in 

measurement information, the control structures can 

be ranked in order from high to low convergence as 

centralized control, overlapping control, and 

separated control. In other words, it was shown that 

overlapping control has an advantage over separated 

control from the perspective of convergence. 

Next, in regard to the control method installed in 

the decentralized controllers, a pipe network 

adaptive control strategy in which control is carried 

out by adaptively successively estimating control 

gains based on a linearized adaptive control model 

was demonstrated. Control gain Gi, which should be 

estimated by controller i, is obtained by successive 

estimation of target process parameter Hi covered by 

controller i. However, it is not possible to obtain 

information for manipulated variables covered by 

other controllers, and so it is necessary to estimate 

an interference term ci between subsystems that are 

not explained by the manipulated variables covered 

by the controller in question. Therefore, controller i 

estimates process parameter Hi from measurement 

information and manipulated variable information 

that is available to controller i (in other words, 

controller i estimates control gain Gi), and controller 

i also estimates the interference term ci. This is the 

control strategy of the adaptive controllers in charge 

of the decomposed subsystems. 
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