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Instituto de Estadı́stica
Blanco Viel 596, Cerro Barón, Valparaı́so

CHILE
natalia.bahamonde@ucv.cl

Abstract: A new mathematical representation, based on a discrete time nonlinear state space formulation, is pre-
sented to characterize AutoRegresive Conditional Heteroskedasticity (ARCH) models. A novel parameter esti-
mation procedure for state-space ARCH models with missing observations, based on an Extended Kalman Filter
(EKF) approach, is described and successfully evaluated herein. Finally, through a comparison analysis between
our proposed estimation method and a Quasi Maximum Likelihood Estimation (QMLE) technique based on dif-
ferent methods of imputation, some numerical results with simulated data, which make evident the effectiveness
and relevance of the proposed nonlinear estimation technique are given.
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1 Introduction
Autoregressive conditionally heteroscedas-

tic (ARCH) type modeling, introduced by
[4], are often used in finance because their
properties are close to the observed proper-
ties of empirical financial data such as heavy
tails, volatility clustering, white noise behav-
ior or autocorrelation of the squared series.
Financial time series often exhibit that the
conditional variance can change over time,
namely heteroskedasticity. The ARCH fam-
ily of model is a class of nonlinear time se-
ries models introduced by [1]. The ARCH(p)
model with normal error is

rk = σkεk,

σ2
k = α0 +

p∑
i=1

αir
2
k−i,

(1)

where rk and σk (> 0,∀k) are, respectively
the return and the volatility, in the discrete
time k ∈ Z, associated to a financial process,
and {εk}k∈Z is a i.i.d. Gaussian sequence,
with E(εk) = 0,E(εk · εj) = Qδk−j , and pa-
rameters α0 > 0, αi ≥ 0, p ≥ i ≥ 1 and∑p

i=1 αi < 1. Moreover, let us consider r0
independent of sequence {εk}k>0.

The goal of this research is to develop
a novel nonlinear parameter estimation pro-
cedure, based on an EKF approach, for
ARCH models considering missing observa-
tions. The EKF technique proposed is derived
from a nonlinear state space formulation of
the discrete time ARCH equation (see equa-
tion (1)). This method is adequate to obtain
initial conditions for a maximum-likelihood
iteration, or to provide the final estimation of
the parameters and the states when maximum-
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likelihood is considered inadequate or costly.

2 Nonlinear state space formu-
lation for ARCH models

Let us consider the following general dis-
crete time nonlinear state space mathematical
model:{
Xk =f(Xk−1,uk−1,θ)+σ(uk−1,θ)·wk,

Y k = h(Xk,uk,θ) + νk,
(2)

where Xk ∈ Rn is the state unknown vector,
uk ∈ Rr is the input known vector, Y k ∈ Rm

is the noisy observation vector or output vec-
tor of the stochastic process, wk ∈ Rn and
νk ∈ Rm are, respectively, the process noise
(due, mainly, to disturbances and modelling
inaccuracies of the process) and the measure-
ment noise (due, mainly, to sensor inaccu-
racy). Moreover θ ∈ Rl is the parameter
vector that is generally unknown, f(·) ∈ Rn,
σ(·) ∈ Rn×n and h(·) ∈ Rm are nonlinear
functions that characterize the stochastic sys-
tem.

With respect to the noises of the process,
we assume the following assumptions: i) the
vector wk is assumed to be Gaussian, zero-
mean E(wk) = 0 and white noise with co-
variance matrix E(wk · wT

j ) = Q · δk−j ; ii)
the vector νk is assumed to be Gaussian, zero-
mean E(νk) = 0 and white noise with covari-
ance matrix E(νk · νT

j ) = R · δk−j . Where
δk−j = identity matrix when k = j, other-
wise, δk−j = zero matrix.

2.1 Case 1: State space formulation
for ARCH(1)

In this case a possible state space represen-
tation of equation (1) when p = 1 is,


Xk :=

[
X

(1)
k

X
(2)
k

]
= f(Xk−1,θ) + B ·wk,

Y k := rk = X
(2)
k

√
X

(1)
k ,

(3)
where θ = (α0, α1, β1) ∈ R3, B = (0, 1)> ∈
R2, X(1)

k = σ2
k ∈ R (> 0,∀k), X(2)

k =
rk/σk ∈ R, wk = εk and

f(Xk−1,θ) :=
[
α0

0

]
+
[
α1

0

]
X

(1)
k−1(X

(2)
k−1)

2.

(4)

For details see [6].
The construction leading to the model of

equations (3) and (4) is easily extended to
ARCH models with higher orders yielding a
different state space formulation that will be
studied in the next subsection.

2.2 Case 2: State space formulation
for ARCH(p), p > 1

The following formulation is a possible
state space representation of equation (1)
when p > 1:


Xk:=

X
(1)
k

X
(2)
k

X
(3)
k

 = Aθ ·Xk−1 + f(Xk−1,θ)+

+ B ·wk,

Y k := rk = X
(3)
k

√
X

(2)
k ,

(5)
where θ = (α0, α1, · · · , αp, β1)> ∈ Rp+2,
B = (0, 0, · · · , 0, 1)> ∈ Rp+2, wk = εk

X
(1)
k :=


r2k−p

r2k−p+1
...

r2k−1

 ∈ Rp, (6)
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X
(2)
k = σ2

k ∈ R (> 0,∀k), X(3)
k = rk/σk ∈

R, and

f(Xk−1,θ) :=

0p×1

α0

0

+


0(p−1)×1

X
(2)
k−1(X

(3)
k−1)

2

α1X
(2)
k−1(X

(3)
k−1)

2

0

 .
(7)

Moreover,

Aθ =
(

Ap×p 0p×2

α2×p 02×2

)
∈ R(p+2)×(p+2),

(8)
with

Ap×p =


0 1 · · · 0 0
0 0 1 · · · 0
...

...
. . . . . . 0

0 0 · · · 0 1
0 0 0 · · · 0

 ∈ Rp×p,

α2×p =
(

0 αp · · · α2

0 0 · · · 0

)
∈ R2×p,

(9)

and where 0m×n, 1 ≤ ∀m,n ≤ p, are matri-
ces of zeros whose size is m× n.

Let us notice the obvious nonlinearity of all
state space representations, presented in this
section, due clearly to nonlinearity of the pro-
cess and observation equations.

3 The Extended Kalman Filter
Let YN = [y0,y1,y2, ...,yk, ...,yN ] be a

known sequence of measurement or observa-
tions. The functions f and h (see equation
(2)) are used to compute the predicted state
and the predicted measurement from the pre-
vious estimate state. The following equation

shows the computation of the predicted state
from the previous estimate:

x̂k|k−1 = f(x̂k−1|k−1,uk−1,θ). (10)

To compute the predicted estimate covari-
ance a matrix A of partial derivatives (the Ja-
cobian matrix) is previously computed. This
matrix is evaluated, with the predicted states,
at each discrete timestep and used in the KF
equations. In other words, A is a linearized
version of the nonlinear function f around the
current estimate.

Pk|k−1 = Ak−1Pk−1|k−1A
>
k−1 + Q. (11)

After making the prediction stage, we need
to update the equations. So we have the resid-
ual measure innovation:

ỹk = yk − h(x̂k|k−1,uk,θ) (12)

and the conditional covariance innovation

Sk|k−1 = CkPk|k−1C
>
k + R, (13)

where C is a linearized version of the nonlin-
ear function h around the current estimate.

The Kalman gain is given by

Kk = Pk|k−1C
>
k S−1

k|k−1, (14)

and the corresponding updates by

x̂k|k = x̂k|k−1 + Kkỹk (15)

and

Pk|k = (I −KkCk)Pk|k−1. (16)

The state transition and observation matri-
ces (the linearized versions of f and h) are
defined, respectively, by

Ak−1 =
∂f

∂X

∣∣∣∣
x̂k−1|k−1,uk−1

(17)
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and

Ck =
∂h

∂X

∣∣∣∣
x̂k|k−1

(18)

4 Nonlinear estimation with
missing observations

Given a sequence of measurement or obser-
vationsYN , the likelihood function is given by
the following joint probability density func-
tion:

L(θ;YN ) = p(y0|θ)
N∏

k=1

p(yk|Yk−1,θ).

(19)
Due to the central limit theorem when the

number of experiment replications becomes
large the distribution of the mean becomes ap-
proximately normal and centered at the mean
of each original observation. So it seems rea-
sonable to assume that, for a large number of
experiment replications, the probability den-
sity functions can be approximated by func-
tions of Gaussian probability densities. There-
fore we can rewrite equation (19) as follows:

L(θ;YN )=
p(y0|θ)
(2π)m/2

N∏
k=1

g(k)
det(Sk|k−1)1/2

,

(20)
where g(k) = exp{−0.5ỹ>k · S−1

k|k−1 ·
ỹk}, ỹk is the residual measure innova-
tion defined in equation (12), ŷk|k−1 =
E(yk|Yk−1,θ) is the conditional mean of
yk given y0,y1,y2, ...,yk−1 and θ, and fi-
nally Sk|k−1 is the conditional covariance
innovation, defined in equation (13), given
y0,y1,y2, ...,yk−1 and θ. Conditioning on
y0, and considering the function:

`(θ) = − ln(L(θ;Yk|y0)), (21)

the maximum likelihood estimator of θ can be
obtained solving the following nonlinear opti-
mization problem:

θ̂ = argmin
θ

(`(θ)). (22)

State space formulation and EKF provide a
powerful tool for the analysis of data in the
context of maximum likelihood estimation.
Let us remark that for a fixed θ, the values
of ỹk and Sk|k−1, at each discrete timestep,
can be obtained from the Kalman filter equa-
tions, described in section 3, and subsequently
used in the construction of the log-likelihood
function. In this context, the success of the op-
timization of log-likelihood function depends
strictly on the behavior of the EKF designed.
In a first time, we give the evaluation of
the Gaussian log-likelihood function bases
on Yr =

[
yi0 ,yi1 , . . . ,yir

]
, where Ir =

[i0, i1, . . . , ir] are positive integers such that
0 ≤ i0 < i1 < · · · < ir ≤ N . This allows
for observation of the process at irregular in-
tervals, or equivalently for the possibility that
(N − r) observations are missing from the se-
quence YN .

To deal with possibly irregularly spaced ob-
servations or data with missing values (see
[5]), we introduce a new series {Y ∗k}k, related
to the state {Xk}k by the modified observa-
tion equation (see equation (2)):

Y ∗k = h∗(Xk,uk,θ)+ν∗k, k = 0, 1, . . . ,
(23)

where

h∗(Xk,uk,θ)=

{
h(Xk,uk,θ) if k ∈ Ir,
0 otherwise,

ν∗k =

{
νk if k ∈ Ir,
ηk otherwise,
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and ηk is a i.i.d. Gaussian, zero-mean and
white noise sequence with covariance matrix
E(ηk ·ηT

s ) = Iw×w ·δk−s (w is the dimension
of noise νk and ηk at each discrete timestep
k). Moreover ηs⊥X0, ηs⊥wk, and ηs⊥νk

(s, k = 0,±1, . . . ).
Let us consider the joint Gaussian proba-

bility density function L1(θ;Yr) and the re-
lated Gaussian log-likelihood function `1(θ)
based on the measured values Yr. From these
measured values, let us define the sequence
Y∗N = [y∗0,y

∗
1, . . . ,y

∗
N ] as follows:

y∗k =

{
yk if k ∈ Ir,
0 otherwise.

(24)

Let L2(θ;Y∗N ) be the joint Gaussian prob-
ability density function based on the values
Y∗N and let `2(θ) be the related log-likelihood
function. So it is clear that L1(θ;Yr) and
L2(θ;Y∗N ) are related by:

L1(θ;Yr) = (2π)(N−r)w/2L2(θ;Y∗N ), (25)

and consequently `1(θ) and `2(θ) are related
by:

`1(θ) =
ln(2π)(N − r)w

2
+ `2(θ). (26)

Then we can now compute the required
L1(θ;Yr) and the corresponding `1(θ) of the
realized sequence Yr, using the Kalman ap-
proach described above and applying equa-
tions (25) and (26).

5 Numerical results
Let us notice that for the treatment of miss-

ing data using QMLE technique is necessary
to replace the unobserved data by other val-
ues (which is know as imputation methods).
Two probabilities 1 − q (5% and 20%) of

missing observation are considered. All the
experiments are based on 50000 replications
of an ARCH(1) model, with parameters θ =
(α0, α1)> = (0.3, 0.5)>. Also let us assume a
noise process covariance Q = I1×1. The sam-
ple mean and standard error of the EKF esti-
mator θ̂ = (α̂0, α̂1)> (new proposed estima-
tor) are compared to those of estimators based
on a complete data set obtained after filling
the missing observations by some imputation
procedures. Different imputation methods can
be applied and we consider the following esti-
mators obtained with the old methods (see [2]
and [3]):

• θ̃b = (α̃0 b, α̃1 b)>, θ̃m = (α̃0m, α̃1m)>

and θ̃p = (α̃0 p, α̃1 p)> are the QMLE
estimators of θ using different impu-
tation methods, obtained respectively
when each missing values is (i) deleted
and the observed data are bound together,
(ii) replaced by the sample mean of the
observed values, and (iii) replaced by the
first non missing value prior to it.

The Table 1 show the results for 2000 simu-
lated observations. We can see the estimates
for θ = (α0, α1)> and the corresponding
standard error in parentheses. We can see
that the proposed nonlinear estimation method
presents better performances than the clas-
sical imputation techniques considered here.
Also our methodology is readily extended to
other nonlinear time series models and non-
stationary and asymmetric cases.

6 Conclusion
This article introduces a new nonlin-

ear state space representation to characterize
ARCH(p) (p > 1) time series models. Also an
efficient numerical method, based on an EKF
approach, for nonlinear parameter estimation
of ARCH processes, has been presented. The
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1− q 5% 20%

θ̂
0.3001 (0.0030) 0.3001 (0.0033)
0.4991 (0.0135) 0.4994 (0.0160)

θ̃b
0.308 (1.591e-2) 0.334 (1.991e-2)
0.485 (4.625e-2) 0.442 (5.297e-2)

θ̃m
0.316 (2.041e-2) 0.323 (2.620e-2)
0.432 (4.527e-2) 0.303 (4.412e-2)

θ̃p
0.293 (1.512e-2) 0.267 (1.616e-2)
0.511 (4.397e-2) 0.554 (4.329e-2)

Table 1: Sample mean (standard error in
parentheses) of the different estimators when
n = 2000.

framework that we propose it is valuable if the
processes have unobserved values. The strat-
egy of estimation associated with this repre-
sentation allows computationally efficient pa-
rameter estimation.

Let us notice that quasi maximum likeli-
hood methods are very accurate by estimat-
ing ARCH parameters in a complete time se-
ries. In these cases, the EKF involve a more
complex procedure for the parameter estima-
tion and the gain is not realy significant. On
the other hand, it is well known that time
series with missing values presents a seri-
ous problem to conventional parameter esti-
mation methodologies such as QMLE. Stud-
ies show that, for linear time series models,
the standard KF approach can be easily mod-
ified in order to obtain an efficient method
to deal with missing observations. A natu-
ral extension, for nonlinear time series mod-
els, has been proposed in this work to treat
problems with missing values. The numer-
ical results presented herein demonstrate the
effectiveness of this methodology, and show
that it is more appropriate than other QMLE-
imputation methods used in practice (see Ta-
ble 1).

In conclusion, the methodology proposed in

this article is an innovative and effective way
to solve the problem of estimation of param-
eters in ARCH processes with missing obser-
vations.
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