
The Coupled-Weight Neural Reinforcement Algorithm

JANIS ZUTERS
Artificial Intelligence Foundation Latvia;

Faculty of Computing, University of Latvia
Raina blvd. 19, Riga, LV-1586

LATVIA
janis.zuters@lu.lv

Abstract: - Reinforcement learning refers to a set of machine learning problems for optimal control, and there
are a lot classical algorithms and methodologies to solve them. Typically such algorithms are based on the
value-function approach, where values of the states (or actions) are iteratively computed, and this set of values
infers the policy. Although neural networks are known to be used within such systems, if so, a neural module is
typically delegated only with a subfunction, e.g., to model the value table. This work introduces a brand new
neural-network-based reinforcement learning algorithm CNR (Coupled-Weight Neural Reinforcement
Algorithm), designed using ideas of reinforcement comparison, temporal difference learning, and Hebbian
learning.

Key-Words: - Neural networks, Neural reinforcement algorithm, Reinforcement learning

1 Introduction and Motivation
Reinforcement learning (RL) is one of main
paradigms of machine learning (ML), the objective
of which is to compute – how to map situations to
actions. This is a natural way to solve control
problems. As for terminology, in addition to RL as a
ML paradigm, it also refers to the respective set of
problems. It is believed by many authors that
reinforcement is more general to other types of
machine learning.

In case of RL, the learner is not told which
actions to take, as in most forms of machine
learning, but instead must discover which actions
yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect
not only the immediate reward but also the next
situation and, through that, all subsequent rewards.
These two characteristics – trial-and-error search
and delayed reward – are the two most important
distinguishing features of reinforcement learning.
[1]

Classical RL algorithms are mainly based on the
value-function approach, where values of the states
(or actions) are iteratively computed, and the set of
values infers the policy. While we have neural
network (NN) alternatives of supervised learning
algorithms (e.g. back-propagation, radial basis
function networks [2]), it is hard to find NN
alternatives for RL problems. In RL algorithms,
neural networks are typically used as approximators
of internal data structures like value functions
[2],[3],[4],[5].

The aim of the research is to obtain pure NN
approaches to solve RL problems. In solving RL
problems, NNs are attractive to the author in several
aspects:
• NNs are more fault-tolerant and biologically

plausible to compare to traditional algorithms,
• NNs typically exploit more general algorithmic

approaches and data structures,
• Building NNs to solve RL problems is still a

challenging issue.
This has lead to development of the new

Coupled-weight Neural Reinforcement algorithm
(CNR), which emerged from such known ideas as
reinforcement comparison, temporal difference
(TD) learning, Hebbian learning, as well as the
actor-critic approach.

2 Related Work
3.1 Actor-Critic Methods
Classical RL algorithms (like dynamic
programming, SARSA (State-Action-Reward-State-
Action)) are explicitly based on the value-function
approach, where values of the states (or actions) are
iteratively computed, and this set of values infers
the policy.

As an important step forward from these
algorithms one should name actor-critic methods
(Fig. 1), which are TD methods that have a separate
memory structure to explicitly represent the policy
independent of the value function. Here the value
function is still present, but its impact to the policy

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 234

is not so direct. Actor-critic methods are the natural
extension of the idea of so called reinforcement
comparison methods to TD learning and to the full
RL problem. [1]

Fig. 1. The actor-critic architecture ([1])

Fig. 2 shows an actor-critic algorithm which

lights up the two main principles of the approach
(lines 007-008): (a) the value function V is present,
(b) different data structures for the policy (P) and
the value function.

Technically speaking, both structures, the policy
and the value table, are improved in parallel, and
they cooperate in a way.

Module actor_critic()
 m – amount of states in the environment
 n – amount of available actions
 P(1..m,1..n) – policy description (actor)
 V(1..m) – state value function (critic)
 η – learning rate
 γ – discount rate
Begin
001 P := initialize for all states and actions
002 V := initialize for all states
003 s := select an initial state of the environment
004 Do many times
005 a := select action according to policy description P

(eventually, with exploration)
006 Apply action a to the environment, obtain reward r

and next state s2
007 P(s,a) := P(s,a) + η · [r + γ · V(s2) – V(s)]
008 V(s) := r + γ · V(s2)
009 s := s2

Fig. 2. Simplified actor-critic algorithm for continuing
tasks (with no terminal states) (adapted from [1])

3.2 Neural Networks and Reinforcement
Learning
If a neural network or a similar mechanism is used
within a RL system, it typically is delegated only
with a subfunction, e.g., to model the value
function. Nonetheless there have been successful
attempts to build a self-contained neural network to
be able to solve RL problems. [6],[7]

Schafer [7] proposes recurrent neural networks
(RNNs) to solve RL problems. In this approach, the
recurrent control neural network combines system
identification and determination of an optimal
policy in one network, and in contrast to most RL
methods, the optimal policy is computed directly
without making use of a value function. To train the
network, the shared weight extended back-
propagation algorithm is used.

Although back-propagation based learning
techniques are very popular also with neural
reinforcement algorithms, they don’t exactly by
nature fit RL. Coulom [8] reviews the main
difficulties in this context, and one is the risk of
being struck by ill-conditioning. So, using back-
propagation could potentially require additional
technical efforts to overcome the difficulties.

Back-propagation is not the only option to train
neural reinforcement systems. In [9], Hebbian
learning is used to enhance the classical RL
mechanism.

3 The CNR Algorithm
In this Section, the new Coupled-weight Neural
Reinforcement algorithm is proposed. On one hand,
the CNR algorithm can be viewed as putting
together such techniques as reinforcement
comparison, temporal difference (TD) learning,
Hebbian learning, and placing them into a single-
layer neural network frame. On the other hand, the
new algorithm represents a self-contained neural
network able to solve RL problems and is built
without use of supervised learning methods. By far,
the CNR algorithm still requires some justification
and additional testing to make it complete.

3.1 Main Principles and Architecture of
CNR
CNR is implemented through a one-layered feed-
forward neural network with the following
characteristics (Figs. 3, 4):
• State (s), presented through the input is a

sequence of 0 and 1. In its simplest form, the size
of the input pattern corresponds to the amount of
states, and a single 1 represents the current state
while the rest of the input pattern is filled with
zeros.

• Reward (r) is a real number normalized into
interval [0, 1].

• The network has one layer of neurons, and each
neuron is preset to correspond to one RL action,

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 235

so the amount of neurons is the same as the
amount of actions.

• After any iteration according to the activity
earned, exactly one of the neurons becomes the
winner, and so the action (a) is determined.
Information about the winner neuron is stored as
feedback F; learning in the winner neuron is
performed differently.

• There are several structures for cumulating input
and reward information (S, S ,̀ R).

• Neurons have two types of weights: W, E. In its
simplest form, both sets resemble action-value-
tables of traditional RL algorithms in a way.
Both sets of weights are trained differently to be
then coupled together in determining the action.

• Unlike action-values which are cumulated from
rewards and can reach values that significantly
exceed typical absolute values of rewards,
weights W and E are computed through some
kind of adaptation, so they are restricted in
intervals [0, 1].

State s

Input trace S

Reward history R

Switching weights W

Energy weights E

Reward r

Activity A

Winning input trace S ̀

Feedback (winner) F

Action a

Neurons

Fig. 3. Overview of the CNR architecture.

The effect of using both weight sets W and E was
discovered accidentally. Initially two different
algorithms were being developed trying to mimic
various aspects of known RL techniques by a NN.

3.1 Detailed Description of CNR
The complete description of the algorithm is given
in pseudocode (Figs. 4-6), but the most important
constructs are reduplicated in form of equations.

Main loop of the CNR algorithm is the same as
for traditional RL algorithms (Fig. 4, lines 105-110).

Input pattern s at time step t is represented by a
sequence of 0s and 1s (in the simplest case, one ‘1’
and the rest ‘0’):

 { }1,0|)(∈= xxts . (1)

During each run (module run_network, Fig. 5),
one winner neuron is determined (lines 208-211)
according to obtained activities but with randomness
added.

Generally speaking, neuron activities are
computed in a traditional way – as sums of products
(2):

 ∑


 >

=
i

jijii
j

tWtEts
tA

otherwise;0

)(if);()(
)(

ω
, (2)

where t – time step, implemented in pseudocode
through T and T`, while the rest of notions here and
on match exactly and are completely described
there.

However the peculiarity with activity is that:
• The switching weights W are used to determine,

whether not to ignore this synapse (line 206),
they are typically close to marginal values of 0
and 1 by nature;

• The energy weights E are used to constitute the
product (line 207), they are ideologically close to
the notion of action-values.

Module CNR()
 n – neuron count in the network, as well as count of

available actions in the environment
 m – input size, as well as weight count of a neuron
 s(1..m) – input pattern, representing current state, a vector

of binary <0,1> values
 W(1..n,1..m) – switching weights
 E(1..n,1..m) – energy weights
 e – actual energy
 r – actual reward
 T(1..n,1..m) – time since last spike
 T`(1..n,1..m) – time since last spike delayed for one step
 R(1..m) – reward history for each input, used to compute W
 S(1..m) – input trace (for each input), used to compute R
 S (̀1..n,1..m) – winning input trace (for each synapse), used

to compute W
 F(1..n) – feedback; the only winner neuron is represented

by true
Begin
101 W := initialize all with small values, bigger than ω

(e.g., 0.1)
102 E := initialize all with 0.5
103 T := initialize all with 100 (any big positive integer)
104 Initialize R, S, S ̀(all values with 0)
105 s := select an initial state of the environment
106 Do many times
107 a := run_network_CNR(s) # Compute action to be

performed
108 Apply action a to the environment, obtain reward r

and next state s2
109 train_network_CNR(s)
110 s := s2

Fig. 4. CNR algorithm.

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 236

The two types of weights are coupled together to
achieve the goal.

During the training phase (module
train_network, Fig. 6), weights W and E are
learned.

For the switching weights W, two different input
traces (similar to eligibility traces) are computed:
• Traces S (lines 302-303) are maintained in order

to compute reward history R (line 304). R are
then used as reference rewards in the Hebbian-
like update mechanism (line 314)

• Traces S ̀(lines 309, 312) are directly used in the
update formula (line 314)

Module run_network_CNR(s) Returns a
 A(1..n) – activity, the resulting values of running the

neurons
 a – (number of the) action computed by the system <1..n>
 ρ – random activity rate [0..1] (e.g., 0.1)
 ω – minimum productive weight [0..1] (e.g., 0.05)
Begin
201 F := initialize all with false
202 A := initialize all with 0
203 Forall neurons j Do
204 A(j) := 0
205 Forall synapses i in j Do
206 If W(j,i) > ω Then
207 A(j) := A(j) + s(i) · E(j,i)
208 If (get random value from interval [0..ρ]) < ρ Then
209 a := choose action <1..n> in random
210 Else
211 a := index_max(A)
212 F(a) := true

Fig. 5. Running the network.

Weights W are adjusted with respect to input
traces S` and the difference between actual reward r
and the appropriate reference reward Ri, and
restricted in interval [0, 1] (lines 314-316, (3) and
(4)):

)(`))()(()(tStRtrtW jiiji −=∆ η , (3)









∆+−

<∆+−

>∆+−

=

otherwise);()1(

0)()1(if;0

1)()1(if;1

)(

tWtW

tWtW

tWtW

tW

jiji

jiji

jiji

ji

. (4)

Energy weights E are computed in a two-piece way,
conceptually similar to that of TD learning ((5) and
(6)):
• Impact of actual reward to E (line 321),
• Obtaining information from other energy weights

with one-step delay (lines 326-327).

 []
{ }
∑

=∈

−−=∆
truetFkj

ijiji

k

tstEtrtE
)(|

)1()()1()(`)(µη . (5)

 []
{ }
∑

=−∈

−−=∆
truetFkj

jiji

k

tEtetE
)1(|

)2()1()(`)(η , (6)

where e(t) is actual energy at time t (lines 318,
320, 322):

{ }
∑ ∑

∑
=∈

=
truetFkj

i
i

i
jii

k
ts

tEts
te

)(|)(

)()(
)(. (7)

In pseudocode, the mechanism T` is used to
implement temporal delay (lines 307, 310, 313).

Module train_network_CNR(s)
 λ – decay rate for input traces [0..1] (e.g., 0.9)
 β – reward cumulation rate [0..1] (e.g., 0.05)
 η – learning rate for switching weights [0..1] (e.g., 0.1)
 η` – learning rate for energy weights [0..1] (e.g., 0.05)
 µ – instant energy adaptation rate [0..1] (e.g., 0.1)
Begin
 # Learning phase 1/3. Update input traces and

reward history
301 Forall input values s(i) in s Do
302 If s(i) = 1 Then S(i) := s(i)
303 Else S(i) := S(i) · λ
304 R(i) := R(i) + β · S(i) · [r – R(i)]
 # Learning phase 2/3. Main update
305 Forall neurons j Do
306 Forall synapses i in j Do
 # update winning input traces and switching

weights
307 T`(j,i) := T(j,i)
308 If F(j) And s(i) = 1 Then
309 S (̀j,i) := s(i)
310 T(j,i) := 0
311 Else
312 S (̀j,i) := S (̀j,i) · λ
313 T(j,i) := T(j,i) + 1
314 W(j,i) := W(j,i) + η · [r – R(i)] · S (̀j,i)
315 If W(j,i) > 1 Then W(j,i) := 1
316 Elseif W(j,i) < 0 Then W(j,i) := 0
 # update energy weights (1/2) and collect actual

energy
317 If F(j) Then
318 e := 0
319 Forall synapses i in j Do
320 e := e + s(i) · E(j,i)
321 E(j,i) := E(j,i) + µ · η` · s(i) · [r – E(j,i)]
322 e := e / sum(s)
 # Learning phase 3/3. update of energy weights with

“future” actual energy
323 Forall neurons j Do
 # update energy weights (2/2)
325 Forall synapses i in j Do
326 If T`(j,i) = 0 Then # if fired in the previous

step
327 E(j,i) := E(j,i) + η` · [e – E(j,i)]

Fig. 6. Training the network.

3 Experimental Results
The main goal of the experimentation was to
validate the proposed concept of CNR, i.e, to show
that a neural reinforcement algorithm is able work
comparably to classical algorithms. For this

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 237

purpose, an original experimentation framework in
C++ was developed.

In the beginning, a set of benchmarks was
prepared, based on four different deterministic grid-
world problems with up to several tens of states and
four possible actions (one of the problems is given
in Fig. 7a):
• SARSA [1] was used as the benchmark

algorithm to obtain a set of policies (Fig. 7b) by
running it 100 times on each problem with
discount rate γ=0.9.

• For a fixed state, a certain action was chosen as
an alternative policy, if it was computed as the
policy at least once from those 100 running
times. The complete set of these alternative
policies is then referred to as the suboptimal
policies.

The new algorithm CNR was tested on the prepared
benchmarks the following way:
• CNR was configured according to Table 1 and

run 100 times for each out of four problems in
the training mode – 100,000 moves (or steps) in
each trial.

• One state of a problem was encoded as a
sequence of 0s with exactly one 1 to identify the
state.

• The trained system then was run to the problem
1,000 steps in the validation mode (comparing
the decision of the system to the benchmark).

To validate the algorithm, a special ‘validity rate’
was computed as a percentage of steps in which the
decision of the CNR system matches any of the
alternatives from the benchmark.

-1 -1 -1 -1 -20 -1 -1 100
-1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
 -1 -5 -5 -1

-1 -1 -1 -1 -5 -8 -1 -1
-1 -1 -1 -1 -10 -1 -1 -1

↓→ → → → → → →
↕ ↑
↑ ↓↔ ↔ ←↓ ↑ ← ←
↑→ ←↑ ↕ ↑ ←↑ ←↑

 ↕ ↑ ↑ ↑
↓→ ↓→ ↓→ ↕→ ↓↔ ↑→ ↑→ ↑
↑→ ↑→ ↑→ ↑→ ↑→ ↑ ↑→ ↑

(a)

(b)

Fig. 7. Pproblem example, a 7×8 gridworld. Terminal

state is depicted shaded: (a) problem definition – reward
obtained, when moving to the appropriate state; (b) set of

suboptimal policies, obtained by SARSA algorithm.

As CNR by construction is not directly suited for
episodic problems (ones with terminal states), the

problems were adjusted that when reaching a
terminal state, the system automatically jumps to
some non-terminal state in random (instead of
stopping the episode).

We got ~95% validity rate for CNR algorithm,
and this result conceptually shows the algorithm to
solve RL problems.

CNR exploits the principles of several known RL
mechanisms:
• Decay rate λ (Fig. 6), used in training switching

weights, conceptually corresponds to trace-decay
parameter (of the same name) λ of the
‘eligibility-traces’ mechanism.

• To mimic the effect of γ in training energy
weights, a special adaptation rate µ is used, as
well as different learning rates η and ὴ.

Table 1. CNR-specific parameters and their values used
in the experiments.

Param-
eter

Description Used value

λ decay rate for input traces 0.8..0.95
β reward cumulation rate 0.05
η learning rate for switching

weights
0.1

η` learning rate for energy weight 0.02
µ instant energy adaptation rate 0.1
ρ random activity rate 0.1
ω minimum productive weight 0.03

4 Conclusion and Future Work
A new neural reinforcement algorithm CNR is built
and shown to conceptually work. The computed
validity rate is 95% shows that it doesn’t still work
exactly as classical ones, so the model of CNR still
requires further investigations in order to better
understand its connection with classical RL notions,
as well as ability to solve real-world control
problems. The main goal of the research was to put
a reinforcement learning mechanism into a neural
architecture, and this is achieved.

The model should be extended to more
complicated inputs (now a state is encoded as a
sequence of 0s with exactly one 1, so the weights
and reference rewards strongly resemble value
tables), and this would probably require a multi-
layered neural architecture. The second direction of
potential research to consider is that of continuous
action spaces.

As the joint effect of using both types of weights
was recognized by part accidentally, we
acknowledge the model underlying CNR to be
further explored.

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 238

References:
[1] R. S. Sutton and A. G. Barto, Reinforcement
Learning. An introduction, Cambridge, MA: MIT
Press/A Bradford Book, 1998.
[2] S. Haykin, Neural networks: a comprehensive
foundation, 2nd ed. Prentice-Hall, Inc, 1999.
[3] J. Zuters, Realizing Undelayed N-Step TD
Prediction with Neural Networks, Proceedings of
the 15th IEEE Mediterranean Electrotechnical
Conference (MELECON 2010), Valletta, Malta,
April 26-28, 2010, pp. 102-106.
[4] B.-Q. Huang, G.-I. Cao, M. Guo, Reinforcement
learning neural network to the problem of
autonomous mobile robot obstacle avoidance,
Proceedings of the Fourth International Conference
on Machine Learning and Cybernetics, Guangzhou,
China, August 18-21, 2005.
[5] C.J. Gatti, M.J. Embrechts, Reinforcement
Learning with Neural Networks: Tricks of the
Trade, Advances in Intelligent Signal Processing
and Data Mining, Vol.410, 2013, pp. 275-310.
[6] A.M. Schaefer, D. Schneegass, V. Sterzing, and
S. Udluft, A neural reinforcement learning approach
to gas turbine control, Proc. of the 20th Int. Joint
Conf. on Neural Networks, Orlando, 2007. MIT
Press.
[7] A.M. Schafer. Reinforcement Learning with
Recurrent Neural Networks, PhD thesis, University
of Osnabruck, 2008
[8] M. R. Coulom, Feedforward Neural Networks in
Reinforcement Learning Applied to High-
dimensional Motor Control, 13th International
Conference on Algorithmic Learning Theory, 2002.
[9] R.J. Bosman, W.A. van Leeuwen, B.
Wemmenhove, Combining Hebbian and
reinforcement learning in a minibrain model. Neural
Netw. 2004 Jan;17(1): 29-36.

Recent Advances in Systems Science and Mathematical Modelling

ISBN: 978-1-61804-141-8 239

