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Abstract: - Reinforcement learning refers to a set of machine learning problems for optimal control, and there 
are a lot classical algorithms and methodologies to solve them. Typically such algorithms are based on the 
value-function approach, where values of the states (or actions) are iteratively computed, and this set of values 
infers the policy. Although neural networks are known to be used within such systems, if so, a neural module is 
typically delegated only with a subfunction, e.g., to model the value table. This work introduces a brand new 
neural-network-based reinforcement learning algorithm CNR (Coupled-Weight Neural Reinforcement 
Algorithm), designed using ideas of reinforcement comparison, temporal difference learning, and Hebbian 
learning. 
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1 Introduction and Motivation 
Reinforcement learning (RL) is one of main 
paradigms of machine learning (ML), the objective 
of which is to compute – how to map situations to 
actions. This is a natural way to solve control 
problems. As for terminology, in addition to RL as a 
ML paradigm, it also refers to the respective set of 
problems. It is believed by many authors that 
reinforcement is more general to other types of 
machine learning. 

In case of RL, the learner is not told which 
actions to take, as in most forms of machine 
learning, but instead must discover which actions 
yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect 
not only the immediate reward but also the next 
situation and, through that, all subsequent rewards. 
These two characteristics – trial-and-error search 
and delayed reward – are the two most important 
distinguishing features of reinforcement learning. 
[1] 

Classical RL algorithms are mainly based on the 
value-function approach, where values of the states 
(or actions) are iteratively computed, and the set of 
values infers the policy. While we have neural 
network (NN) alternatives of supervised learning 
algorithms (e.g. back-propagation, radial basis 
function networks [2]), it is hard to find NN 
alternatives for RL problems. In RL algorithms, 
neural networks are typically used as approximators 
of internal data structures like value functions 
[2],[3],[4],[5]. 

The aim of the research is to obtain pure NN 
approaches to solve RL problems. In solving RL 
problems, NNs are attractive to the author in several 
aspects: 
• NNs are more fault-tolerant and biologically 

plausible to compare to traditional algorithms, 
• NNs typically exploit more general algorithmic 

approaches and data structures, 
• Building NNs to solve RL problems is still a 

challenging issue. 
This has lead to development of the new 

Coupled-weight Neural Reinforcement algorithm 
(CNR), which emerged from such known ideas as 
reinforcement comparison, temporal difference 
(TD) learning, Hebbian learning, as well as the 
actor-critic approach. 
 
 

2 Related Work 
3.1 Actor-Critic Methods 
Classical RL algorithms (like dynamic 
programming, SARSA (State-Action-Reward-State-
Action)) are explicitly based on the value-function 
approach, where values of the states (or actions) are 
iteratively computed, and this set of values infers 
the policy. 

As an important step forward from these 
algorithms one should name actor-critic methods 
(Fig. 1), which are TD methods that have a separate 
memory structure to explicitly represent the policy 
independent of the value function. Here the value 
function is still present, but its impact to the policy 
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is not so direct. Actor-critic methods are the natural 
extension of the idea of so called reinforcement 
comparison methods to TD learning and to the full 
RL problem. [1] 
 

 
Fig. 1. The actor-critic architecture ([1]) 

 
Fig. 2 shows an actor-critic algorithm which 

lights up the two main principles of the approach 
(lines 007-008): (a) the value function V is present, 
(b) different data structures for the policy (P) and 
the value function. 

Technically speaking, both structures, the policy 
and the value table, are improved in parallel, and 
they cooperate in a way. 
 
Module actor_critic() 
 m – amount of states in the environment 
 n – amount of available actions 
 P(1..m,1..n) – policy description (actor) 
 V(1..m) – state value function (critic) 
 η – learning rate 
 γ – discount rate 
Begin 
001 P := initialize for all states and actions 
002 V := initialize for all states 
003 s := select an initial state of the environment 
004 Do many times 
005  a := select action according to policy description P 

(eventually, with exploration) 
006  Apply action a to the environment, obtain reward r 

and next state s2 
007  P(s,a) := P(s,a) + η · [r + γ · V(s2) – V(s)] 
008  V(s) := r + γ · V(s2) 
009  s := s2 
 

Fig. 2. Simplified actor-critic algorithm for continuing 
tasks (with no terminal states) (adapted from [1]) 

 
 
3.2 Neural Networks and Reinforcement 
Learning 
If a neural network or a similar mechanism is used 
within a RL system, it typically is delegated only 
with a subfunction, e.g., to model the value 
function. Nonetheless there have been successful 
attempts to build a self-contained neural network to 
be able to solve RL problems. [6],[7] 

Schafer [7] proposes recurrent neural networks 
(RNNs) to solve RL problems. In this approach, the 
recurrent control neural network combines system 
identification and determination of an optimal 
policy in one network, and in contrast to most RL 
methods, the optimal policy is computed directly 
without making use of a value function. To train the 
network, the shared weight extended back-
propagation algorithm is used. 

Although back-propagation based learning 
techniques are very popular also with neural 
reinforcement algorithms, they don’t exactly by 
nature fit RL. Coulom [8] reviews the main 
difficulties in this context, and one is the risk of 
being struck by ill-conditioning. So, using back-
propagation could potentially require additional 
technical efforts to overcome the difficulties. 

Back-propagation is not the only option to train 
neural reinforcement systems. In [9], Hebbian 
learning is used to enhance the classical RL 
mechanism. 
 
 

3 The CNR Algorithm 
In this Section, the new Coupled-weight Neural 
Reinforcement algorithm is proposed. On one hand, 
the CNR algorithm can be viewed as putting 
together such techniques as reinforcement 
comparison, temporal difference (TD) learning, 
Hebbian learning, and placing them into a single-
layer neural network frame. On the other hand, the 
new algorithm represents a self-contained neural 
network able to solve RL problems and is built 
without use of supervised learning methods. By far, 
the CNR algorithm still requires some justification 
and additional testing to make it complete. 
 
 
3.1 Main Principles and Architecture of 
CNR 
CNR is implemented through a one-layered feed-
forward neural network with the following 
characteristics (Figs. 3, 4): 
• State (s), presented through the input is a 

sequence of 0 and 1. In its simplest form, the size 
of the input pattern corresponds to the amount of 
states, and a single 1 represents the current state 
while the rest of the input pattern is filled with 
zeros. 

• Reward (r) is a real number normalized into 
interval [0, 1]. 

• The network has one layer of neurons, and each 
neuron is preset to correspond to one RL action, 
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so the amount of neurons is the same as the 
amount of actions. 

• After any iteration according to the activity 
earned, exactly one of the neurons becomes the 
winner, and so the action (a) is determined. 
Information about the winner neuron is stored as 
feedback F; learning in the winner neuron is 
performed differently. 

• There are several structures for cumulating input 
and reward information (S, S ,̀ R). 

• Neurons have two types of weights: W, E. In its 
simplest form, both sets resemble action-value-
tables of traditional RL algorithms in a way. 
Both sets of weights are trained differently to be 
then coupled together in determining the action. 

• Unlike action-values which are cumulated from 
rewards and can reach values that significantly 
exceed typical absolute values of rewards, 
weights W and E are computed through some 
kind of adaptation, so they are restricted in 
intervals [0, 1]. 

 
 

State s 

Input trace S 

Reward history R 

Switching weights W 

Energy weights E 

Reward r 

Activity A 

Winning input trace S  ̀

Feedback (winner) F 

Action a 

Neurons 

 
Fig. 3. Overview of the CNR architecture. 

 
The effect of using both weight sets W and E was 
discovered accidentally. Initially two different 
algorithms were being developed trying to mimic 
various aspects of known RL techniques by a NN.  
 
 
3.1 Detailed Description of CNR 
The complete description of the algorithm is given 
in pseudocode (Figs. 4-6), but the most important 
constructs are reduplicated in form of equations. 

Main loop of the CNR algorithm is the same as 
for traditional RL algorithms (Fig. 4, lines 105-110). 

Input pattern s at time step t is represented by a 
sequence of 0s and 1s (in the simplest case, one ‘1’ 
and the rest ‘0’): 

 { }1,0|)( ∈= xxts . (1) 

During each run (module run_network, Fig. 5), 
one winner neuron is determined (lines 208-211) 
according to obtained activities but with randomness 
added. 

Generally speaking, neuron activities are 
computed in a traditional way – as sums of products 
(2): 

 ∑


 >

=
i

jijii
j

tWtEts
tA

otherwise;0

)(if);()(
)(

ω
, (2) 

where t – time step, implemented in pseudocode 
through T and T`, while the rest of notions here and 
on match exactly and are completely described 
there. 

However the peculiarity with activity is that: 
• The switching weights W are used to determine, 

whether not to ignore this synapse (line 206), 
they are typically close to marginal values of 0 
and 1 by nature; 

• The energy weights E are used to constitute the 
product (line 207), they are ideologically close to 
the notion of action-values. 

 
Module CNR() 
 n – neuron count in the network, as well as count of 

available actions in the environment 
 m – input size, as well as weight count of a neuron 
 s(1..m) – input pattern, representing current state, a vector 

of binary <0,1> values 
 W(1..n,1..m) – switching weights 
 E(1..n,1..m) – energy weights 
 e – actual energy 
 r – actual reward 
 T(1..n,1..m) – time since last spike 
 T`(1..n,1..m) – time since last spike delayed for one step 
 R(1..m) – reward history for each input, used to compute W 
 S(1..m) – input trace (for each input), used to compute R 
 S (̀1..n,1..m) – winning input trace (for each synapse), used 

to compute W 
 F(1..n) – feedback; the only winner neuron is represented 

by true 
Begin 
101 W := initialize all with small values, bigger than ω 

(e.g., 0.1) 
102 E := initialize all with 0.5 
103 T := initialize all with 100 (any big positive integer) 
104 Initialize R, S, S  ̀(all values with 0) 
105 s := select an initial state of the environment 
106 Do many times 
107  a := run_network_CNR(s)  # Compute action to be 

performed 
108  Apply action a to the environment, obtain reward r 

and next state s2 
109  train_network_CNR(s) 
110  s := s2 
 

Fig. 4. CNR algorithm. 
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The two types of weights are coupled together to 
achieve the goal. 

During the training phase (module 
train_network, Fig. 6), weights W and E are 
learned. 

For the switching weights W, two different input 
traces (similar to eligibility traces) are computed: 
• Traces S (lines 302-303) are maintained in order 

to compute reward history R (line 304). R are 
then used as reference rewards in the Hebbian-
like update mechanism (line 314) 

• Traces S  ̀(lines 309, 312) are directly used in the 
update formula (line 314) 

 
Module run_network_CNR(s) Returns a 
 A(1..n) – activity, the resulting values of running the 

neurons 
 a – (number of the) action computed by the system <1..n> 
 ρ – random activity rate [0..1] (e.g., 0.1) 
 ω – minimum productive weight [0..1] (e.g., 0.05) 
Begin 
201 F := initialize all with false 
202 A := initialize all with 0 
203 Forall neurons j Do 
204  A(j) := 0 
205  Forall synapses i in j Do 
206   If W(j,i) > ω Then 
207    A(j) := A(j) + s(i) · E(j,i) 
208 If (get random value from interval [0..ρ]) < ρ Then 
209  a := choose action <1..n> in random 
210 Else 
211  a := index_max(A) 
212 F(a) := true 
 

Fig. 5. Running the network. 
 

Weights W are adjusted with respect to input 
traces S` and the difference between actual reward r 
and the appropriate reference reward Ri, and 
restricted in interval [0, 1] (lines 314-316, (3) and 
(4)): 
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Energy weights E are computed in a two-piece way, 
conceptually similar to that of TD learning ((5) and 
(6)): 
• Impact of actual reward to E (line 321), 
• Obtaining information from other energy weights 

with one-step delay (lines 326-327). 
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where e(t) is actual energy at time t (lines 318, 
320, 322): 
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In pseudocode, the mechanism T` is used to 
implement temporal delay (lines 307, 310, 313). 
 
Module train_network_CNR(s) 
 λ – decay rate for input traces [0..1] (e.g., 0.9) 
 β – reward cumulation rate [0..1] (e.g., 0.05) 
 η – learning rate for switching weights [0..1] (e.g., 0.1) 
 η` – learning rate for energy weights [0..1] (e.g., 0.05) 
 µ – instant energy adaptation rate [0..1] (e.g., 0.1) 
Begin 
   # Learning phase 1/3. Update input traces and 

reward history 
301 Forall input values s(i) in s Do 
302  If s(i) = 1 Then S(i) := s(i) 
303  Else S(i) := S(i) · λ 
304  R(i) := R(i) + β · S(i) · [r – R(i)] 
   # Learning phase 2/3. Main update 
305 Forall neurons j Do 
306  Forall synapses i in j Do 
     # update winning input traces and switching 

weights 
307   T`(j,i) := T(j,i) 
308   If F(j) And s(i) = 1 Then 
309    S (̀j,i) := s(i) 
310    T(j,i) := 0 
311   Else 
312    S (̀j,i) := S (̀j,i) · λ 
313    T(j,i) := T(j,i) + 1 
314   W(j,i) := W(j,i) + η · [r – R(i)] · S (̀j,i) 
315   If W(j,i) > 1 Then W(j,i) := 1 
316   Elseif W(j,i) < 0 Then W(j,i) := 0 
    # update energy weights (1/2) and collect actual 

energy 
317  If F(j) Then 
318   e := 0 
319   Forall synapses i in j Do 
320    e := e + s(i) · E(j,i) 
321    E(j,i) := E(j,i) + µ · η` · s(i) · [r – E(j,i)] 
322   e := e / sum(s) 
   # Learning phase 3/3. update of energy weights with 

“future” actual energy 
323 Forall neurons j Do 
    # update energy weights (2/2) 
325  Forall synapses i in j Do 
326   If T`(j,i) = 0 Then  # if fired in the previous 

step 
327    E(j,i) := E(j,i) + η` · [e – E(j,i)] 
 

Fig. 6. Training the network. 
 

 

3 Experimental Results 
The main goal of the experimentation was to 
validate the proposed concept of CNR, i.e, to show 
that a neural reinforcement algorithm is able work 
comparably to classical algorithms. For this 
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purpose, an original experimentation framework in 
C++ was developed. 

In the beginning, a set of benchmarks was 
prepared, based on four different deterministic grid-
world problems with up to several tens of states and 
four possible actions (one of the problems is given 
in Fig. 7a): 
• SARSA [1] was used as the benchmark 

algorithm to obtain a set of policies (Fig. 7b) by 
running it 100 times on each problem with 
discount rate γ=0.9. 

• For a fixed state, a certain action was chosen as 
an alternative policy, if it was computed as the 
policy at least once from those 100 running 
times. The complete set of these alternative 
policies is then referred to as the suboptimal 
policies. 

The new algorithm CNR was tested on the prepared 
benchmarks the following way: 
• CNR was configured according to Table 1 and 

run 100 times for each out of four problems in 
the training mode – 100,000 moves (or steps) in 
each trial. 

• One state of a problem was encoded as a 
sequence of 0s with exactly one 1 to identify the 
state. 

• The trained system then was run to the problem 
1,000 steps in the validation mode (comparing 
the decision of the system to the benchmark). 

To validate the algorithm, a special ‘validity rate’ 
was computed as a percentage of steps in which the 
decision of the CNR system matches any of the 
alternatives from the benchmark. 
 

-1 -1 -1 -1 -20 -1 -1 100 
-1     -1   
-1 -1 -1 -1  -1 -1 -1 
-1 -1  -1  -1 -1 -1 
   -1  -5 -5 -1 

-1 -1 -1 -1 -5 -8 -1 -1 
-1 -1 -1 -1 -10 -1 -1 -1 

 

↓→ → → → → → →  
↕     ↑   
↑ ↓↔ ↔ ←↓  ↑ ← ← 
↑→ ←↑  ↕  ↑ ←↑ ←↑ 

   ↕  ↑ ↑ ↑ 
↓→ ↓→ ↓→ ↕→ ↓↔ ↑→ ↑→ ↑ 
↑→ ↑→ ↑→ ↑→ ↑→ ↑ ↑→ ↑ 

 

(a) 

(b) 

 
Fig. 7. Pproblem example, a 7×8 gridworld. Terminal 

state is depicted shaded: (a) problem definition – reward 
obtained, when moving to the appropriate state; (b) set of 

suboptimal policies, obtained by SARSA algorithm. 
 
As CNR by construction is not directly suited for 
episodic problems (ones with terminal states), the 

problems were adjusted that when reaching a 
terminal state, the system automatically jumps to 
some non-terminal state in random (instead of 
stopping the episode). 

We got ~95% validity rate for CNR algorithm, 
and this result conceptually shows the algorithm to 
solve RL problems. 

CNR exploits the principles of several known RL 
mechanisms: 
• Decay rate λ (Fig. 6), used in training switching 

weights, conceptually corresponds to trace-decay 
parameter (of the same name) λ of the 
‘eligibility-traces’ mechanism. 

• To mimic the effect of γ in training energy 
weights, a special adaptation rate µ is used, as 
well as different learning rates η and ὴ. 
 

Table 1. CNR-specific parameters and their values used 
in the experiments. 

Param-
eter 

Description Used value 

λ decay rate for input traces 0.8..0.95 
β reward cumulation rate 0.05 
η learning rate for switching 

weights 
0.1 

η` learning rate for energy weight 0.02 
µ instant energy adaptation rate 0.1 
ρ random activity rate 0.1 
ω minimum productive weight 0.03 

 
 

4 Conclusion and Future Work 
A new neural reinforcement algorithm CNR is built 
and shown to conceptually work. The computed 
validity rate is 95% shows that it doesn’t still work 
exactly as classical ones, so the model of CNR still 
requires further investigations in order to better 
understand its connection with classical RL notions, 
as well as ability to solve real-world control 
problems. The main goal of the research was to put 
a reinforcement learning mechanism into a neural 
architecture, and this is achieved. 

The model should be extended to more 
complicated inputs (now a state is encoded as a 
sequence of 0s with exactly one 1, so the weights 
and reference rewards strongly resemble value 
tables), and this would probably require a multi-
layered neural architecture. The second direction of 
potential research to consider is that of continuous 
action spaces. 

As the joint effect of using both types of weights 
was recognized by part accidentally, we 
acknowledge the model underlying CNR to be 
further explored. 
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