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Abstract: - The purpose of this paper is to determine the emission coefficient radial distribution from the 
measured intensity distribution emitted by an extended source of radiation, particularly an application to plasma 
spectroscopy (He-Ne plasma). The plasma was produced inside a gas tube by a DC electrical discharge. The 
source was assumed to be optically thin and axially symmetrical. This problem is solved by inverting Abel’s 
integral equation. A smoothing procedure is made on the experimental curve in order to attenuate the random 
errors before computing the derivative. Abel’s integral equation is frequently applied in the study of extended 
radiation sources with cylindrical symmetry. A measurement of the transverse distribution I(y) of the intensity 
emitted perpendicularly to the source axis allows the calculation of the emission coefficient radial distribution, 
F(r). F(r) can be deduced from I(y) by the inverse formula known as Abel’s integral equation. I(r) and F(r) 
need not necessarily be the transverse intensity and the local emission coefficient respectively; they can also 
represent other physical quantities such as the optical thickness and the absorption coefficient of cylindrical 
absorbing plasma, and the optical path and the refractive index of cylindrical plasmas. The integral is calculated 
using a polynomial of second degree for the approximation of dI(y)/dy in a small interval on the right of the 
discontinuity point; the other part is calculated using an approximate numerical method made with a Mathcad 
program. 
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1 Introduction 
The foundation of the modern theory of spectral line 
broadening in plasmas, based on contributions of 
several scientists, had been laid out by the 1960s 
[1]. For over a decade, there appeared a large 
number of successful applications of the theory to 
various experiments [2]. With a large number of 
applications in many areas of plasma physics, 
applied to plasmas with particle density ranging 
from several atoms per cubic centimeter to that of 
solid state and temperature from close to absolute 
zero to billions Kelvin, the theory of line broadening 
has been in perpetual development and remains at 
the heart of plasma spectroscopy [3]. The 1960s 
were also the years of a rapid progress in 
development of computers. It was then that Moore’s 
law – the prediction of exponential growth of the 
computational power with time – was foreseen [4] 
for the next decade and, somewhat surprisingly, still 
holds true [5]. It is only natural, then, that one clear 

trend in the development and applications of line-
broadening calculations is a significant increase in 
the computational results, in particular, using 
computer simulations [6]. Evidently, this is not 
specific to the subject of line broadening, as other 
fields of science in general show clear signs of 
intrusion of computers in what used to be a 
sovereign patrimony of theoreticians [7].  
The emission coefficient radial distribution from the 
measured intensity distribution emitted by a plasma 
source is one of the most interesting and complex 
problems in the field of plasma investigation. This 
problem is solved by inverting Abel’s integral 
equation [8]. 
 
 
2 Problem Formulation 

Abel’s integral equation is frequently applied in 
the study of extended radiation sources with 
cylindrical symmetry. A measurement of the 
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transverse distribution )y(I  of the intensity emitted 
perpendicularly to the source axis allows the 
calculation of the emission coefficient radial 
distribution )r(F . If the source is optically thin, the 
intensity )y(I  is connected to the emission 
coefficient (Fig. 4) by the formula: 

∫
−

=
x

x
dx)r(F)y(I     (1) 

Putting 22 yxr +=  and 22 yRx −=  we can 
write 

∫
−

⋅
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F(r) can be deduced from I(y) by the inverse 
formula: 
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known as Abel’s integral equation. 
)y(I  and )r(F  need not necessarily be the 

transverse intensity and the local emission 
coefficient respectively; they can also represent 
other physical quantities such as the optical 
thickness and the absorption coefficient of a 
cylindrical absorbing plasma, and the optical path 
and the refractive index of cylindrical plasmas. 
Figure 1 illustrates the basic idea of the section of 
the one spray to plasma with the cylindrical 
symmetry. 
 

 
Fig. 1 Section of the one spray to plasma with the 

cylindrical symmetry. 
 
The plasma source was assumed to be optically thin 
and axially symmetrical (fig. 2). The plasma was 
produced inside a gas tube by a DC electrical 
discharge. The gas in the tube is electrically neutral, 

and as long as no external energy is applied, most of 
the molecules are in the ground state. 
When the high electrical voltage is applied, 
electrons are released from the cathode and 
accelerated toward the anode. On their way, these 
electrons collide with the gas molecules and transfer 
energy to them. Thus, the gas molecules are raised 
to excited state.  
Higher voltage is required to start the electrical 
discharge in the tube than to keep the discharge. 
Thus, a preliminary high voltage pulse is applied for 
initial discharge, and then the voltage is lowered to 
its operating value.  
The ballast resistor is used to limit the current in the 
tube after discharge is achieved. 
The gas mixture is 85-90% Helium gas, and 10-15% 
Neon gas, a ratio of 1:10.  
The gas pressure is 0.01 Atmosphere (≈10 [torr]). At 
the end of the tube, the electrodes are attached to a 
high voltage power supply (DC). 
For the data acquisition we used two types of 
spectrometric equipment: 
- High-resolution Spectrometer HR4000 

UV/VIS: Spectral range 245 nm 690 nm, 
resolution 0,3 nm; Grating H1, installed, select 
425-445 nm; Instaled optical bench entrance 
aperture, 5 micron width; 

- High-resolution Spectrometer HR4000 NIR: 
spectral range 685 nm 1100 nm, resolution 0,3 
nm; Grating H1, installed, select 425-445 nm; 
Instaled optical bench entrance aperture, 5 
micron width; Cross-platform Spectrocsopy 
Operating Software. 

 

 
Fig. 2 Plasma shape 

 
For the taking over it used optical fibers: QP450-2-
XSR: 455μm Fiber, extreme solarization-resistant, 
2m length for High-resolution Spectrometer 
HR4000 UV/VIS and QP400-2-VIS: 400μm 
Premium Fiber, VIS/NIR, 2m length for High-
resolution Spectrometer HR4000 NIR. 
The following figure 3 showing the montage of the 
HR 4000 Spectrometer. 
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Fig. 3 Optical device of HR 4000 Spectrometer;1- 
SMA Connector; 2- Slit; 3- Filter; 4- Collimating 

Mirror; 5- Grating; 6- Focusing Mirror; 7- L2 
Detector Collection Lens; 8- CCD Detector 

 
The spatial resolution is shown in Figure 4; for 

0=y , mm.dzdy 40==  and mmdx 35= . 
 

 
Fig. 4 The optical montage and the spatial resolution 

of the plasma 
 
The plot containing the distribution of the intensity, 
I(y), for three wave’s lengths different is presented 
in Figure 5. 

 
Fig. 5 The distribution of intensity for three wave’s 

lengths different 

The values for the distribution of the normalized 
intensity, I(y), for three wave’s lengths different are 
found in the table below: 
Table 1: Distribution of normalized intensity for 
different wave length 

y I1(y) for  
][39.587 nm=λ  

I2(y) for 
][71.667 nm=λ  

I3(y) for 
][51.702 nm=λ  

0. 
0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

0.55 
0.6 

0.65 
0.7 

0.75 
0.8 

0.85 
0.9 

0.95 
1.    

1. 
0.9938121 
0.9752485 
0.9447778 
0.9030564 
0.8445247 
0.7899869 
0.7213576 
0.6467279 
0.567973 

0.4871554 
0.4063379 
0.3276767 
0.2534221 
0.1857304 
0.1265704 
0.0776299 
0.0405963 
0.0157510 
0.0030002 

0.     

1. 
0.9928906 
0.9746492 
0.9452760 
0.9045837 
0.8529467 
0.7912067 
0.7209542 
0.6440599 
0.5630496 
0.4803555 
0.3985033 
0.3199252 
0.2468662 
0.1811974 
0.1243218 
0.0776427 
0.0416277 
0.0167446 
0.0026193 

    0. 

1. 
   1.0062758 
   1.0140824 
   1.0168376 
   1.0107914 
   0.9934946 
   0.9632634 
   0.9192561 
   0.8614725 
   0.7904485 
   0.7079443 
   0.6160263 
   0.5178325 
   0.4170366 
   0.3179244 
   0.2251645 
   0.1435788 
   0.0776825 
   0.0312261 
   0.0061228 

    0.         
 
 
3 Problem Solution 
This problem is solved by inverting Abel’s integral 
equation. A smoothing procedure is made on the 
experimental curve in order to attenuate the random 
errors before computing the derivative. 

Our method consists in computing )y(I  
derivative and integrating the formula (3) using the 
tow function made in Mathcad program. There is a 
discontinuity at ry =  of the integrand of the 
equation (3) which causes the principal 
computational difficulties when the integral is 
calculated analytically. 
For the determination of )r(F  we have to take into 
consideration the errors give by the following 
factors: 
1. Measurements made for )y(I  which mislead 
errors in the calculation for dy)y(dI . In order to 
diminish these errors we use the method of 
approximation with cubic spline interpolations. 
2. The integrant of formula (3) have 2 singularities: 
- for 0=r  the integral is convergent if 
approximation of dy)y(dI  is considered a 
polynomial of second degree with the form 
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ybya ⋅+⋅ 2  (if the free term is not zero the 
integral is divergent). 
- for ry = , this representing the hardship in the 
calculation of )r(F . For overcome this difficulty 
the expression of )r(F  gets this form: 
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The first part of the F(r) can be easily calculated in 
Mathcad, and the second integral is calculated using 
an approximate numerical method give by the 
function sol(r,R,v) made in the same program (Fig. 
6). 

 

 
Fig. 6 The function sol(r,R,v) made in Mathcad 

program 
 
A comparison has been performed using theoretical 
curves taken from the paper of Becher and Drawing 
[9]. The error and the standard deviation are 
calculated: 

( )

)r(lengthN

,
N

)r(F)r(F
error

N

i
exacticomputedi

=

−

=
∑
=1

2

 (5) 

The test using the function F(r)=(R2-r2)2 and the 
error formula (5) give the standard deviation for the 
emission coefficient radial distribution, F1(r), F2(r) 
and F3(r), respectively: 0.0002, 0.006 and 0.002. 

Table 2: Distribution of radial intensity for different 
wavelengths. 

F1(r), Radial 
distribution for 

][39.587 nm=λ  

F2(r), Radial  
distribution for 

][71.667 nm=λ  

F3(r), Radial 
distribution 

for 
][51.702 nm=λ  

    0.9147523 
    0.8930498 
    0.8463472 
    0.7421716 
    0.654281 

    0.5914480 
    0.4989751 
    0.4421234 
    0.3683610 
    0.3076279 
    0.2491980 
    0.1972479 
    0.1507051 
    0.1106482 
    0.0765571 
    0.0490978 
    0.0278312 
    0.0128134 
    0.0035677 
    0.0008283 

    0.   

    0.976853 
    0.8989501 
    0.8155697 
    0.7355681 
    0.6564681 
    0.5785038 
    0.5023404 
    0.4287733 
    0.3593891 
    0.2946344 
    0.2358085 
    0.1829499 
    0.1370362 
    0.0976156 
    0.0651735 
    0.0391599 
    0.0195296 
    0.0058284 
   0.0024852 
   0.0014647 

    0.       

    0.6974521 
    0.7233099 
    0.7677070 
    0.7788591 
    0.7651649 
    0.7332288 
    0.6881532 
    0.6320176 
    0.5680724 
    0.4990842 
    0.4268970 
    0.3545373 
    0.2837645 
    0.2171498 
    0.1564124 
    0.1039254 
    0.0605388 
    0.0283179 
    0.0072610 
   0.0027764 

    0.       
 
The plot containing the distribution of the emission 
coefficient radial distribution, F(r), for three 
different wavelengths were obtained in Mathcad and 
presented below. 
 

 
Fig. 7 The emission coefficient radial distribution 

F(r), for three different wavelengths 
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4 Conclusion 
The emission coefficient radial distribution was 
determined from the measured intensity 
distribution emitted by an extended source of 
radiation, particularly a plasma source. The 
source was assumed to be optically thin and 
axially symmetrical. This problem was solved 
by inverting Abel’s integral equation. A 
smoothing procedure is made on the 
experimental curve in order to attenuate the 
random errors before computing the derivative. 
The integral is calculated using a polynomial of 
second degree for the approximation of dI(y)/dy 
in a small interval on the right of the 
discontinuity point; the other part is calculated 
using an approximate numerical method made 
with a Mathcad program. In this study the 
model parameters were assessed based on an 
analysis of field experimental data with good 
results. 
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