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Abstract: - Student group formation plays a critical role in terms of enhancing the success of academic 
learning. It involves structuring groups in order to help students to learn together. Due to the 
heterogeneity of students in classes, the process of forming student groups is becoming more 
complex. In this paper, we proposed an approach to form student groups at a university for software 
development project to ensure that software products can be delivered successfully on time. Our 
proposed algorithm is called Genetic Algorithm for Heterogeneous Grouping (GAHG). The algorithm 
aims to achieve both fairness in the group formation and to maximize the students’ skills within the 
formed groups. An experiment was performed with 48 students to demonstrate the ability of the 
approach. Experimental results indicate that our approach can optimally allocate students in an 
efficient way.  
 
 
Key-Words: - Fairness in coalition; group formation; genetic algorithm; heterogeneous grouping.  

 
1 Introduction 
Due to the complexity of the computer software 
project, the well cooperation of the group’s 
members is becoming more important because it 
helps reduce individuals’ workloads. Therefore, the 
project can be done and delivered successfully on 
time. Moreover, working in the group makes it 
possible to enhance students’ ability to manage and 
solve project efficiently. Currently, how to gain 
individual student achievement in groups is 
important [1]. In reference [2], it is presented that 
one principle of cooperative learning is 
heterogeneous grouping. Therefore, various 
techniques of cooperative learning have been 
proposed by researchers [3], [4]. Additionally, the 
benefit of heterogeneous grouping is to ensure equal 
opportunities for all students [5]. However, few 
studies of learning styles have considered the 
formation of computer science and technology 
students for software development projects at a 
university [6].  In general, the success of student 
groups in developing a software project depends on 
various factors such as the personalities, expertise, 
performances, and the collaboration of the people 
involved in the group [7]. It has been observed by 

some researchers that heterogeneous groups are 
better in a broader range of tasks [8].  

In general classes, instructors can assign 
students to a group, or students can choose group 
members themselves which is called self-selection. 
In theory, grouping works under the assumption that 
groups work better when all members are balanced 
in terms of diversity based on educational skills or 
personality differences. It is claimed by Wang et.al 
[9] that heterogeneous groups should be comprised 
of students whose prior knowledge should not be 
unequal. Therefore, every student succeeds when 
the whole group succeeds. Everyone must work in 
the group to complete tasks efficiently. In reality, 
however, this task is far more complex than what it 
seems if the size of the class is large [10].  

At the time of forming student groups, teachers 
can ask questions with some sorts of association 
rules for students to answer, so we can obtain 
personalities and other information directly from 
students. Moreover, teachers can obtain some of the 
student’s academic record such as the grade point 
average (GPA), and the registered courses to help 
measure students for forming groups. Therefore, 
searching for an optimized group of students by an 
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exhaustive search is not practical because it is time-
consuming.  

In this paper, we consider the coalition formation 
for computer software students in developing 
assigned software projects based on heterogeneous 
grouping in which the fairness and equity of the 
group formation are concerned by applying the 
Euclidean distance1 to all students. This will be done 
using genetic algorithm, in order to maximize the 
student’s programming skills within the formed 
groups. 

There are six parts to this paper including this 
introduction. The rest of this paper is organized as 
follows. Section 2 gives a formal definition of the 
problem.  The genetic algorithm, which is a tool for 
forming student groups, is described in Section 3. 
Section 4 shows how we can apply the genetic 
algorithm to our problem. Section 5 demonstrates 
the experiment of our case study, a class of CS250 
(Discrete Structures) in the 1st semester 2012 at 
Bangkok University. The conclusion and further 
work is illustrated in the last section. 

 
 
2 Problem Formalization 

Let S = {s1, s2, …, sn} denote the set of n students. 
Each student has m attributes, which are represented 
in a multi-dimensional vector. We assume Ai = (ai1, 
ai2,…, aim) to be the vector of m attributes of the 
student i. Each of ajk has different values which 
depend on its category values. For example, the 
attribute can be the cumulative grade or the grade of 
previous courses. As we know, students have 
different values of attributes. In order to achieve our 
goal of fairness and equity, each group will be 
compared with the others. When students are in the 
group, attributes of the particular group can be 
calculated by the average value of all members. The 
different value of attributes of two groups, which 
are called gk and gj, can be calculated by the 
Euclidean distance (ED) as seen in (1). 

 ∑ =
−=−=

m

j ijkjik AAggED
1

2   (1) 

,where Akj is the value of attribute j of the group k.  

    We assume that students are divided into m 
groups denoted G = {g1, g2,…, gm}. Each student 
belongs to only one group. The choice of group size 

1 Euclidean distance is also named Euclidean metric which is 
the "ordinary" distance between two points. 

involves difficult trade-offs. According to Rau and 
Heyl’s paper in [11], groups of three students 
contain less diversity; and may lack divergent 
thinking styles. On the other hand, in larger groups 
it is difficult to ensure that all members participate 
and learn equally. In our experiment, the size of the 
group is set to be equal to four. If a certain set of 
students is comprised of sa, sb, sc, sd, se, sf, and sg, it 
can be set as two groups; g1 = {sa, sb, sc, sd} and g2 = 
{se, sf, sg}.  

 
3 Basic Concepts of Genetic 
Algorithms 

Genetic algorithm (GA) was introduced in the 
United States in the 1970s by John Holland at the 
University of Michigan. In particular, genetic 
algorithm works very well on real complex world 
problems. Therefore, it has become a popular 
methodology for a variety of complex problems 
[12], such as fractal image compression [13], nurse 
roistering problem [14], and coalition formation 
among buyer agents [15][16]. Also it was applied by 
Wang et.al. [9] to help create heterogeneous groups 
by psychological factors. In general, a genetic 
algorithm mimics the notions of natural evolution to 
the world of computers, and imitates natural 
evolution. Therefore, a particular problem must be 
encoded as a chromosome. The problem can be 
encoded in various ways with the aim of solving the 
problem. The fitness value of each chromosome 
must be calculated in an exact way associated with 
the chromosome’s structure. A suitable fitness 
function is designed to help evaluate chromosomes 
to search for the optimum solution. While GA is 
running, populations of current generation are the 
most promising solutions for the previous 
generation. Then, genetic algorithm creates a 
population of solutions and applies three genetic 
operators, reproduction, mutation, and crossover 
operator. They are basic operators to search for the 
best solution(s).  
 
4. Detail of the Genetic Algorithm for 
Heterogeneous Grouping (GAHG) 
 
4.1 Problem Encapsulation  

An important part of genetic algorithm is to encode 
the variables of our problem into the chromosome. 
The design of our chromosome is shown in Fig. 
1(a). As a set of S = {s1, s2, …, sn} denoted the set of 
n students, the length of chromosome is equal to n. 
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If students are divided into m different groups, the 
size of the group is





≤≤





m
nsize

m
n  .  Then, the value 

of each element of the chromosome ranks from 1 to 
m. For instance, if a set of 9 students is divided into 
3 groups, the size of each group is 3

3
9

=



  . Suppose 

that they are g1={s2, s3, s5}, g2={s1, s4, s9}, and 
g3={s6, s7, s8}. The chromosome can be encoded as 
in Fig. 1(b), named chromosomex. The other called 
chromosomey. Fig. 1(c) represents that there are 
three groups of g1={s3, s4, s5}, g2={s1, s2, s6}, and 
g3={s7, s8, s9} respectively. 

 

(a) Structure of chromosome 

 

(b) chromosomex 

 

(c) chromosomey 

Fig. 1 The chromosome structure for student group 
formation and examples 

 

4.2 Fitness Function 

As assumed earlier, student si is associated with the 
multi-attributes vector Ai = (ai1, ai2, …, aip), where p 
is the maximum number of attributes. The average 
value of all members in the same group must be 
calculated, as it is the attribute of the group. In this 
paper, we apply the cumulative GPA and the grades 
of prior programming courses as the student’s 
attributes because they represent the student’s 
performance and educational skill. Suppose            
2-attribute vector of student i is Ai = (ai1, ai2) and all 
vectors of nine students are presented in Fig. 2. 
Then, attributes of each group associated with a 
certain chromosome are calculated by the average 
value of all members represented in Table 1.  

A1= (2.50,C),  A2= (2.14,D), A3= (3.50,B),  A4= (2.40,B+),  

A5= (2.50,C), A6= (3.14,A),  A7= (2.19,C),  A8= (3.40,A), 

A9= (1.98,C+) 

Fig. 2 Attributes of nine students   

For chromosomex, since student s2, s3, and s5 are in 
g1, the average value of first attribute (A11) is   

 71.2
3

50.250.312.2
11 =

++
=a . 

And the average value of second attribute (A21) is   

0.2
3

231
312 =

++
=

++
=

CBDa . 

, where A=4, B+=3.5, B=3, …, D+=1.5, D=1, F=0, 
and others, such as W (Withdrawal) and I 
(Incomplete), are set to be zero. 

Consequently, the vector attribute of g1 = (a11, a12) is 
(2.71, 2.0). With the same calculation, the vector 
(a21, a22) of g2={s2, s3, s5} can be shown as    

29.2
3

98.140.250.2
21 =

++
=a . 

And the value of second attribute (A22) is   

67.2
3
8

3
5.25.32

322 ==
++

=
++

=
++ CBCa . 

Then, we apply the calculation to the other groups. 
The vector attribute of g2 represented as (a21, a22) is 
(2.29, 2.67). Also, the vector attribute of g3 is (a31, 
a32) = (2.91, 3.33). 

Based on fairness and equity among students, all 
formed groups should be comprised of students with 
similar levels of performance. Therefore, each group 
will be compared with the others. Fitness values of 
each chromosome can be calculated by using p-
dimensional Euclidean space represented as follows:  

∑ ∑ ∑
−

= += =

−=
1

1 1 1

2
)(

m

k

m

kj

p

i
jikix aachromosomefitness   (2) 

   , where m is the number of groups, p is the 
number of attributes, and aki is the value of attribute 
i of the group k.  

   The calculation of fitness value for chromosomex 
and chromosomey are shown below.  
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In our algorithm, we need chromosomes with low 
fitness values. The higher fitness values mean that 
the chromosome is bad in distributing students 
among groups. Weak performing students may have 
chosen to be together in the same group as well as 
good performing students. On the other hand, the 
lower fitness values show that the chromosome 
arranges different students into formed groups 
properly. Low performing students will have little 
chance to be together and high performing students 
are assigned to be in difference groups. Therefore, 
in this example chromosomey is better than 
chromosomex in forming student groups. 

 
4.3 Operators for Generating Offspring 

Once the chromosome structure and fitness function 
are completely constructed, genetic operations must 
be designed to perform within a single generation. 
The purpose of these operators is to create various 
new solution vectors that are shown to be good. 

Note that in our paper the algorithm works on fixed-
length character strings. If the number of students is 
n, the fixed-length of character strings for our 
chromosome is equal to n as well. In our algorithm, 
reproduction operation is the first operator that 
applies to copying existing population in the current 
generation to the next generation. After that, the 
following operator is a crossover operation. The 
operator helps maintain diversity in the population, 
as crossover causes the chromosomes of offspring to 
be different from their parents. For our algorithm, 
we use two types of crossover techniques which are 
one-point crossover and self-crossover. The one-
point operator creates two new offspring from two 
existing parents by randomly interchanging 
substrings at the random part. The example of       
one-point crossover operation, which applies on 
chromosomex and chromosomey, is depicted in Fig. 
3. In our crossover process, the small value called 
crossover probability pc is set to preserve some of 
the good strings that are already present in the 
current generation. As the crossover operator is 
mainly responsible for the search for new offspring, 
it might be possible to produce a bad individual. 
However, these offspring will never be selected for 
next operations based on fitness function. Self-
crossover switches values of two elements of the 
selected chromosome. This technique helps the 
algorithm maintain the size of all groups, since our 
algorithm strongly requires the number of students 
in most groups to be as equal as possible. The 
example of self-crossover technique which applies 
on chromosomex is illustrated in Fig. 4. One cycle of 
these operations, reproduction operator and 
crossover operator, applies on the current population 
to create a new population in a single generation. 
This new population obtained from the previous 
generation is used to generate subsequent 
populations and so on. Finally, the algorithm yields 
the best solution that is closest to the optimum 
solution.  

 
TABLE 1 ATTRIBUTE VALUE OF EACH GROUP ON DIFFERENT CHROMOSOME 

 Attribute Values of Each Group 
chromosome Group1 (g1) Group2 (g2) Group3 (g3) 
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Fig. 3 One-point crossover operation 

 

Fig. 4 Self-crossover operation 

 

5. Experiment and Results  

To confirm the efficiency of our algorithm, we 
conducted an experiment of 48 students enrolled in 
CS250 for 1st semester/year 2012 at Bangkok 
University as a case study. In constructing our 
GAHG algorithm, specific parameters, such as 
initial population size (M), number of generations 
(Gen), and crossover probability (pc) are quite 
important, as they can greatly influence the 
performance of the algorithm. Therefore, we had 
tried several runs with different values of 
parameters to see which values would yield the best 
solution. Finally, the value of initial population size 
(M) is 300, number of generations (Gen) equals 100, 
and crossover probability (pc) is 0.21. As the set of 
48 students registered in CS250 was adopted in our 
experiment, we decided to form a small group of 
four students. Thus, there are 12 groups of four 
students each. With this number of groups we are 
able to follow student progress and software 
projects efficiently. As the algorithm aims to 
balance students’ skills among formed groups, our 
algorithm would not set a group of another size 
unless it is impossible to do that. The results of our 
proposed algorithm are illustrated in Fig. 4 – Fig. 7. 
The graph of Fig. 4 presents that the average 
cumulative grade point (GPA) of all groups, are 
quite similar, which is about 2.67. It implies that 
students with low performance and students with 
high performance are balanced in an efficient way. 
Good students are optimally distributed to be in 
different groups, while there is no group formed by 
low performing students. Furthermore, we not only 

balanced students by using student cumulative grade 
point average, we also formed student groups with 
the prerequisite courses for CS250. Based on the 
curriculum of computer science at Bangkok 
University, two prior courses for CS250 are CS311 
Computer programming II and CS317 Visual 
Programming. The average grade of first course of 
the formed groups is 2.88, and the second 
prerequisite course is 2.77. As illustrated in both 
Fig. 6 and Fig. 7, in terms of heterogeneity, students 
with different grades are optimally distributed 
among groups making the average grade of each 
prerequisite course for all groups quite similar.  
 
6 Conclusions and Further works 
In this paper, an approach called GAHG is proposed 
by using a genetic algorithm to help us generate the 
student groups based on heterogeneous grouping. 
We aim to develop the method to apply to computer 
science and technology students at Bangkok 
University in developing software project. A student 
will be assigned to a group by student’s educational 
skills in which both fairness and equity in terms of 
learning performance and programming skills are 
strongly concerned. Based on our case study and 
experimental results, it shows that our approach can 
optimally allocate heterogeneous students, 
supported by the graph presented in Fig. 5-Fig.7. As 
a result of algorithm, weak performing students will 
have little chance to be together in the same group. 
On the other hand, good students will be assigned in 
difference groups. By doing this, all established 
groups will be more balanced. Additionally, we 
hope that by assigning students to the right group it 
is possible to upgrade their abilities by learning 
from others. Therefore, the groups may be eligible 
to develop complex software projects and the whole 
students can manage their computer software 
projects efficiently. As a result, the productive 
outcome of these groups may be enhanced.  

In the future, the result of our algorithm will be 
compared to other algorithms and optimization 
methods. Of course, the algorithm will be compared 
to the self-selection method made by students or 
teachers. And then, at the end of a semester, the 
knowledge and programming skills that dissimilar 
students received after joining in generated groups 
will be evaluated to see the efficiency of the 
algorithm. We also plan to apply the algorithm to 
other datasets to see the scalability of the approach. 
Some other attitudes and student preferences will be 
included in the fitness function. Multiple objectives 
along with the Pareto-optimal function will be 
applied to achieve more fairness and equity in 
groups.  
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Fig. 5 Cumulative grade point average (GPA)            Fig. 6 Average grade of CS311              Fig. 7 Average grade of CS317 
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