
Genetic Algorithm for Forming Student Groups Based on
Heterogeneous Grouping

ANON SUKSTRIENWONG

Information Technology Department
School of Science and Technology

Bangkok University
40/4 Rama IV Rd., Klong-Toey, Bangkok

THAILAND
anon.su@bu.ac.th

Abstract: - Student group formation plays a critical role in terms of enhancing the success of academic
learning. It involves structuring groups in order to help students to learn together. Due to the
heterogeneity of students in classes, the process of forming student groups is becoming more
complex. In this paper, we proposed an approach to form student groups at a university for software
development project to ensure that software products can be delivered successfully on time. Our
proposed algorithm is called Genetic Algorithm for Heterogeneous Grouping (GAHG). The algorithm
aims to achieve both fairness in the group formation and to maximize the students’ skills within the
formed groups. An experiment was performed with 48 students to demonstrate the ability of the
approach. Experimental results indicate that our approach can optimally allocate students in an
efficient way.

Key-Words: - Fairness in coalition; group formation; genetic algorithm; heterogeneous grouping.

1 Introduction
Due to the complexity of the computer software
project, the well cooperation of the group’s
members is becoming more important because it
helps reduce individuals’ workloads. Therefore, the
project can be done and delivered successfully on
time. Moreover, working in the group makes it
possible to enhance students’ ability to manage and
solve project efficiently. Currently, how to gain
individual student achievement in groups is
important [1]. In reference [2], it is presented that
one principle of cooperative learning is
heterogeneous grouping. Therefore, various
techniques of cooperative learning have been
proposed by researchers [3], [4]. Additionally, the
benefit of heterogeneous grouping is to ensure equal
opportunities for all students [5]. However, few
studies of learning styles have considered the
formation of computer science and technology
students for software development projects at a
university [6]. In general, the success of student
groups in developing a software project depends on
various factors such as the personalities, expertise,
performances, and the collaboration of the people
involved in the group [7]. It has been observed by

some researchers that heterogeneous groups are
better in a broader range of tasks [8].

In general classes, instructors can assign
students to a group, or students can choose group
members themselves which is called self-selection.
In theory, grouping works under the assumption that
groups work better when all members are balanced
in terms of diversity based on educational skills or
personality differences. It is claimed by Wang et.al
[9] that heterogeneous groups should be comprised
of students whose prior knowledge should not be
unequal. Therefore, every student succeeds when
the whole group succeeds. Everyone must work in
the group to complete tasks efficiently. In reality,
however, this task is far more complex than what it
seems if the size of the class is large [10].

At the time of forming student groups, teachers
can ask questions with some sorts of association
rules for students to answer, so we can obtain
personalities and other information directly from
students. Moreover, teachers can obtain some of the
student’s academic record such as the grade point
average (GPA), and the registered courses to help
measure students for forming groups. Therefore,
searching for an optimized group of students by an

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 92

exhaustive search is not practical because it is time-
consuming.

In this paper, we consider the coalition formation
for computer software students in developing
assigned software projects based on heterogeneous
grouping in which the fairness and equity of the
group formation are concerned by applying the
Euclidean distance1 to all students. This will be done
using genetic algorithm, in order to maximize the
student’s programming skills within the formed
groups.

There are six parts to this paper including this
introduction. The rest of this paper is organized as
follows. Section 2 gives a formal definition of the
problem. The genetic algorithm, which is a tool for
forming student groups, is described in Section 3.
Section 4 shows how we can apply the genetic
algorithm to our problem. Section 5 demonstrates
the experiment of our case study, a class of CS250
(Discrete Structures) in the 1st semester 2012 at
Bangkok University. The conclusion and further
work is illustrated in the last section.

2 Problem Formalization

Let S = {s1, s2, …, sn} denote the set of n students.
Each student has m attributes, which are represented
in a multi-dimensional vector. We assume Ai = (ai1,
ai2,…, aim) to be the vector of m attributes of the
student i. Each of ajk has different values which
depend on its category values. For example, the
attribute can be the cumulative grade or the grade of
previous courses. As we know, students have
different values of attributes. In order to achieve our
goal of fairness and equity, each group will be
compared with the others. When students are in the
group, attributes of the particular group can be
calculated by the average value of all members. The
different value of attributes of two groups, which
are called gk and gj, can be calculated by the
Euclidean distance (ED) as seen in (1).

 ∑ =
−=−=

m

j ijkjik AAggED
1

2 (1)

,where Akj is the value of attribute j of the group k.

 We assume that students are divided into m
groups denoted G = {g1, g2,…, gm}. Each student
belongs to only one group. The choice of group size

1 Euclidean distance is also named Euclidean metric which is
the "ordinary" distance between two points.

involves difficult trade-offs. According to Rau and
Heyl’s paper in [11], groups of three students
contain less diversity; and may lack divergent
thinking styles. On the other hand, in larger groups
it is difficult to ensure that all members participate
and learn equally. In our experiment, the size of the
group is set to be equal to four. If a certain set of
students is comprised of sa, sb, sc, sd, se, sf, and sg, it
can be set as two groups; g1 = {sa, sb, sc, sd} and g2 =
{se, sf, sg}.

3 Basic Concepts of Genetic
Algorithms

Genetic algorithm (GA) was introduced in the
United States in the 1970s by John Holland at the
University of Michigan. In particular, genetic
algorithm works very well on real complex world
problems. Therefore, it has become a popular
methodology for a variety of complex problems
[12], such as fractal image compression [13], nurse
roistering problem [14], and coalition formation
among buyer agents [15][16]. Also it was applied by
Wang et.al. [9] to help create heterogeneous groups
by psychological factors. In general, a genetic
algorithm mimics the notions of natural evolution to
the world of computers, and imitates natural
evolution. Therefore, a particular problem must be
encoded as a chromosome. The problem can be
encoded in various ways with the aim of solving the
problem. The fitness value of each chromosome
must be calculated in an exact way associated with
the chromosome’s structure. A suitable fitness
function is designed to help evaluate chromosomes
to search for the optimum solution. While GA is
running, populations of current generation are the
most promising solutions for the previous
generation. Then, genetic algorithm creates a
population of solutions and applies three genetic
operators, reproduction, mutation, and crossover
operator. They are basic operators to search for the
best solution(s).

4. Detail of the Genetic Algorithm for
Heterogeneous Grouping (GAHG)

4.1 Problem Encapsulation

An important part of genetic algorithm is to encode
the variables of our problem into the chromosome.
The design of our chromosome is shown in Fig.
1(a). As a set of S = {s1, s2, …, sn} denoted the set of
n students, the length of chromosome is equal to n.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 93

If students are divided into m different groups, the
size of the group is

≤≤

m
nsize

m
n . Then, the value

of each element of the chromosome ranks from 1 to
m. For instance, if a set of 9 students is divided into
3 groups, the size of each group is 3

3
9

=

 . Suppose

that they are g1={s2, s3, s5}, g2={s1, s4, s9}, and
g3={s6, s7, s8}. The chromosome can be encoded as
in Fig. 1(b), named chromosomex. The other called
chromosomey. Fig. 1(c) represents that there are
three groups of g1={s3, s4, s5}, g2={s1, s2, s6}, and
g3={s7, s8, s9} respectively.

(a) Structure of chromosome

(b) chromosomex

(c) chromosomey

Fig. 1 The chromosome structure for student group
formation and examples

4.2 Fitness Function

As assumed earlier, student si is associated with the
multi-attributes vector Ai = (ai1, ai2, …, aip), where p
is the maximum number of attributes. The average
value of all members in the same group must be
calculated, as it is the attribute of the group. In this
paper, we apply the cumulative GPA and the grades
of prior programming courses as the student’s
attributes because they represent the student’s
performance and educational skill. Suppose
2-attribute vector of student i is Ai = (ai1, ai2) and all
vectors of nine students are presented in Fig. 2.
Then, attributes of each group associated with a
certain chromosome are calculated by the average
value of all members represented in Table 1.

A1= (2.50,C), A2= (2.14,D), A3= (3.50,B), A4= (2.40,B+),

A5= (2.50,C), A6= (3.14,A), A7= (2.19,C), A8= (3.40,A),

A9= (1.98,C+)

Fig. 2 Attributes of nine students

For chromosomex, since student s2, s3, and s5 are in
g1, the average value of first attribute (A11) is

 71.2
3

50.250.312.2
11 =

++
=a .

And the average value of second attribute (A21) is

0.2
3

231
312 =

++
=

++
=

CBDa .

, where A=4, B+=3.5, B=3, …, D+=1.5, D=1, F=0,
and others, such as W (Withdrawal) and I
(Incomplete), are set to be zero.

Consequently, the vector attribute of g1 = (a11, a12) is
(2.71, 2.0). With the same calculation, the vector
(a21, a22) of g2={s2, s3, s5} can be shown as

29.2
3

98.140.250.2
21 =

++
=a .

And the value of second attribute (A22) is

67.2
3
8

3
5.25.32

322 ==
++

=
++

=
++ CBCa .

Then, we apply the calculation to the other groups.
The vector attribute of g2 represented as (a21, a22) is
(2.29, 2.67). Also, the vector attribute of g3 is (a31,
a32) = (2.91, 3.33).

Based on fairness and equity among students, all
formed groups should be comprised of students with
similar levels of performance. Therefore, each group
will be compared with the others. Fitness values of
each chromosome can be calculated by using p-
dimensional Euclidean space represented as follows:

∑ ∑ ∑
−

= += =

−=
1

1 1 1

2
)(

m

k

m

kj

p

i
jikix aachromosomefitness (2)

 , where m is the number of groups, p is the
number of attributes, and aki is the value of attribute
i of the group k.

 The calculation of fitness value for chromosomex
and chromosomey are shown below.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 94

∑ ∑ ∑
= += =

−=
2

1

3

1

2

1

2
)(

k kj i
jikix aachromosomefitness

0412515.39055385.0344954.1790759.0
66.062.033.12.067.042.0

33.367.291.229.2

33.30.291.271.267.20.229.271.2

222222

22

2222

2
3222

2
3121

2
3212

2
3111

2
2212

2
2111

≈++=
+++++=

−+−

+−+−+−+−=

−+−

+−+−+−+−=

aaaa

aaaaaaaa

4308304.25080354.0734098.0188697.1
5.009.067.03.017.121.0

83.233.25.259.283.25.35.28.2

33.25.359.28.2)(

222222

2222

22

≈++=
+++++=

−+−+−+−

+−+−=ychromosomefitness

In our algorithm, we need chromosomes with low
fitness values. The higher fitness values mean that
the chromosome is bad in distributing students
among groups. Weak performing students may have
chosen to be together in the same group as well as
good performing students. On the other hand, the
lower fitness values show that the chromosome
arranges different students into formed groups
properly. Low performing students will have little
chance to be together and high performing students
are assigned to be in difference groups. Therefore,
in this example chromosomey is better than
chromosomex in forming student groups.

4.3 Operators for Generating Offspring

Once the chromosome structure and fitness function
are completely constructed, genetic operations must
be designed to perform within a single generation.
The purpose of these operators is to create various
new solution vectors that are shown to be good.

Note that in our paper the algorithm works on fixed-
length character strings. If the number of students is
n, the fixed-length of character strings for our
chromosome is equal to n as well. In our algorithm,
reproduction operation is the first operator that
applies to copying existing population in the current
generation to the next generation. After that, the
following operator is a crossover operation. The
operator helps maintain diversity in the population,
as crossover causes the chromosomes of offspring to
be different from their parents. For our algorithm,
we use two types of crossover techniques which are
one-point crossover and self-crossover. The one-
point operator creates two new offspring from two
existing parents by randomly interchanging
substrings at the random part. The example of
one-point crossover operation, which applies on
chromosomex and chromosomey, is depicted in Fig.
3. In our crossover process, the small value called
crossover probability pc is set to preserve some of
the good strings that are already present in the
current generation. As the crossover operator is
mainly responsible for the search for new offspring,
it might be possible to produce a bad individual.
However, these offspring will never be selected for
next operations based on fitness function. Self-
crossover switches values of two elements of the
selected chromosome. This technique helps the
algorithm maintain the size of all groups, since our
algorithm strongly requires the number of students
in most groups to be as equal as possible. The
example of self-crossover technique which applies
on chromosomex is illustrated in Fig. 4. One cycle of
these operations, reproduction operator and
crossover operator, applies on the current population
to create a new population in a single generation.
This new population obtained from the previous
generation is used to generate subsequent
populations and so on. Finally, the algorithm yields
the best solution that is closest to the optimum
solution.

TABLE 1 ATTRIBUTE VALUE OF EACH GROUP ON DIFFERENT CHROMOSOME

 Attribute Values of Each Group
chromosome Group1 (g1) Group2 (g2) Group3 (g3)

chromosomex

=
=
=

=
),50.2(
),50.3(
),12.2(

)00.2,71.2(

5

3

2

CA
BA
DA

+=
+=

=
=

),98.1(
),40.2(

),50.2(
)00.2,29.2(

9

4

1

CA
BA
CA

=
=
=

=
),40.3(
),19.2(
),14.3(

)33.3,91.2(

8

7

6

AA
CA
AA

chromosomey

=
+=

=
=

),50.2(
),40.2(

),50.3(
)50.3,80.2(

5

4

3

CA
BA
BA

=
=
=

=
),14.3(
),14.2(
),50.2(

)33.2,59.2(

6

2

1

AA
DA
DA

+=
=
=

=
),98.1(

),40.3(
),19.2(

)83.2,50.2(

9

8

7

CA
AA
CA

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 95

Fig. 3 One-point crossover operation

Fig. 4 Self-crossover operation

5. Experiment and Results

To confirm the efficiency of our algorithm, we
conducted an experiment of 48 students enrolled in
CS250 for 1st semester/year 2012 at Bangkok
University as a case study. In constructing our
GAHG algorithm, specific parameters, such as
initial population size (M), number of generations
(Gen), and crossover probability (pc) are quite
important, as they can greatly influence the
performance of the algorithm. Therefore, we had
tried several runs with different values of
parameters to see which values would yield the best
solution. Finally, the value of initial population size
(M) is 300, number of generations (Gen) equals 100,
and crossover probability (pc) is 0.21. As the set of
48 students registered in CS250 was adopted in our
experiment, we decided to form a small group of
four students. Thus, there are 12 groups of four
students each. With this number of groups we are
able to follow student progress and software
projects efficiently. As the algorithm aims to
balance students’ skills among formed groups, our
algorithm would not set a group of another size
unless it is impossible to do that. The results of our
proposed algorithm are illustrated in Fig. 4 – Fig. 7.
The graph of Fig. 4 presents that the average
cumulative grade point (GPA) of all groups, are
quite similar, which is about 2.67. It implies that
students with low performance and students with
high performance are balanced in an efficient way.
Good students are optimally distributed to be in
different groups, while there is no group formed by
low performing students. Furthermore, we not only

balanced students by using student cumulative grade
point average, we also formed student groups with
the prerequisite courses for CS250. Based on the
curriculum of computer science at Bangkok
University, two prior courses for CS250 are CS311
Computer programming II and CS317 Visual
Programming. The average grade of first course of
the formed groups is 2.88, and the second
prerequisite course is 2.77. As illustrated in both
Fig. 6 and Fig. 7, in terms of heterogeneity, students
with different grades are optimally distributed
among groups making the average grade of each
prerequisite course for all groups quite similar.

6 Conclusions and Further works
In this paper, an approach called GAHG is proposed
by using a genetic algorithm to help us generate the
student groups based on heterogeneous grouping.
We aim to develop the method to apply to computer
science and technology students at Bangkok
University in developing software project. A student
will be assigned to a group by student’s educational
skills in which both fairness and equity in terms of
learning performance and programming skills are
strongly concerned. Based on our case study and
experimental results, it shows that our approach can
optimally allocate heterogeneous students,
supported by the graph presented in Fig. 5-Fig.7. As
a result of algorithm, weak performing students will
have little chance to be together in the same group.
On the other hand, good students will be assigned in
difference groups. By doing this, all established
groups will be more balanced. Additionally, we
hope that by assigning students to the right group it
is possible to upgrade their abilities by learning
from others. Therefore, the groups may be eligible
to develop complex software projects and the whole
students can manage their computer software
projects efficiently. As a result, the productive
outcome of these groups may be enhanced.

In the future, the result of our algorithm will be
compared to other algorithms and optimization
methods. Of course, the algorithm will be compared
to the self-selection method made by students or
teachers. And then, at the end of a semester, the
knowledge and programming skills that dissimilar
students received after joining in generated groups
will be evaluated to see the efficiency of the
algorithm. We also plan to apply the algorithm to
other datasets to see the scalability of the approach.
Some other attitudes and student preferences will be
included in the fitness function. Multiple objectives
along with the Pareto-optimal function will be
applied to achieve more fairness and equity in
groups.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 96

Fig. 5 Cumulative grade point average (GPA) Fig. 6 Average grade of CS311 Fig. 7 Average grade of CS317

References:
[1] Renner, G., & Ekárt, A. (2003). Genetic

algorithms in computer aided design.
Computer-Aided Design, Elsevier Science Ltd.,
vol. 35, Issue 8, July 2003, pp. 709-726.

[2] Pedro, P., Alvaro, O., & Pilar, R. (2010). A
Method for Supporting Heterogeneous-Group
Formation through Heuristics and
Visualization. Journal of Universal Computer
Science, vol. 16, no. 19 (2010), pp. 2882-2901.

[3] Wessner, M., & Pfister, H. (2001). Group
Formation in Computer-Supported
Collaborative Learning. Proceedings of the
2001 International ACM SIGGROUP
Conference on Supporting Group Work
Boulder.

[4] Oldfield, S., & Morse, D. (2005). Truly Virtual
Teams: (Team) Working-In-Progress.
Proceedings of the 6th Annual conference of the
Subject Centre for Information and Computer
Sciences, pp. 30-33.

[5] Sapon-Shevin, M., Ayres, B., & Duncan, J.
(2002). Cooperative learning and inclusion. In
J.S. Thousand, R.A. Villa, & A.I. Nevin (Eds.),
Creativity and collaborative learning: The
practical guide to empowering students,
teachers, and families (2nd ed.), Baltimore: Paul
H. Brookes, pp. 209-222.

[6] Gilbert, J. E., & Swanier, C. A. (2008).
Learning Styles: How Do They Fluctuate?
Institute for Learning Styles Journal, vol. 1,
Fall 2008, pp. 29-40.

[7] Bekele, R. (2005). Computer-Assisted Learner
Group Formation Based on Personality Traits,
PhD thesis. Universität Hamburg, Hamburg.

[8] Martin, E., & Paredes, P. (2004). Using
learning styles for dynamic group formation in
adaptive collaborative hypermedia systems.
The First International Workshop on Adaptive
Hypermedia and Collaborative Web-based
Systems (AHCW 2004), pp. 188-198.

[9] Wang, D.-Y., Sunny, S. L., & Chuen-Tsai, S.
(2003). DIANA: A computer supported

heterogeneous grouping system for teachers to
conduct successful small learning groups.
Computers in Human Behavior, 23 (2007), pp.
1997–2010.

[10] Harrison, G., Griffin, S., & Broughton, L.
(2009). The Innovation Bangkok: Project
Group Formation and Much More. 10th Annual
Conference of the Subject Centre for
Information and Computer Sciences, pp. 44-49.

[11] Rau, W. and Heyl, B. S. (1990). Humanizing
the college classroom: Collaborative learning
and social organization among students.
Teaching Sociology, 18, pp.141-155.

[12] JC Chen, CC Wu, CW Chen and KH Chen
(2012). Flexible job shop scheduling with
parallel machines using Genetic Algorithm and
Grouping Genetic Algorithm, Expert Systems
with Applications, Vol.39, Issue 11, 1
September 2012, Pages 10016–10021.

[13] Xing-yuan, W., Fan-ping, L., & Shu-guo, W.
(2009). Fractal image compression based on
spatial correlation and hybrid genetic
algorithm. Journal of Visual Communication
and Image Representation genetic algorithm,
pp. 505-510.

[14] Z. Bäumelt, P. Šucha and Z. Hanzálek (2011).
A Genetic Algorithm for a Nurse Rerostering
Problem, the 10th Workshop on Models and
Algorithms for Planning and Scheduling
Problems, Czech Republic. pp.70-78.

[15] Hyodo, M., Matsuo, T., & Ito, T. (2003). An
Optimal Coalition Formation among Buyer
Agents based on a Genetic Algorithm.
International Conference on Industrial and
Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/AIE’03),
Loughborough, UK, pp. 759–767.

[16] Boongasame, L. and Sukstrienwong, A. (2009).
Buyer coalitions with bundles of items by using
genetic algorithm. Emerging Intelligent
Computing Technology and Applications
Lecture Notes in Computer Science, 2009,
Volume 5754/2009, pp. 674-685.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 97

