
DLX Simulator for Automated Checking of Assignments
in a Computer Architecture Class

JIŘÍ KOCOUREK, JOSEF HLAVÁČ
Czech Technical University in Prague

Faculty of Information Technology
Thákurova 9, 160 00 Praha

CZECH REPUBLIC
{kocouji1,hlavacj2}@fit.cvut.cz

Abstract: In this paper, we introduce an automated simulator of the DLX educational processor. The simulator is
intended for checking the correctness of homework assignments in a bachelor-level Computer Architecture course.
We describe the nature of these assignments and describe the requirements, structure and capabilities of the new
simulator.

Key–Words: DLX, WinDLX, processor, computer architecture, instruction-level parallelism, simulator, education

1 Introduction
One of the several important topics in the Computer
Architecture course taught at the Faculty of Infor-
mation Technology, Czech Technical University in
Prague, is the concept of instruction-level parallelism
and pipelining. The concept is demonstrated on the
example of the DLX processor, introduced in the ear-
lier editions of the classic textbooks [1, 2].

In order to get thoroughly acquainted with the
concepts and issues of pipelining, hazards, stalls, etc.,
students are asked to write a moderately complex pro-
gram in the DLX assembly language. The assign-
ment is sufficiently complex to allow the use of vari-
ous optimization techniques, primarily loop unrolling
and instruction planning with respect to data depen-
dencies, and to require thinking and planning ahead
before actually writing the code. On the other hand,
the assignment is sufficiently simple to allow coding,
debugging and optimizing by hand directly in the as-
sembly language.

An example of such program is matrix multiplica-
tion. Students are asked to write a program that mul-
tiplies two square matrices A,B, each of size n × n,
where A,B, n are runtime parameters. The number
of clock cycles needed to multiply two matrices of
a certain size is then taken as the measure of perfor-
mance and the basis for grading the assignment.

In addition to optimizing, students are also asked
to write their code in a clean way and avoid poten-
tially dangerous coding techniques. For instance, stu-
dents usually understand that it is a bad programming
practice to modify the contents of undeclared mem-
ory. However, students often fail to see that it is

equally bad practice to even read the contents of un-
allocated memory, since this may lead, under certain
conditions, to page faults and other “mysterious” er-
rors. Other common errors include relying on the con-
tents of uninitialized registers, failing to check for cor-
rect operation in border-case scenarios, etc.

The assignment also includes certain restrictions
on register usage. For compatibility with high-level
languages, it is commonly necessary for subroutines
written in the assembly language to respect certain
conventions, such as preserving the content of certain
registers (“callee saves”), or not using certain registers
at all (“reserved for the system”).

2 Previous Approach
Currently, the assignments are checked and graded
manually.

Students usually work in teams of two. The
teams first submit their solutions by e-mail to their
teaching assistant (TA), in order to create a record of
timely (or untimely) completion. The TA then verifies
the handed-in assignments, asks each team to explain
their approach and the key features of their solution,
and assigns a corresponding grade (or points).

It is obvious that the process of checking and
grading the submissions is very time-consuming, and
yet prone to errors. In many instances, the TA – no
matter how experienced – fails to notice subtle errors
in the code that may produce incorrect output in cer-
tain cases, or lead to other kinds of errors (such as the
above-mentioned page faults).

When writing and optimizing the code, students

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 63



use the WinDLX simulator developed at TU Vienna
[4, 3]. Despite its age, it is still a very useful and very
demonstrative tool for use in the Computer Architec-
ture class. However, the tool does not allow automatic
(scripted) simulation, nor does it check for the above-
mentioned bad programming practices.

Our Faculty already uses an automated system for
checking C/C++ assignments. It is possible to add
support for other programming languages, as long as
a compatible testing environment is available.

We therefore undertook to write our own simu-
lator that would be suitable for automatic execution.
In addition, the new simulator should check for and
report various bad programming practices as well as
violations of other imposed conditions.

3 Requirements
Let us now summarize the requirements for the new
simulator:

(i) The new simulator should support all parts of
the DLX processor that are visible and accessible to
user programs. Special instructions and registers in-
tended for the operating system need not be supported.
Therefore, all integer registers (r0–r31) and floating-
point registers (f0–f31) should be supported. All in-
structions should be supported except for the trap
instruction (which should terminate the program) and
the movi2s, movs2i instructions that access special
registers.

(ii) The simulator should simulate the entire
memory range. However, it is expected that only a
small portion of the memory space will be used at a
time. This assumption should be used to optimize the
memory efficiency of the simulator. In addition, the
simulator should report access to undeclared memory.
When the program terminates, the simulator should
check the contents of pre-defined (configurable) mem-
ory locations against expected results.

(iii) The simulator should support the standard
5-stage DLX pipeline, with configurable numbers and
latencies of floating-point execution units.

(iv) The simulator should keep execution statis-
tics – the total number of clock cycles and the number
of RAW, WAW, structural, control and trap stalls. The
simulator should terminate the simulation when a pre-
defined number of clock cycles is executed without
reaching the trap instruction (to terminate endless
loops and extremely inefficient submissions).

(v) The configuration should be easily changed,
e.g. read from a XML file.

(vi) The output should be easily parseable. It
is expected that the simulator will be eventually in-
tegrated into the Faculty’s automated grading frame-

work that is currently used for C/C++ code; it is there-
fore best to print any error messages and the final
statistics to the standard output.

4 Implementation
4.1 Structure
The structure of the implemented simulator is pre-
sented in Fig. 1.

The simulator was implemented in the Java pro-
gramming language. The primary reason for choos-
ing Java over C/C++ was the authors’ familiarity and
experience with this language; added benefit includes
easy portability to other operating systems and plat-
forms. The only notable disadvantage is in poten-
tially increased memory requirements and lower per-
formance (increased simulation time). The perfor-
mance is further discussed in section 5.

The simulator code attempts to mimic the opera-
tion of real hardware. An Instruction object is created
for each instruction and filled with data as it passes
through the individual pipeline stages (descendants of
the PipelineStage class). Statistics are collected dur-
ing the execution. Memory is represented with arrays
of byte blocks, where each block (1 KiB) is allocated
only when really needed. For each block, a bitmap
with information about declared and undeclared bytes
is maintained and checked upon every memory ac-
cess.

The register file contains the zero register (r0),
integer registers (r1–r31), single-precision floating
point registers (f0–f31), and the floating point status
register (fps). Pairs of floating point registers can be
accessed for double-precision operations. Every ac-
cess to the registers is checked against the configured
register usage restrictions (either “unrestricted use”,
“callee saves”, or “do not touch”).

4.2 Input and output
There are two inputs to the simulator.

First, the parameters of the simulated DLX pro-
cessor and the assignment to be solved are specified
in a XML configuration file. The configuration spec-
ifies the number and latency of floating-point execu-
tion stages, enabled/disabled forwarding, initial val-
ues for defined memory blocks, and register usage re-
strictions. The configuration further includes the cor-
rect output (memory contents) and a grading scale ta-
ble (essentially a clock cycle to percentage conversion
table). The structure of the configuration XML file is
described in a XSD file.

The second input is the submitted source code in
the DLX assembly language.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 64



Figure 1: Structure of the simulator.

The simulator outputs compile-time errors and
warnings (if any), simulation statistics (number of ex-
ecuted clock cycles, number of RAW, WAW, control,
structural and trap stalls), and any violations of regis-
ter usage restrictions or accesses to undeclared mem-
ory.

4.3 Operation
The simulator operates as follows (again, please refer
to Fig. 1).

1. The configuration XML is read and processed.

2. The assembly language source file is read and
compiled. The resulting machine code, which
is binary compatible with the WinDLX simula-
tor [3, 4], is stored to the simulated memory. In
case of errors in the source code, the simulation
terminates.

3. The DLX pipeline is created. The pipeline
always contains five stages (Instruction Fetch,
Instruction Decode, Execute, Memory Access,
Write Back), with the superscalar floating-point
execution stages as configured.

4. The program is executed. The simulator simu-
lates the instructions passing through the pipeline
just as the DLX processor would execute them.

The simulation stops if the trap instruction is
executed, if the maximum allowed number of
clock cycles is reached (this means that the pro-
gram has either entered an endless loop, or is ex-
tremely inefficient), or if a runtime error occurs
(instruction decoding error, division by zero, ac-
cess to an invalid memory address, or unaligned
memory access). Access to undeclared memory
is logged but does not stop the simulation.

5. Collected statistics are printed.

6. Results are evaluated. Non-critical runtime prob-
lems (access to undeclared memory, violations
of register usage conventions) are printed and
reflected in the student’s overall score. Pro-
gram outputs (register and memory contents) are
checked for correctness and again reflected in the
overall score, together with the achieved speed
(number of clock cycles used). The simulator
outputs a text line with the overall results.

5 Results
The simulator was tested on a set of DLX assembly
language sources, mostly consisting of actual submit-
ted solutions to the previous homework assignments.
The number of simulated clock cycles and the results

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 65



(memory contents) perfectly agree with the expecta-
tions and with the results of the WinDLX simulator.

There are some minor differences in the stalls
statistics between our simulator and the WinDLX.
They are due to a slightly different way of counting
stalls. For instance, WinDLX counts a structural stall
whenever a FP-EX unit is not available. Our simulator
counts a structural stall whenever a unit of any type
is unavailable (typically when a FP instruction and
an integer instruction compete for the MEM pipeline
stage). Other differences happen when a stall occurs
for more than one reason.

There are also some minor differences in oper-
ation. Our simulator checks the source code more
strictly for syntax errors; for instance, slightly incor-
rect add r1, r2, #4 is permissible in WinDLX,
while our simulator strictly requires the correct addi
instruction. We do not distinguish the different trap
instructions as WinDLX does; any trap instruc-
tion simply terminates the simulation. Naturally, the
added memory and register access checks are also not
present in WinDLX.

The biggest concern regarding the choice of Java
as the implementation platform was the overall per-
formance. Fortunately, it turns out that the perfor-
mance is more than sufficient for our needs. On a
common PC computer (quad-core i5 processor at 2.4
GHz, 4 GB RAM), the simulator can simulate approx-
imately 140,000 clock cycles per second. The submis-
sions are terminated after 20,000 clock cycles at the
most. Thus, the total time for simulating one submis-
sion (including all overhead, such as starting the JVM
and compiling the submitted source) is well under one
second.

6 Conclusion
We elaborated on the background and reasons for
developing a new DLX simulator, and described its
structure and internals. The simulator fulfills all the
requirements, and its performance is perfectly suffi-
cient for the envisaged use.

At the time of writing this paper, the simulator
is still undergoing final testing and debugging. First
students will start using it in a few weeks, which will
provide us with an opportunity for further extensive
testing.

Acknowledgement: This work was supported by the
Higher Education Development Fund of the Ministry
of Education of the Czech Republic under project
No. 1939/2012.

References:

[1] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, 2011.

[2] D. A. Patterson and J. L. Hennessy, Com-
puter Organization and Design: The Hard-
ware/Software Interface, Morgan Kaufmann
Publishers, 2011.

[3] G. Raidl, WinDLX DLX-Pipeline Simulator
(software), diploma thesis, TU Vienna, Inst. für
Technische Informatik, 1991.

[4] H. Grunbacher and H. Khosravipour, WinDLX
and MIPSim pipeline simulators for teaching
computer architecture, Proc. of IEEE Sympo-
sium and Workshop on Engineering fo Computer
Based Systems, 1996, pp. 412–417.

Recent Advances in Information Science

ISBN: 978-1-61804-140-1 66




