The Phenomenon Of Computational And Elearning as Blended Learning Style in Mathematical Engineering Courses

N. M. TAWIL1,2, H. BAHALUDIN1,2, N. A. ISMAIL1,2, I. ASSHAARI1,2, H. OTHMAN1,2, M.F. HAMZAH1,2, R.A.O.K.RAHMAT3

1Centre for Engineering Education Research, Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor
MALAYSIA

2Unit Fundamental Engineering Studies
Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor
Malaysia

3Director, Centre for Academic Advancement
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor
MALAYSIA

nmtawil@gmail.com

Abstract: - Nowadays, traditional learning styles are assisted with e-learning components to ensure the effectiveness of the teaching and learning process especially for the students. This approach is known as blended learning. Objective of this paper is to investigate and clarify the students’ preferences in learning style either traditional or e-learning. Specifically, traditional learning styles fall into two group which are by individual or by group. The sample of this study consists of 189 First Year engineering students at the Faculty of Engineering and Built Environment UKM who have taken Mathematics as their core courses. This study revealed that students are preferred to study in traditional learning styles compared to e-learning. Also, individual learning styles is the most favourable.

Key-Words: - e-learning, blended learning, mathematical engineering, lecturing, computational

1 Introduction
As we enter the third millennium, education via the internet, intranet or network represents great and exciting opportunities for both educators and learners. Educators have witnessed the rapid development of computer networks and improvement in the processing power of personal computers. Even though educators and learners strongly admit that traditional teaching has their important role in teaching function [1] but we cannot avoid the development in Information and Communication Technologies (ICT). Due of this reason, blended learning has been introduced in educational system to give positive consequences especially to the students. Blended learning is a composition of traditional types of learning and e-learning.

According to Hisham, et al.[2], blended learning define as the integrated combination of traditional learning with web based online approaches, the combination of media and tools deployed in e-learning environment and the combination of number of pedagogical approaches. Implementation of blended learning is to bring together the strengths and overcome the weakness either in traditional method or e-learning [3]. In view of that, the application of blended instruction has quickly increased because instructors believe that varied delivery methods can increase students’ satisfaction from the learning experience as well as their
learning outcomes [4]. However, e-learning can be viewed in different perspectives. First, it believes that any teaching and learning process that assisted with any form of technology can be considered as e-learning. On other hand, it claims that e-learning is the alternative for the distance education which facilitated by internet as a form of communication. This research strongly insists that we considered e-learning as first case that stated above

The conceptions, attitudes, and expectations of the students regarding mathematics and mathematics teaching have been considered to be very significant factor underlying their school experience and achievement [5]. This fact also supported by Yushau [6] that students experience difficulties in studying Mathematics since they have to understand the theories and rememorize the formulae. Based on this reason, Faculty of Engineering and Built Environment (FKAB) implemented e-learning system known as WILEY-PLUS to assist students as well as lecturers to get effective teaching and learning process. Wiley-plus is a web based application that assists instructor in preparing for classes and lectures and automates the process of assigning and grading homework. As a result, students like and satisfied about the idea of blended learning (integrated traditional learning with Wiley-Plus) that implemented in mathematics courses [7].

As far as we concern, students adapted the concept of blended learning. However, adapted the concept of blended learning is not prove that students can accept the concept wholeheartedly. Could be e-learning has same priority with the traditional learning style in students’ view? Therefore, the objective of this research is to investigate and clarify the students’ preferences in learning style either traditional or e-learning. The traditional learning style can be categorized into individual (read text or reference book; read lecture notes; read their own exercises) and group learning style (discussion with friends, asked tutor or lecture). Meanwhile, e-learning can be defined using mathematical applications in the Wiley-PLUS or using any web sites related to mathematics.

2 METHODOLOGY

2.1 Participants
Questionnaires were given to the first year students from academic session 2011/2012 at Faculty of Engineering and Built Environment (FKAB), UKM. A total number of 189 students are involved in this study with 42 students from Civil & Structure Engineering (JKAS), 68 students from Mechanical & Material Engineering (JKMB), 25 students from Chemistry & Process Engineering (JKKP) and 54 students from Electric, Electronics & System Engineering (JKEES). The percentage of the students based on their gender as depicted in Figure 1. It shows that 55 percents of the students are male whereas the others are female students.

![Figure 1 Percentage of the students based on the departments in FKAB](image)

2.2 Instruments
Scope of the questionnaire was about their perception on learning style specifically. The instrument used in this study was the survey that has two parts which are student profile and students’ perception of learning style. At each question the students are required to mark using the Likert scale of 1 to 10. Mark as 1 for most important and mark as 10 for least important with the given statements. This study utilized the data gathered by the survey instruments to answer the research questions. The data obtained from the returned surveys were analyzed, and responses to the research questions were made using simple statistical method to analyze level of important on each attribute.

3 RESULTS AND DISCUSSION
First and foremost, students’ exposure or experience toward internet has been evaluated. The reason of this attribute is to ensure that early of assumption towards students is true. Researchers assume that half of the students were familiar with the internet more than two years. As we know, e-learning requires students well known using internet. Result indicates that the assumption is true which 65 percents of students experience using internet more than four years as shown in Figure 2.
Figure 2 Percentage of the students based on their experience using the Internet

Briefly, Table 1 shows the students' importance level of each attribute. At a glance, traditional learning style is dominant the upper rank whereas e-learning attribute fallen into last rank. In other words, students prefer traditional learning style compared to e-learning. The implementation of Wiley-Plus in their courses does not change students' perception toward learning style. Specifically, read text or reference book and read lecture shows the most preference learning style to the students with 3.63 points. It followed by read their own exercises and read tutorial with mean 3.94 and 3.74, respectively. Students still firmly believe that traditional way of learning is more important than e-learning. It can be prove by result that represents in Table 1. It shows that students feel least important to using mathematical applications in the Wiley-Plus (5.67 points) or any related mathematics website (5.89). Basically, we know that students experienced using internet but they are not considered e-learning has the same priority with traditional learning. Based on the Table 1, students are not favourable with the e-learning attribute.

In other perspective, students prefer to be alone rather than in group during learning process. The result indicates that individual learning style fall in upper rank. In contrast, group learning style fall in middle rank which asked the tutor is preferable (4.42 points). It followed by asked lecturer (4.17 points) and discussions with friends (4.13 points).

<table>
<thead>
<tr>
<th>Rank</th>
<th>The approach used</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Read text or reference book</td>
<td>3.63</td>
</tr>
<tr>
<td>2</td>
<td>Read lecture notes</td>
<td>3.63</td>
</tr>
<tr>
<td>3</td>
<td>Read their own exercises</td>
<td>3.94</td>
</tr>
<tr>
<td>4</td>
<td>Read tutorial</td>
<td>3.74</td>
</tr>
<tr>
<td>5</td>
<td>Discussion with friends</td>
<td>4.13</td>
</tr>
<tr>
<td>6</td>
<td>Asked lecturer</td>
<td>4.17</td>
</tr>
<tr>
<td>7</td>
<td>Asked Tutor</td>
<td>4.42</td>
</tr>
<tr>
<td>8</td>
<td>Using mathematical applications in the Wiley-PLUS</td>
<td>5.67</td>
</tr>
<tr>
<td>9</td>
<td>E-learning (using any websites related to mathematics)</td>
<td>5.89</td>
</tr>
</tbody>
</table>

(Scale :1 = most importance 10 = least importance)

4 Conclusion
This research revealed that students in Faculty Engineering and Built Environment (FKAB) prefer to study in traditional learning style rather than trough e-learning. Specifically, students prefer study as an individual as compared to group in learning mathematics. This implies, the importance of e-learning are not move parallel with traditional learning style. Thus, more actions needed to improve the e-learning system so that e-learning can help students in various ways.

Acknowledgement
This research is granted by Innovation in Mathematical Engineering Courses As e-Learning and Self-Learning Studies By Implementing Internet Source, Communicating grant (PTS-2012-016).

References:


