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Abstract: - Mathematical modeling of blood flows in the arteries is an important and challenging problem. This 

study investigates the pulsatile simulations of blood flow through two three-dimensional models of an arterial 

stenosis and an aneurysm. Four non-Newtonian blood models, namely the Power Law , Casson, Carreau and 

the Generalized Power Law, as well as the Newtonian model of blood viscosity, are used to investigate the flow 

effects induced by these different blood constitutive equations. The aim of this study are three fold: firstly, to 

investigate the variation in wall shear stress in an artery with a stenosis or aneurysm at different flow rates and 

degrees of severity; secondly, to compare the various blood models and hence quantify the differences between 

the models and judge their significance and lastly, to determine whether the use of the Newtonian blood model 

is appropriate over a wide range of shear rates. 
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1 Introduction 
Since the hemodynamics hypotheses of 

artherosclerosis were first formulated several 
decades ago, flow imaging and computing have 
played an increasingly important role in advancing 
our understanding of how blood really flows in large 
arteries prone to atherosclerosis [1]. While lumped 
parameter and linear and nonlinear one-dimensional 
wave propagation methods received much attention 
in the 1950s through 1980s, computational fluid 
dynamics (CFD) methods based on solving the three 
dimensional equations of blood flow have had a 
dominant influence on current research efforts to 
quantify hemodynamic conditions in arteries. 

 
The presence of a stenosis or an aneurysm in an 

artery may significantly alter the flow field and 
consequently the flow rate, leading to severe 
pathological incidences. In the case of a stenosis, the 
consequences may be cardiac arrest and stroke 
whereas the development of an aneurysm and its 
continuous dilation may lead to its rupture causing 
death or grave disability. Furthermore, the presence 
of the anomaly itself may produce flow disturbances 
such as vortex formation, which has been reported 
as a contributing factor to atherogenesis and 
thrombogenesis [2]. 

 
The aim of this study are three fold: firstly, to 

investigate the variation in wall shear stress in an 

artery with a stenosis or aneurysm at different flow 
rates and degrees of severity; secondly, to compare 

the various blood models and hence quantify the 
differences between the models and judge their 
significance and lastly, to determine whether the use 
of the Newtonian blood model is appropriate over a 
wide range of shear rates. 
 
 
2. ANALYSIS AND MODELLING 

Governing equations 

The blood flow is assumed to be laminar and 
incompressible and therefore the Navier-Stokes 
equations for 3D incompressible flow are given by 

0=⋅∇ V      (1) 
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where V  is the 3D velocity vector, p  pressure, ρ  

density and τ  the shear stress term. 
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Four different non-Newtonian blood flow models as 
well as the simple Newtonian model are considered in 
this study. The effects of these models on the flow 
field and the wall shear stress in the vicinity of a 
stenosis or aneurysm are examined. These models are 
given below [3]. 

Blood Models 

1. Newtonian model 

00345.0=µ  sPa ⋅     (3) 

2. Power Law Model 
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4. Carreau Model 
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5. Generalized Power Law Model 
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Geometry 

The flow geometry comprises a tube of diameter D  
and can be divided into three regions, the inlet, the 
deformed and the outlet region. In the case of the 
stenosis, the lengths of these regions are DD 2,4  

and D20 , respectively. For the aneurysm, there are 

DD 4,4  and D18 , respectively. The radius of the 

undeformed inlet and outlet is 2/0 DR = . 

In the case of the stenosis, the radius of the 
constricted region is given by 
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where minR  is the minimum radius at the centre of 
the stenosis. In this study, three different degrees of 
stenosis were used, 20%, 50% and 80%. 

In the case of the aneurysm, the radius of the dilated 
region is given by  

bxxbRRaRR cc ≤≤−−+−+= 0),)2/(( 22
0  (9) 

where  x  is measured from the start of the dilated 
region, a  is the maximum width of the dilated 
segment and  

a

ba
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)2/( 22 +
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For this study, three different values of a  0.25, 0.4 
and 0.55 were used. 

Assumptions and boundary conditions 

It is assumed that the arterial walls are rigid and no-
slip condition is imposed at the walls. At the outlet, 
stress-free conditions are applied and the pressure is 
set to zero. Finally, the velocity profile at the inlet is 
regarded to be that of fully developed flow in a 
straight tube and can be derived analytically for both 
the Newtonian and the Power Law fluids [4]. The 
forms are  
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where u  is the velocity component in the −x  
direction for the Newtonian flow and  
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for the non-Newtonian flow. In transient flow, the 
pulsatile flow at the inlet is given by a time varying 
forcing function given in [5]. This forcing function 
was scaled to yield a maximum inflow velocity of �� 
with a heart rate of approximately 60 beats per 
minute. 

Solution methodology 

The governing equations are highly nonlinear and 
must be solved numerically using techniques of 
computational fluid dynamics. In this study, these 
equations are solved using the finite element method 
as implemented by COMSOL (COMSOL Inc., Los 
Angeles, CA). The flow geometries for the stenosis 
and aneurysm were first created using Matlab. Then 
a finite element mesh was placed on these 
geometries. Briefly, an inlet plane of the artery is 
meshed in 2D using triangles and this mesh is 
extruded along the centerline of the artery to create 
a 3D mesh consisting of hexadrel elements. The 
mesh used for all computations consisted of 9,708 
elements and 15,048 nodes for the stenosis and 
17,696 elements and 27,132 nodes for the aneurysm 
as shown in Figure 1. 

 

 

 

 

 

Figure 1 3D grid for stenosis and aneurysm 

The governing equations were solved completely 
using the boundary conditions for fully developed 
flow (10) and (11) at the inlet along with the 
pulsatile forcing function for the transient case.  

 

3. RESULTS AND DISCUSSION 

Transient simulations were performed using all five 
models given above. Three different degrees of 
stenosis were used namely 20%, 50% and 80% and 
maximum dilated widths of 25%, 40% and 55% were 
examined for the aneurysm.  

 
Figure 2 above shows that all of the non-

Newtonian models considered here except the 
Power Law model produce a higher pressure 
difference than the Newtonian model. Specifically, 
the highest pressure drop is induced by the 
generalized Power Law model and the lowest by the 
Power Law model. Similar pattern in pressure 
differences are obtained at higher flow rates.  

The distribution of the wall shear stress (WSS) 
is one of the most important hemodynamic 
parameter due to its direct relevance in 
artherosclerosis formation. Figure 3 shows the 
distributions of maximum shear stress for various 
degrees of severity of the stenosis  for all models. It 
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is evident that WSS increases with increasing 
severity. All models show close agreement with the 
Newtonian model except for the Power Law model. 
At 50% stenosis, the WSS predicted by this model is 
significantly lower than the rest. Figure 5 shows the 
distribution of WSS along the geometry at various 
times. Maximum shear stresses are reached just 
before the throat of the stenosis. The magnitude of 
this value increases with higher flow rates. This 
peak is followed by a negative value indicating the 
presence of backflow. Further downstream, the WSS 
steadily regains its undisturbed value. 
 

 
Figure 3 

Wall Shear stress versus percent stenosis for various 
models, with 0.11196 m/s inflow rate. 

 
 

 
The maximum WSS for various degrees of dilation 
of an aneurysm is displayed in Figure 4 for all 
models. There is less agreement between the models 
in this case. Only the Casson and the Carreau 
models are comparable throughout. The Power Law 

model gives a much lower max
Wτ value because it 

exhibits a lower viscosity at the throat of the 
stenosis where the shear stress is high. As the flow 
rate increases, these WSS differences from various 
models become more prominent indicating 
significant differences in model behaviour. 

 
 

 
 Figure 4 

Wall shear stress versus percent dilation for various  
 models, with 0.11196 m/s inflow rate. 

Transient simulations were performed using the 
Generalized Power Law Model for both the 
stenosis and aneurysm. Each simulation was 
from 0=t  to 10.0 secs, yielding a heart rate of 
approximately 60 beats per minute.  
 
 

 
Figure 5 

Wall shear stress for 50% stenosis pulsatile 
Generalized Power Law model at various time 

intervals, with 0.11196m/s max inflow rate  
 
Figure 6 shows the distribution of maximum 

WSS with shear rate in a stenosis. Again, WSS 
increases with increasing shear rate with the Power 
Law model deviating significantly from the rest. 

 
 

Figure 6 
 

WSS versus shear rate in a stenosis 
  

Figure 7 displays the maximum WSS for 
increasing shear rate in an aneurysm. There is 
less agreement between the models at higher 
shear rates with the Power law model showing 
the least agreement.  
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The distribution of the WSS for the Generalized 
Power Law model is shown in Figure 8. The 
WSS drops as the flow enters the aneurysm and 
reaches a peak at the end of the dilated segment. 
This peak value increases with increasing flow 
rate. The negative WSS values indicate the 
presence of a recirculation region. As the flow 
exits the aneurysm, the WSS gradually regains 
its undisturbed value.   

 

 
Figure 7 

WSS versus shear rate in an aneurysm 
 
 

In the case of pulsatile flow through the 
aneurysm, the simulation was performed for 10 
sec using the Generalized Power Law model. As 
in the case of the stenosis, results in Table 4 
show the maximum WSS values are produced at 
mid-cycle corresponding to the peak inflow 
velocity. However, the maximum pressure is 
attained just before mid-cycle and the minimum 
pressure towards the end of the cycle. This 
maximum pressure is excessively high. It is not 
clear why this is so and further investigation is 
planned. The streamline patterns at various 
points of the cardiac cycle are shown in Figure 5. 
The formation and re-formation of the 
recirculation regions corresponding to the 
oscillatory nature of the pulsatile flow is evident.  
 
The WSS distribution in pulsatile flow shown in 
Graph 6 display a similar pattern in mid-cycle as 
in the steady state case. The distribution at other 
times show some marked differences due to the 
development of backflow regions inside the 
aneurysm. 
 
In all cases, for both the stenosis and the 
aneurysm, the flow field and the WSS changed 
significantly as the degree of abnormality 
increased. The recirculation regions become 
larger progressively and the WSS generally 
increases, especially for the stenosis.  

 

 
 

Figure 8 
Wall shear stress for 55% aneurysm pulsatile 

Generalized Power Law model at various time 
intervals, with 0.13625 m/s max inflow rate 

 
 

4. CONCLUSIONS 
 

A study of the effects of modeling blood flow 
through a stenosis and an aneurysm using five 
different blood rheological models is presented. The 
flow field and wall shear stress distributions 
produced by each model are investigated for various 
flow rates and degrees of abnormality. The results 
show that there are significant differences between 
simulating blood as a Newtonian or non- Newtonian 
fluid. It is found that the Newtonian model is a good 
approximation in regions of mid-range to high shear 
but the Generalized Power Law model provides a 
better approximation of wall shear stress at low 
shear. 
 
These conclusions are presented under the 
assumption that the arterial walls are rigid and zero 
pressure is assumed at the outlet. A more realistic 
simulation would include elastic walls and 
incorporate the effects of upstream and downstream 
parts of the circulatory system into the boundary 
conditions. This is a long term objective of this 
study. 
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