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Abstract: A new approach to plastic flow in crystals is proposed. This is based on investigations of the 
macrolocalization patterns of plastic deformation, which are regarded as autowave processes of 
different types involved in the self-organization of structural defects. A two-component model is used 
to account for autowave formation; built into the model is the notion of interaction between a dynamic 
and an information subsystem of the deforming medium. The existence of a quazi-particle is 
hypothesized which is responsible for the propagation of localized plastic deformation autowaves. 
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1 Introduction 
Investigations into the nature of plastic deformation 
in solids were carried on during recent 25 years. The 
investigators arrived at an important conclusion that 
the plastic flow would exhibit an inhomogeneous 
behavior at the micro-, meso- and macro-scale 
levels [1-4]. It is maintained that by plastic flow the 
deformation is prone to localization at all the stages 
from yield limit to fracture, with the micro-, meso- 
and macro-scale localization events being almost 
simultaneously involved in the plastic flow 
processes. The macrolocalization phenomenon 
would occur in all deforming materials in any 
loading conditions, no matter what crystal lattice 
type and material phase composition and granular 
structure [3]. The evolution of macrolocalization 
patterns would cause autowaves to originate. 

The types of localized plasticity autowaves are 
determined by the deformation hardening law, i.e. 
each type of autowaves corresponds to the 
respective flow stage on the loading curve. This 
observational result enabled Zuev [5] to propose a 
correspondence rule, which holds that a changeover 
in the type of localized plasticity autowaves is 
determined by a changeover in the plastic 
deformation hardening stages. One can single out a 
particular flow stage on the stress-strain curve [3, 5] 
using the respective value of deformation hardening 
exponent from the Ludwick – Hollomon equation 
(1), which in a general case applies to any kind of 
deformation curves, i.e. 
 

nKεσσ += 0 .  (1) 
 
In this case, the correspondence rule is formulated 
as follows. 

• For n = 0, yield plateau or easy glide stage 
is observed; it corresponds to the occurrence 
of a single localized deformation front 
(Chernov – Luders band) traveling at a 
constant velocity Vaw, which can be 
regarded as a self-excited wave (Fig. 1 a).  

• For n = 1, linear work hardening stage 
begins; this is distinguished by the 
occurrence of a set of equidistant localized 
deformation nuclei propagating 
synchronously at a constant rate in the same 
direction. This pattern can be treated as a 
phase autowave of deformation localization, 
which has a constant rate λ and a 
propagation rate Vaw (Fig. 1 b). 

• For n = ½ the stage of parabolic work 
hardening (Taylor stage) [6] sets in; the 
emergent autowave pattern is a stationary 
and equidistant one having a spatial period λ 
(Fig. 1 c). 

• For n < ½, the prefracture stage is observed; 
it is characterized by the occurrence of a 
prominent stationary localization zone in 
which the deformation amplitude would 
grow steadily. The remaining nuclei are 
traveling towards the latter zone, the father 
away from the zone a nucleus is, the higher 
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its motion rate.  With growing degree of 
tension, necking would occur within the 
stationary zone which is followed by 
fracture. This process is defined in [3] as 
collapse of localized plasticity autowave 
(Fig. 1 d). 

 

a 

b 

c 

d 
Fig. 1. Typical localized plasticity patterns: (a) yield 
plateau in a high manganese steel monocrystal, (b) 
linear work hardening stage in a vanadium alloy 
sample, (c) Taylor’s parabolical stage in a silicon iron 
alloy sample, (d) prefracture stage in a zirconium alloy 
sample. Localization nuclei’ positions plotted against 
time of loading 

The formation of localized plasticity autowaves can 
be approached in the framework active medium 
model; the basic assumption of the model is that an 

active medium incorporates two subsystems, i.e. an 
information and a dynamic one [7]. An idea about 
the quantum nature of autowaves has been advance 
recently. In what follows the above two problems 
are considered. 
 
 
2 The main concept and experimental 
evidence 
The above two-component model is proposed for 
the acquisition of the physical notion of the nature 
of autowaves in question [8, 9]. The basic 
assumption of the given model is that a deforming 
medium is subdivided into dynamic and information 
subsystems: (i) various processes involving motion 
of dislocations and of dislocation ensembles, which 
are responsible for form changing proper, play the 
role of dynamic subsystem; (ii) the acoustic 
emission signals emitted by elementary relaxation 
acts in the course of plastic deformation are 
assigned the role of information subsystem. 
According to Kadomtsev [7], the interaction 
between these two subsystems is liable to cause self-
organization of the active medium, which might 
involve autowave propagation. 

The mathematical treatment of the problem is to 
represent the two-component model by a system of 
two differential parabolic equations of reaction-
diffusion type [3], i.e. 

''
.),( εσεε
ε

Df +=
⋅

,   (2) 

''
.),( σεσσ

σ
Dg +=

⋅
.  (3) 

Equations (2) and (3) are derived for the rate of 
variations in the dynamic and information 
subsystems, respectively. The non-linear functions 
f(ε,σ) and g(ε,σ) which describe the point kinetics 
have the meaning of the rates of stress and strain 
variation on the micro-scale level. In particular, the 
non-linear function f(ε,σ)  from (2) is equivalent to 
the Taylor-Orowan equation of dislocation kinetics. 

This function can be rewritten as ddVbρε =
⋅

 (here b 
– Burgers vector; ρd – mobile dislocation density 
and Vd – rate of dislocation motion over local 
barriers). Alshits and Indenbom [10] pointed out 
that dislocation motion over local barriers would be 
retarded by the phonon and electron gases. The 
phonon gas density would vary only insignificantly 
for different metals at the same temperatures, while 
the electron gas density might vary considerably for 
different metals. The contribution of electron gas to 
the retardation of dislocation motion is significantly 
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lower relative to the phonon gas. However, it is the 
contribution of electron gas, which determines the 
point kinetics of the dynamic subsystem described 
by the function f(ε,σ) from (2) for a given metal. 
Since both the phonon and the electron gas in metals 
have a quantum nature, it is expected that the 
autowaves of plastic deformation localization might 
exhibit certain quantum features. 

The idea of adopting a quantum approach to 
describe the localized plasticity autowaves was 
introduced at the beginning of this century [11-13]. 
This consists in substitution of the autowave 
characteristics λ and Vaw into the de Broglie equation 
(4): 

λ
h

p = ,    (4) 

where p = mVaw and h – the Planck constant. It is 
evidently required that the experimental values λ 
and Vaw be determined simultaneously. For this 
reason, one can only use λ and Vaw data obtained for 
the stage of linear deformation hardening. Indeed, at 
the yield plateau a single mobile localization 
nucleus would occur; therefore, one cannot 
determine the value λ as a spatial period. At 
Taylor’s stage the nuclei are immobile; hence Vaw = 
0. At the prefracture stage collapse of the autowave 
occurs, with its length and rate being variable 
values.  
 

λ×103  Vaw×105  ρ×10−3 Atomic 
mass ionr  N meff ×1027  

Ωd   Metal  

m m/s kg/m3 a.m.u. nm  kg  
(a.m.u.) 

nm 

ionrdΩ

 

s×102 

Cu (B) 4.5 8.0 8.9 63 0.072 1 1.84 
(1.1) 

0.059 0.82 1.74  

Zn (B) 7.6 4.85 7.1 65 0.071 2 1.8 
(1.08) 

0.063 0.89 1.67 

Al (A) 7.2 11 2.7 27 0.051 3 0.84 
(0.50) 

0.068 1.33 1.87  

In (A) 4.2 6.1 7.3 115 0.081 3 2.6 
(1.6) 

0.071 0.88 1.4 

Zr (B) 5.5 3.5 6.5 91 0.079 4 3.44 
(2.05) 

0.081 1.02 2.24 

Ti (B) 7 5 4.5 48 0.076 4 1.9 
(1.1) 

0.075 0.99 2.3 

Pb (A) 5.3 6.6 11.3 207 0.084 4 1.89 
(1.14) 

0.055 0.65 0.55 

V (B) 4.0 7.0 6.1 51 0.059 5 2.37 
(1.42) 

0.069 1.08 2.81 

Nb (B) 4.0 4.5 8.6 93 0.069 5 3,68 
(2.22) 

0.075 1.09 2.39 

Sn (A) 4.27 7.3 7.3 118 0.071 4 2.1 
(1.28) 

0.066 0,93 1.1 

γ-Fe (B) 5.0 5.1 7.9 56 0.064 8 2.6 
(1.76) 

0.069 1.08 2.81 

α-Fe (B) 4,3 5,2 7.9 56 0.064 8 2,96 
(1.77) 

0.072 1.12 3,0 

Ni (B) 3.5 6.0 8.9 59 0.069 10 3.16 
(1.89) 

0.068 0.99 3.24 

Table. Characteristics of studied materials and of localized deformation 
autowaves observed in the same 

The calculated value meff is a sufficiently small 
one to correlate with the atomic masses of metals. 
The calculated values meff are listed in the Table; 
also tabulated for each metal are the values λ, Vaw, 
atomic masses, density values ρ, number of atoms 
per unit cell N as well as ionic radii r ion calculated 
using the Bokii – Belov procedures [14]. As is seen 
from the Table, the effective masses obtained for 
all studied materials are in the interval me << meff ≤ 
2 a.m.u. (here me = 5.5×10-4 a.m.u. is the electron 
mass). Evidently, the effective masses me obtained 

for different metals will depend on the atomic 
masses Mat of the same. Therefore, normalization 
was performed to give dimensionless masses, i.e.  

at

eff

M

m
s= .   (6) 

The values s are also tabulated. Finally, the 
volumes Ω were calculated as Ω = meff/ρ and the 
characteristic distances were obtained for studied 

metals as 3 Ω=Ωd . The values dΩ differ from the 
ionic radii of the respective metals by less than 
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20%, with the exception of lead and aluminum for 
which the difference observed is greater than 30%. 

In view of the above, the effective mass meff of 
the localized plasticity autowave is expected to 
define the kinetics of individual dislocations by 
virtue of being an inertial characteristic; 
consequently, its value would be determined by 
electron gas density. 

The dimensionless mass s against the number of 
valence electrons N is illustrated for studied metals 
in Fig. 2. For most metals, this dependence can 
apparently be interpolated using linear function as 

Nss κ+= 0 ,   (7) 
where s0 = 1.5⋅10-2 and κ = 0.18⋅10-2. The 
correlation coefficient is 0.94. The free term s0 
corresponding to the state for N = 0 is treated as 
contribution of the phonon drag to the effective 
mass of autowaves. The second addend tends to 
rise with growing electron density; hence it is 
evidently related to the electron gas contribution. 

 
Fig. 2. The dimensionless mass of localized deformation 

autowave against the number of valence electrons of 
studied metal 

For indium, tin and lead, however, the above 
regularity does not hold. This might be due to the 
following causes. (i) The localized plasticity 
autowaves observed for these metals have 
significantly lower dimensionless masses relative to 
the other studied metals, i.e. the value s = 0.55⋅10-2  
obtained for lead is four times smaller relative to 
titanium and zirconium, which have the same 
number of valence electrons as lead does. (ii) With 
growing number of valence electrons, the 
dimensionless masses of autowaves obtained for 
the above three metals decrease (see Fig. 2, line 2). 
And last but not least, the characteristic size 

Ωd obtained for lead differs significantly from its 
ion radius r ion (see Table). 

 

 

3 Discussion of results 
According to A. Scott [15], a description of 
autowave processes in active media has to take into 
account the interaction between the autocatalytic 
and the inhibiting factor. By the deformation, the 
strain ε and the stress σ play the roles of catalyst 
(2) and damper (3), respectively.  The members in 
(2) and (3), which have second spatial derivatives, 
describe the diffusion redistribution of strains and 
stresses, i.e. the autocatalytic and inhibiting factors, 
respectively. Therefore, the coefficients Dε and Dσ  
for the latter factors must have the dimension of 
diffusion coefficient (m2s-1). It is pointed out in [9, 
16] that the diffusion coefficients Dε ≈ λVaw and Dσ 
≈ dV⊥ are determined, respectively, by the 
processes occurring on the macro- and micro-scale 
levels (here d is the distance between the most 
closely packed crystallographic planes and V⊥ is the 
rate of transverse sound waves). However, the 
coefficient Dσ, determines the effective phonon 
mass as mph = h/dV⊥; consequently, the effective 
mass meff = h/λVaw could be ascribed to another 
quasi-particle, i.e. an autolocalizon [17]. The quasi-
impulse p = h/λ and the energy E = hVaw/λ of 
autolocalizon are also determined by the autowave 
characteristics. This approach agrees with the 
conventional implementation of quasi-particles in 
the theory of solids [18]. An additional argument in 
favor of the quantum approach to plastic flow 
description is the dispersion relation of quadratic 
form derived for the localized plasticity autowaves 
[19].  

Today at least two macroscopic phenomena are 
known which can be addressed exclusively in the 
framework of quantum theory; these are 
superfluidity and superconductivity. The latter 
phenomena, together with localized plastic flow, 
have similar elementary excitation spectra 
involving respective quazi-particles. The thesis 
proposed in the monograph [3] is that the entire 
deformation process, from yield point to fracture, 
would involve condensation of respective quazi-
particles. Thus condensation of long-wavelength 
phonons generates plastic flow quanta 
(dislocations). Due to the condensation of 
elementary plastic shear carriers, various self-
organization ensembles having different degrees of 
complexity would form. The condensation of 
plastic flow quanta would cause macro-scale 
autowaves of plastic flow localization. Finally, 
autolocalizons would appear whose condensation is 
manifested as collapse of localized plasticity 
autowaves and subsequent fracture. The latter 
process may be represented as formation of a 
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fracture quantum, i.e. a crackon, which was 
introduced by Fiedman and co-workers [20]. 

The effective mass of autolocalizon is taken to 
be about equal to two effective masses of phonon 
[16]. In this case, however, the normalized 
(dimensionless) mass s would be equal for all 
studied materials. The results obtained in this 
investigation suggest that the above contention is 
true provided the data is averaged for all studied 
metals. In point of fact, the value s increases with 
growing number of valence electrons. 
Consequently, proper allowance must be made for 
the electronic component of the kinetics of 
deformation defects. This is sustained by the fact 
that dependence (7) does not hold for lead, tin and 
indium, which might be due to the fact that these 
metals belong to A-subgroup of Mendeleyev’s 
periodic table (see the Table). Thus, by addressing 
the nature of localized plastic deformation 
autowaves, one has to take account of the 
contribution to the kinetics of micro-scale 
deformation events of electronic component. As is 
seen from the Table, aluminum also belongs to A-
subgroup; its characteristic distance Ωd  adopted in 
quantum mechanics exceeds significantly its ionic 
radius. The above four metals make up an 
individual group characterized by the decreasing 
dimensionless mass of autolocalizon with growing 
number of valence electrons (Fig. 2). The only 
valid explanation of this fact is as follows. The 
electron configuration of atoms in an element 
determines its metalloid properties. Thus p-electron 
shell population corresponds to enhanced metalloid 
properties; the reverse situation is observed for d-
electron shell population. The above four metals 
belong to the former group. 
 
 
4 Conclusion 
1. The plastic flow in solids is evolution of regular 
patterns of localized plasticity autowaves. The type 
of autowaves is determined by the law of work 
hardening acting at the corresponding flow stage of 
the stress-strain diagram.    
2. The deforming system separates into a dynamic 
and an information subsystem, which interact with 
one another to cause origination of localized plastic 
deformation autowaves.      
3. The localized plasticity autowaves are quantum 
phenomena; these can be addressed in terms of a 
hypothetical quazi-particle which has been given 
the name ‘autolocalizon’. The autolocalizon 
characteristics, i.e. effective mass, quazi-impulse 
and energy, are determined by the properties of 
autowaves.  

4. The effective mass of autolocalizon depends on 
the density of phonon and electron gases. With 
growing number of valence electrons in metals 
having d-electron shell population, the effective 
mass of autolocalizon increases, while in metals 
having p-electron shell population the same value 
decreases.  
5. The deformation process occurring in a solid 
from yield point to fracture can be described as a 
series of condensation events involving respective 
quasi-particles. Thus the condensation of long-
wavelength phonons would cause formation of 
dislocations, which are plastic shear quanta. Due to 
the condensation of plastic shear quanta, 
autolocalizons will form which are quanta of 
localized plasticity autowaves. The last flow stage 
involves condensation of the autolocalizon, i.e. 
collapse of the autowave, with a resultant formation 
of a fracture quantum, so-called crackon, which is 
responsible for the main crack development.  
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