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Abstract: The term uncertainty originates from 
imperfect knowledge of the processes under question. 
These errors are sometimes associated with questionable 
data quality and scarcity; complexity of the phenomena 
that are treated by models as simplified systems. 
Important components of uncertainty analysis include (i) 
qualitative analysis that identifies the uncertainties, (ii) 
quantitative analysis of the effects of the uncertainties on 
the decision process, and (iii) communication of the 
uncertainty (Funtowwicz and Ravetz 1990, Petersen 
2000, Regan et a1.2002, Katz 2002). In landscape 
simulations (which are widely used in landscape 
ecology) a generation of landscape patterns is taking 
place for the investigation of the local or global 
connectivity between regions. Neighbourhood structures 
are used for that purpose to explain and analyse the 
spatial connectivity between smaller to bigger regions 
including investigation of the spatial homogeneity. 
Modelling of that spatiality involves conditional 
probabilities which are explained by Markov random 
fields models. Estimation of these particular models 
could be introduce a Bayesian statistics analysis based on 
these conditional probabilities which are explained the 
spatial variability into the regions especially when 
hidden information’s are involved (Zimeras and 
Matsinos, 2011). In this work a spatial analysis 
methodology based on Bayesian analysis was introduced 
and procedures to solve the problem with spatial 
variability are described based on point estimation 
techniques. 
 
Keywords: spatial modelling, uncertainty, Markov 
random fields, MCMC, Spatial point analysis, 
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INTRODUCTION 
 
Model evaluation assumes a certain general 
structure (e.g. multiple linear) and the model is 
built through adding terms (variables) which are 
significant or which aid in prediction (hierarchical 
modelling). Parameter uncertainty is defined as a 
problem of estimation. These models are similar to 
models common to risk analysis, which often leads 
to deterministic approaches for the evaluation of 
the parameters. Stochasticity is often introduced 

through stochastic functions (e.g. weather) or 
random effects in parameter values. 
Although the uncertainty analysis problem is 
similar to statistical problems, in application the 
uncertainty analysis problem is often more 
complex than many statistical problems. Models 
are used due to the complexity of the problem. The 
choice of the model is a choice that leads to 
structural uncertainty. Uncertainty affects every 
aspect of modelling (Jansen 1998, Katz 2002, Stott 
and Kettleborough 2002). Data may contain errors 
that result from problems with sampling, 
measurement, or estimation procedures (O'Neill 
and Gardner 1979, Regan et al. 2002). Incomplete 
data are a common problem, especially in spatial 
modelling. (Reckhow 1994, Clark et al. 2001, 
Rypdal and Winiwarter 2001, Katz 2002). 
Uncertainties arise from measurement errors. These 
errors are results of models when hidden 
information’s are appears especially when repeated 
measures are involved as result of spatial 
variability of the landscape simulations. 
Uncertainty techniques should be used to decrease 
the variability effect from observations. Outliers 
are the result of data inhomogeneity and robust 
procedures must be applied to deal with that 
problem.  
 

SPATIAL UNCERTIANTY ANALYSIS 
 
Uncertainty can become a major problem analyzing 
incomplete data especially in spatial modelling at 
different spatial and temporal scales. Models are 
sometimes imperfect and incomplete, especially in 
grain scaling data where biotic or other information 
of large regions need to be predicted by smaller 
ones. Uncertainty analysis in that perspective is the 
process of assessing uncertainty in modelling or 
scaling to identify its major sources, quantify their 
degree and relative importance, examine their 
effects on model output under different scenarios, 
and determine prediction accuracy. Involvement of 
modelling introduces statistical errors (especially in 
spatial cases where homogeneity of the neighbours 
is one of the measures to justify differences 
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between regions). For that reason (incomplete data, 
spatial differences and statistical modelling) 
analysis of uncertainties in regions is a complex 
problem. Although the uncertainty analysis 
problem can be thought of in an analogous way to 
usual statistical problems, in application the 
uncertainty analysis problem is often more 
complex than many statistical problems. Thus 
specific models are used due to the complexity of 
the problem. The choice of the model is a choice 
that leads to structural uncertainty. Uncertainty 
affects every aspect of modelling (Jansen 1998, 
Katz 2002, Stott and Kettleborough 2002). Data 
may contain errors that result from problems with 
sampling, measurement, or estimation procedures 
(O'Neill and Gardner 1979, Regan et al. 2002). 
Incomplete data are also a common problem, 
especially in spatial modelling. (Reckhow 1994, 
Clark et al. 2001, Rypdal and Winiwarter 2001, 
Katz 2002). 
Uncertainties in ecological modelling arise from 
either systematic or random errors. Systematic 
errors in measurements are mainly caused by 
imperfect calibration of measurement equipment, 
technically caused limits in data quality/sampling 
frequency (coarse grained vs. fine grained satellite 
data), limits in capacity (CPU power, hard disk 
space, memory) or data type (raster vs. vector, 
wrong classification). Random errors are mainly 
caused by unpredictable situations, natural and 
spatial variation, and appear when measurements 
are repeated. The random errors are similar to the 
standard deviations. The variation of the reported 
models can be explained by both systematic and 
random errors. Uncertainty in models can be 
divided in a similar way by statistical and 
systematic uncertainty. The statistical uncertainties 
arise from the variability of input variables and 
parameters where the variability is known. This 
variability can be described by probability density 
functions (PDFs) describing the variability of the 
input variables and the parameters. Systematic 
uncertainties arise from variability in input 
variables and parameters when variability is 
unknown. Also unknown processes in the model 
(e.g. incorrect model structure) contribute to the 
systematic uncertainties. Examples of different 
models of uncertainty are shown in Figure 1. 

 

Fig. 1. Different models of uncertainty resulting 
from applications of probability theory, category 
theory, and perception theory (from Linkov et al. 
2006). 
 
The issue of uncertainty is of particular importance 
dealing with scaling in ecology; the extrapolation 
of information from one scale to another in time or 
space or both (Sivapalan 1995, Wu 1999). In the 
process of scaling, errors in data and models are 
critical for the results. Thus, uncertainty analysis is 
an essential part of scaling analysis because it 
provides critical information about the accuracy of 
scaling results (Katz 2002).  
Landscape simulators have been widely applied in 
landscape ecology for generating landscape 
patterns. These models can be divided into two 
groups: mathematical (or pattern-based), which 
generate spatial patterns irrespective of the 
processes that shape these patterns, or models that 
attempt to generate patterns by mimicking the 
processes that shape them. A mathematical or 
pattern-based approach is used based on 
mathematical algorithms to generate patterns, 
regardless of the underlying processes. The 
simplest approach is the production of simple 
random maps (“neutral models”). These models 
lack any systematic processes that may structure a 
landscape. Even so, a remarkable degree of change 
in pattern occurs as p, the proportion of land-cover, 
changes. Another way to simulate landscape 
patterns is to use conditional probabilities models, 
based on exponential family models (Zimeras and 
Matsinos, 2011), defined as Markov random fields 
models based on the neighbourhood structure of the 
lattice system (Figure 1). 
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              Fig 1. Landscape simulations  

Interactions between regions at different scales are 
characterized by their local dynamics and the 
emergent spatial patterns are the outcome of 
different processes.  Spatial process is focused on 
the information extraction where useful 
information about spatial pattern could be used in 
order to answer questions regarding the underlying 
processes (e.g. competition) (Turner, 1989; Wiens, 
1989). However, the sometimes hidden spatial 
dependence in data can lead to violations of the 
spatial homogeneity assumptions (Legendre, 1993).  
Uncertainty in models can be divided in a similar 
way by statistical and systematic uncertainty. The 
statistical uncertainties arise from the variability of 
input variables and parameters where the 
variability is known. This variability can be 
described by probability density functions (PDFs) 
describing the variability of the input variables and 
the parameters. Systematic uncertainties arise from 
variability in input variables and parameters when 
variability is unknown. Also unknown processes in 
the model e.g. incorrect model structure contribute 
to the systematic uncertainties.  
Scaling is the extrapolation of information from 
one scale to another in time or space or both 
(Sivapalan 1995, Wu 1999). In the process of 
scaling, errors in data and models may be effects 
the results. Thus, uncertainty analysis is an 
essential part of scaling because it provides critical 
information about the accuracy of scaling results 
(Katz 2002). 
A methodology is introduced by considering grain 
scaling data. In landscape ecology, grain describes 
the size of the smallest homogeneous unit of study 
and determines the resolution at which a landscape 
is studied. It is equivalent to minimum mapping 
unit in cartography. A pixel in a digital image is 
analogous to a grain in a landscape. The choice of 
scale is important in determining the resolution of a 
study and constrains any inferences or 
extrapolations from the study. In studies of 
landscape, no pattern can be detected beyond the 
extent or below the grain of the study. For spatial 
data or images, spatial grain size corresponds to 
maximum resolution ratio or pixel size (Figure 2). 

 
 

Fig. 2. Grain data based on different scaling 

Model uncertainty has two basic components, 
model structure and model parameters (O'Neill and 
Gardner 1979, Jansen 1998, Katz 2002). Model 
structure uncertainty is caused by the modelling 
processes of simplification and formulation. Model 
simplification is essential to modelling and is the 
identification and selection of the relationships, and 
variables that are the most important to the 
modelling analysis. 
This kind of uncertainty is fully attributed to the 
use of models (mathematical, statistical and 
simulation) that are developed in order to represent 
an ecological system. One possible way of 
introducing model uncertainty is the exclusion of 
processes thought not to be as important as the key 
model processes. This is quite often the case of the 
conceptual models. Another way has to do with the 
mathematical or statistical representations of 
variables that sometimes are hard to assess. For 
example the choice of a discrete or a continuous 
modelling approach depends on the nature of the 
variables. The only way to deal with this 
uncertainty type is model validation and 
verification, apart from analytical model 
investigation.  
Model evaluation assumes a certain general 
structure (e.g. multiple linear) and the model is 
built through adding terms (variables) which are 
significant or which aid in prediction (hierarchical 
modelling). Parameter uncertainty is defined as a 
problem of estimation. These models are similar to 
models common to risk analysis, which often leads 
to deterministic approaches for the evaluation of 
the parameters. Stochasticity is often introduced 
through stochastic functions (e.g. weather) or 
random effects in parameter values. Grain scaling 
data introduces a pyramid modification where large 
regions are attempted to be modelled by smaller 
ones. In that point of view connectivity between 
different levels in the pyramid must be introduced 
leading us to spatial connectivity between levels’ 
regions. Spatial connectivity includes 
neighbourhood structure between regions, where 
investigation of that structure includes modelling of 
the spatial homogeneity. The last could be 
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illustrated by using spatial modelling techniques 
(like spatial autocorrelation, partition functions, 
and multilevel statistical models). Spatial 
investigation involves stochastic modelling 
especially in cases where the incomplete data 
involves hidden information. Stochasticity also 
could be introduced as departing from the random 
nature of data. So incompleteness (hidden 
information) leads us to the use of stochasticity 
where incomplete information could be explained 
(and modelled) by adding particular functions, 
which explain a large amount of information 
introducing a new modelling (Morgan and Hemion 
1990, Klepper 1997, Katz 2002). Uncertainty 
analysis requires that statistical distributions of 
parameters be known. However, a common 
problem in uncertainty analysis is that the accuracy 
of measurements and/or estimates of parameters 
are unknown (O'Neill and Gardner 1979, Jansen 
1998, Regan et al. 2002). 
The issue of uncertainty is of particular importance 
dealing with scaling in ecology; the extrapolation 
of information from one scale to another in time or 
space or both (Sivapalan 1995, Wu 1999). In the 
process of scaling, errors in data and models are 
critical for the results. Thus, uncertainty analysis is 
an essential part of scaling analysis because it 
provides critical information about the accuracy of 
scaling results (Katz 2002).  
Analyzing uncertainty with probabilistic models is 
thus important. The simplest situation is 
represented by most 1-dimensional (1D) models in 
which the distributions are taken to represent 
variability, and where there are adequate data to 
characterize the distributions. More complicated 
situations may involve the inclusion of 
uncertainties in 2-dimensional (2D) models. For 
distributions that represent variability, initial 
decisions may relate to the selection of data on 
which to base distributions. Τhe data are a random 
sample from the populations of interest. In 
addition, data should represent a spatiotemporal 
scale appropriate for the model.  
Variability in ecology systems may result from 
spatial heterogeneity of conditions or from 
randomness in interactions of different processes. 
Natural variability of data is a critical factor in 
uncertainty analysis because modelling only with 
average values can produce bias in predictions, 
especially for nonlinear models (O'Neill 1979, 
Scherm and van Bruggen 1994). Spatial variability 
in systems attributes and driving variables need to 
be effectively incorporated into simulation 
modelling. The variability in the variables is then 
used as a measure of the output uncertainty. Many 
techniques can be used to analyze uncertainties in 
model parameters and input data. These include 

applications of probability theory, Taylor series 
expansion, Monte Carlo simulation, generalized 
likelihood uncertainty estimation, Bayesian 
statistics, and sequential partitioning (Gardner and 
O'Neill 1983, Gardner et al. 1990, Rastetter et al. 
1992, Heuvelink 1998b, Jansen 1998, 
Wiwatenadate and Claycamp 2000, Katz 2002). 

 
Bayesian analysis of uncertainty 

 
Bayesian statistical methods quantify uncertainty 
by calculating probabilistic predictions. The 
procedure has three stages: (1) determination of the 
prior probability distribution for model parameters, 
(2) construction of a likelihood function for the 
statistical model, and (3) derivation of the posterior 
probability distribution for the parameters by using 
the Bayes rule to adjust the prior distribution based 
on the observed data (Katz 2002). Based on 
Bayesian analysis, uncertainty is modeled based on 
the randomness of the data, which can be explained 
by distribution of the measurements. These 
measurements could be used (combined with 
probability modeling) to estimate the amount of the 
uncertainty effects of the measurements. Statistical 
estimation techniques can be used to determine the 
parameters of the distribution.  These techniques 
are useful to estimate probability distributions from 
available data or by collecting a large amount of 
theme (Figure 3) (Jansen et. al., 1998) 
 

 
 
Fig. 3. Bayesian statistic uncertainty analysis 
(Jansen et. al., 1998) 
 
Traditional hypothesis testing is based on 
calculating the probability of observing specific 
data (Y) given the null hypothesis, θnull, that is, P(Y 
< Y | θnull ) 
So main interest is the likelihood (L) of competing 
hypotheses given the data, which is proportionate 
to the probability of the data given the hypothesis 
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where θ represents a set of parameter values 
specifying a particular model or models and that 
we are interested in the probability of observing the 
data Y given those parameter values. 
Ecological models make predictions about states 
and processes of interest as functions of parameters 
(θ). For a single observation, the likelihood of the 
prediction of a model is proportional to the 
probability of that observation conditional on the 
model’s parameters. More formally, assuming we 
have a model f (θ) that makes predictions on a 
variable of interest, for example, population 
density. We have a data set Y composed of n 
individual observations on that variable, Y = {y1, 
y2, . . . , yn}. Likelihood of the value of the 
parameter (or parameters) in our model given a 
single observation yi is 

               
where the function g(. ) is a probability function (if 
the yi are discrete) or a probability density function 
(if the yi are continuous). If it is assumed that the 
deviations are independent of one another, then 

             
For computational simplicity, it is often more 
useful to maximize the log likelihoods, in which 
case we have the following: 

 
Computing the likelihood or the log likelihood as a 
function of parameter values or model predictions 
provides a likelihood profile, which allows us to 
see how the model’s likelihood changes as 
parameter values are changed. Likelihood profiles 
can be used to calculate confidence intervals on 
model parameters 
Bayesian model averaging is an alternative 
approach to model selection and prediction 
(Hoeting et al. 1999). The idea of Bayesian model 
averaging is to average across several models 
instead of selecting one model. In computing the 
average, each model is weighted by its posterior 
model probability, a measure of the degree of 
model support in the data. Empirical and 
theoretical results over a broad range of model 
classes indicate that Bayesian model averaging can 
provide improved out-of-sample predictive 
performance as compared to single models. 

 
Geostatistical analysis  

 
Geostatistics is based upon the spatial pattern 
recognition that in the Earth sciences there is 
usually a lack of sufficient knowledge concerning 
how properties vary in space. Therefore, a 
deterministic model may not be appropriate. If we 
wish to make predictions at locations for which we 
have no observations, we must allow for 
uncertainty in our description as a result of our lack 
in knowledge. So, the uncertainty inherent in 
predictions of any property we cannot describe 
deterministically is accounted for through the use 
of probabilistic models. The most effective way to 
visualize spatial pattern data is to plot them as a dot 
map. A dot map is a region over which the events 
are observed as points. The dot map has long been 
one of the most popular cartographic tools of 
geographers. Figure 4 represents the locations of 
the data represents the positions of the centers of a 
region field. The data region is split into a grid with 
width 0.025m and the frequencies of the points in 
the pixels are calculated. Obviously the pattern 
appears clusters. 
 

            
 
Fig. 4. Spatial locations of the epicenters of the 
region firld 
 
One way to summarize the events in a spatial point 
pattern is to divide the regions into sub regions of 
equal areas (quadrants). By counting the number of 
events inside each quadrant, we end with a measure 
(frequency or histogram) that summarizes the 
spatial pattern. The intensity of a point pattern is 
the mean number of points per unit area. Intensity 
plots display a smooth estimate of intensity for a 
spatial point pattern. One can see how dependent 
the visual display is on some of the options when 
one considers the intensity image via the binning 
method. Figure 5 illustrates two cases for 
simulating cluster process using different fraction 
of the area values. 
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Fig. 5. Simulation of a cluster process with 
different fractions of area values. 
 
Binning via nonparametric smoothing is a tool for 
intensity estimation. Rectangular bins are formed 
within the region. A moving window or ‘span’ is 
used to estimate the local intensity through the 
local nonparametric regression function loess. With 
the concentrations of locations in just two areas, 
changing the fraction of region would not 
accomplish much here visually. Widening the 
fraction will result in a much smoother/coarser 
image (Figure 6).  
 

                   
Fig. 6. Binning smoothing 

 
Geostatistics provides the practitioner with a 
methodology to quantify spatial uncertainty. 
Statistics come into play because probability 
distributions are the meaningful way to represent 
the range of possible values of a parameter of 
interest. In addition, a statistical model is well 
suited to the apparent randomness of spatial 
variations..  It must be noted that there is 
considerable variety of statistical methods that have 
been applied in the analysis of spatial variation in 
ecological data, summarized by (Dale, 1999).  
These include dispersal analysis, spectral analysis, 
wavelet analysis, kriging and spatial Monte Carlo 
simulations and many geostatistics methods. 
Kriging was developed for estimating thresholds of 
continuous variables. It has been used for 
interpolation and simulation of categorical 
variables and for spatial uncertainty analysis. Auto-
correlation of the spatial variables was represented 
by indicator auto-variogram models. The kriging 
estimator for the occurrence probability of a class 
Ci at the location xo is defined as a linear 

combination of the surrounding indicator data Ia 

with 
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where γii (haβ) denotes the indicator auto-variogram 
between data locations xa and xβ and γii (hβ0) 
denotes the indicator auto-variogram between data 
locations xβ and x0; μ is the Lagrange parameter. 
Markov Chain Geostatistics is a new non-kriging 
geostatistics. The basic idea of this geostatistics is 
to use Markov chains to perform multidimensional 
interpolation and simulation. Compared with the 
covariance-based (or variogram-based) 
geostatsitics, MCG is transition probability-based. 
Compared with the kriging-based geostatistics, 
MCG is Markov chain-based. MCG directly uses 
Markov chains to accomplish conditional 
simulation. The basic idea of MCG is that an 
unknown location is related on its nearest known 
neighbours in different directions. With a Markov 
chain moving around in a space, its conditional 
probability distribution at any unknown point is 
entirely dependent on its nearest known neighbors 
in different directions. The interaction between 
each nearest known neighbour and the unknown 
location is expressed by a transition probability at 
the corresponding distance. Therefore, 
transiograms are the explicit components of the 
conditional probability function. 
The MCG estimator for the occurrence probability 
of a class C at the location x is defined as a non-
linear combination of the surrounding data with 
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where    hpi
lk  denotes a transiogram from state l 

to state k over the lag h in the ith direction and m is 
the number of data considered in different 
directions. Refering to conditional probabilities, 
due to the largness of the configuration space it is 
impractical to sample from it by direct computation 
of the probabilities. Markov chains Monte Carlo 
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(MCMC) methods have been investigated by 
various researchers as an alternative to exact 
probability computation. The general method is to 
simulate a Markov chain with the required 
probability distribution as its equilibrium 
distribution. If the chain is aperiodic and 
irreducible, the convergence is guaranteed. 
Then realisations of the Markov chain form a 
pseudo-sample from the required distribution. This 
pseudo-sample can then be used to estimate various 
statistical measures of the image. In particular our 
interest is concentrated on the distribution p(x) 
using a particular realisation X 1, X 2,…, X N on the 
Markov chain with transition probability 

)( xxp  . Typically asymptotic results include: 

 )()(
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where the expectation  )(xfEp  is to be 

estimated. The corresponding empirical average 
will be used namely: 
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Then realiations of the Markov chain form a 
pseudo-sample from the required distribution. This 
pseudo-sample can be used to estimate various 
statistical measures of the images. A special case of 
MCMC methods is the Gibbs sampler (Geman and 
Geman, 1984).  
At each iterations, the value of only one pixel can 
change. The Gibbs sampler algorithm is defined as 
follows: Pick an arbitrary starting 

value  00
2

00 ,,,
1 nxxx x . Simulate a new 

intensity for each piel from the corresponding 
conditional distribution 
 t
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 .The iterative 

scheme is continued to produce a sequence 

,...,,,,, 210 txxxx  which is a realisation of a 

Markov chain. After an initial period we obtain a 
realisation from the required probability 
distribution. Convergence is studied analytically in 
Green and Han (1992) and Sokal (1989). 
Ripley’s K is usually estimated as:  
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where: dij is the distance between the i-th and j-th 
observed event locations, which can be viewed as 
the radius of a circle centered at event point i and 
passing through j; wij is a weighting term equal to 

this circle’s proportion of the entire area A For 
specific distance/lag value d, Id(dij) is an indicator 
function which is 1 if dij = d. 
The above estimate of K(d) is ‘edge–corrected’. 
The weight wij accounts for the fact that an event j 
may not be in A given that it is a distance dij from 
the point i. A valuable investigation for a point 

pattern is a plot of Kˆ (d) versus πd2 . If Kˆ (d) > 

πd2 then there is evidence of clustering. Figure 7, 

represent the graph between Ripley K-function and 
theoretical one, where clearly there is evidence of 
regularity for landscape data. 
 

              
Fig. 7. Graph between Ripley K-function and 
theoretical one 

 
(Ripley, 1981) also refers to a more general K-
function as the reduced second-order measure. If 
we assume the process is completely random then 
the extra number of events within a distance d will 
be uniform on a disc. From this we see that 
 

     xdxxxdxdxdK
dd

  
0

2

2

0 0

2 2 






 

with     
I
dK

I
x







2

2

2 .
 

 
COMCLUSIONS 

 
Uncertainty analysis is the part of risk analysis that 
focuses on the uncertainties in the data 
characteristics. Although the uncertainty analysis 
problem is similar to statistical problems, in 
application the uncertainty analysis problem is 
often more complex than many statistical problems. 
Models are used due to the complexity of the 
problem. The choice of the model is a choice that 
leads to structural uncertainty. A tool related to 
uncertainty analysis is sensitivity analysis. 
Sensitivity analysis is used to determine the 

Recent Researches in Environmental and Geological Sciences

ISBN: 978-1-61804-110-4 383



importance of different parameters and components 
of the model on the output of the model. If the 
response variable depends on several variables, 
then the sensitivity of the response with respect to 
the variable or parameter is measured by the 
derivative of the response with respect to the 
variable or parameter. 
Uncertainties in the biological modelling arise from 
either systematic or random errors. Variability in 
biological systems may result from spatial 
heterogeneity of environmental conditions or from 
randomness in interactions of different processes. 
Spatial variability in systems attributes and driving 
variables need to be effectively incorporated into 
simulation modelling. Model comparison can 
incorporate with uncertainty into model, especially 
when no data are available for model testing. The 
variability in the variables is then used as a 
measure of the output uncertainty. In this work, a 
review of various statistical techniques is 
represented, to measure the uncertainty introducing 
models. For the parameters of these models, 
techniques like Bayesian analysis, hierarchical 
modelling and geostatistical modelling are 
introduced to estimate the appropriate values.  
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