
Modular SIP Server on Embedded Platform

MIROSLAV VOZNAK, LUKAS MACURA, JIRI SLACHTA
Department of Multimedia

CESNET
Zikova 4, 160 00 Prague

CZECH REPUBLIC
voznak@ieee.org, lukas.macura@cesnet.cz and jiri.slachta@cesnet.cz

http://www.ces.net

Abstract: - The paper deals with implementation of multiplatform embedded SIP communication server with
unified configuration interface which has been developing within the framework of a BESIP project (Bright
Embedded Solution for IP Telephony) since May 2011. The BESIP consists of several components which are
distributed under GPL as an open-source solution and the whole project is supported by CESNET (Czech
Education and Scientific NETwork association). The paper explains and describes the whole concept and
individual modules, acquaints with the current state and with the future intents. SIP server is portet into
OpenWRT project core and Asterisk with Kamailio inside are used as SIP engines. Kamailio was selected for
security and reliability, Asterisk for extensive PBX functions. Next to this, there is implemented Web frontend
for user-friendly management. We put emphasis on security, which is ensured by the Security module with
IDS/IPS (Intrusion Detection and Protection Systems) and on the Spech quality monitoring with own developed
tool. Last, but very important component, is NETCONF server which is part of image and enables an advanced
unified management.

Key-Words: - OpenWRT, SIP server, BESIP, Speech quality, VoIP security.

1 Introduction
The BESIP aims to become VoIP PBX system
available for anybody, the users need not know
complex software features and hidden internals of
VoIP software. BESIP offers the prepared solution
with integrated key components, the entire system is
distributed as an image or individual packages can
be installed from SVN and users do not care about
dependencies, they just configure VoIP system
which works. Every software solution includes own
configuration and management. BESIP aims to be
scalable solution with security and unified
configuration in mind [1]. After research and project
discussion we made that decisions:
 OpenWRT for good scalability and simple
embedding:

• Kamailio for reliability and high availability
• Asterisk and Kamailio as B2BUA (Back-to-

Back User Agent) and SIP Proxy
• YUMA as NETCONF server
• OpenWRT UCI as configuration backend

 Several open-source applications were adopted
and implemented into developed modules, however
within the implementation many modifications were
required, especially in the core module (OpenWRT)

due to complicated porting of applications into
OpenWRT buildroot [2]. Our patches were verified
and accepted by OpenWRT community. The speech
quality monitoring tool was developed from scratch
and implemented in Java. BESIP can run on low-
end devices with 32MB RAM at least and supports
OpenWRT MIPS architecture.

2 Selection of suitable Platform
The most important step which had to be done, was
choosing right software distribution/platform. There
was an idea to modify Debian distribution, this is
probably the easiest way for developers. Debian
includes many ports and packages which are
available for many software services but Debian is
not suitable for embedding. A modification of
Debian, in order to be easily embedded into small
device with read-only flash, is really a difficult task
and the expected results of such work can not lead
to a source distribution.
 Next solution was adopting some low-level
distribution for embedding. There are several
possibilities like FreeWrt, OpenWrt, DebWrt etc.
After discussion and projects observations,
OpenWrt was selected as primary platform. There
are many packages included and packages which are

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 260

not included and can be added into applications tree.
Even if it is not easy procedure for some kind of
packages (especially for packages without configure
script), we decided for this way. OpenWrt is well-
know for great support, ticket system, relatively
well documentation and cooperation with
community of developers.

3 Architecture and Technology
The BESIP architecture is depicted in Fig. 1, it is
created entirely from opensource parts. This was
main presumption for project management and
developing. There are four basic modules: Core,
Security, Monitoring and PBX. Core is divided into
following parts:

• OpenWRT as build platform;
• NETCONF For administration of entire

system, YUMA implementation was
adopted;

• Web GUI for user-friendly configuration;
• SUBVERSION as revision control system

providing a support and better orientation
for developers, it is not a part of the released
BESIP image.

 The security module is based on SNORT,
SNORTSam and iptables [7]. In addition to this, the
Kamailio ratelimit and pike module is used for
defending attacks. The monitoring module exploits
a tshark package and our java code which interprets
its results and gives information about particular
speech quality. The Zabbix agent is used to report
basic states of entire system and finally the PBX
module is made from kamailio in conjunction with
Asterisk.

Fig. 1. BESIP architecture.

3.1 Configuration Module
The NETCONF protocol exploits a specified
mechanism for exchanging the configuration data
among an administrator and network devices. This
protocol allows the device to send and receive
configuration data through XML documents using
the RPC paradigm [5]. These XML documents are
handed over the RPC calls, the RPC request is

initiated by a client that requests the configuration
data or a command to be performed on the server.
While these requests are being performed, the client
is blocked until he receives the RPC reply from
NETCONF server [4]. That replies consists of a
configuration that is complete or a partial. Another
reply is a message informing us if a command was
successfully performed on the server or not. This
communication is transferred over a transport
protocol which has to be secured and to allow an
authentification and authorization. Most probable
and secure way, how to communicate with the
NETCONF server, is to use SSH2 protocol (RPC
calls over SSH subsystem).
 The structure of configuration data on
NETCONF server in YUMA package (netconfd) is
specified by the YANG module which defines the
semantics and syntax of a management feature. It
provides complex data structures which allow
design any data structures that will meet the
requirements of developers.

Fig. 2. NETCONF usage.

 The configuration data are stored securely on the
NETCONF server and all requests and responses
must comply with firmly defined structure, specified
by YANG modules. Next, global database of all the
configurable parameters is required and it is ensured
by NETCONF server. The configuration parameters
are inserted by the user and stored in the NETCONF
server. Consequently, the stored configuration data
are available through simple queries. It makes the
device quickly configurable, therefore a backup or a
restore of configuration can be simply and quickly
performed [6].
 Yuma is a package which provides tools for the
network management. It consists of a NETCONF

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 261

client yangcli, NETCONF server netconfd,
validation tools yangdiff and yangdump and
netconf-subsystem, which allows us to communicate
with NETCONF server through a SSH2 subsystem.
We ported this package into OpenWrt in both latest
versions (version 1.15-6 and 2.2-1). Because there
are some issues we have to solve, we have not
delivered these packages to OpenWrt community
yet although we use them. Nevertheless we continue
in development of the mentioned packages.
 OpenWRT uses UCI as configuration backend, it
is a group of configuration files which can be read
or modified by common UCI API. We decided to
provide a glue between NETCONF and UCI.
The long term goal of this project is to make the
BESIP configuration independent on clients. Today,
many systems are configurable using web, ssh or
telnet and each of them offers its own semantics and
configuration file. BESIP project aims to change
this situation, using NETCONF as defined
communication and management protocol,
configuration independent syntax will be available
on all modules. At first stage of project, applications
and libraries had been ported, afterwards we focused
on implementation of NETCONF, UCI, PBX,
Security and monitoring modules. See Fig. 2 to
understand configuration data flow which has been
defined in BESIP.

3.2 PBX Module
The PBX module is key part of the BESIP project. It
operates as SIP proxy or SIP B2BUA, depending on
configuration, and ensures a call routing. Asterisk is
used for call manipulation and for the PBX
functions. Kamailio is used for the proxying SIP
requests, the traffic normalization and for the
security [11]. There are always two factors when
developing VoIP solution, the first one is high
availability and reliability, the second one is an
issue of advanced functions. Many developers try to
find a compromise, we have implemented both and
our BESIP is able to adapt to the users requirements.
More complex system can handle many PBX
functions such as a call recording or an interactive
voice response but due to the bigger complexity, it
is more susceptible to fault. On the opposite side,
pure SIP proxy is easier software which can perform
call routing, more fault tolerant but it is more
difficult to use the advanced PBX functions [8],
[13]. The BESIP offers users an option to choose
how system will work. From this reason, the BESIP
includes both Kamailio and Asterisk. Today, only
one of these engines can be configured but in future,
both engines will work together and will be
configured by common NETCONF server. Kamailio

will route requests even if Asterisk will be out of
order, only advanced PBX functions will be
unavailable in such situation [13], [15].

3.2.1 Asterisk GUI
Asterisk-GUI is very flexible web solution of
Asterisk management. Even if it is not NETCONF
based Asterisk-GUI was added to the first BESIP
release. The reason was that at this time, there was
not completed an interoperability between
NETCONF and Asterisk. It is available in the next
release and the implementation involved very
complex task. The users can decide to use easy
Asterisk-GUI for PBX setup at initial version of
BESIP. Nevertheless in future version we would
like to remove the Asterisk-GUI package from
BESIP image and the configuration will be
accessible only through new developed NETCONF
based management. During implementation, we
solved several technical issues concerning Asterisk-
GUI in OpenWRT environment and finally we
made a decision on disuse Asterisk-GUI in BESIP
roadmap. The last release still links this GUI on the
BESIP main page [9].

3.2.2 Accounting
In many systems, an accounting is divided into two
separate parts. The individual calls are processed
and a call detail record (CDR) is generated to every
performed call, these CDRs are stored in text file or
a repository. The next part of the accounting is an
application which enables to perform statistics over
stored data, it means to search and display in
accordance with requested criteria. This is a
conventional scenario, classical approach of many
accounting applications and highly reliable because
the PBX function is not affected by accounting and
even if there is problem with accounting software,
PBX still operates properly. However there is one
big disadvantage, during a call setup, the PBX
knows nothing about call price and cannot provide
an authorization which is well-known from pre-paid
services offered by mobile operators. Having this
information, we are able to perform more checks
and operations at the call setup level. For example,
we can look up into user credit and do not permit a
call if the credit is depleted or low. Similar to this,
we can authorize every call against a threshold, such
as maximal price per minute/trunk/global. These
thresholds can be pre-set or dynamically changed
according to the actual user credit. Having this
information, the PBX will be safer and resistant
against attacks aimed at an exploitation of the PBX
[10].

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 262

3.3 Security Module
Security module is very important part of BESIP
and all the time, it was considered to make the
developed system as secure as possible. Next to this,
entire system has to be fault-tolerant, monitored and
protected from attacks. It means that if the device is
under attack, only attacker has to be blocked, not
entire system or other users. If there is some security
incident, BESIP immediately solves the situation
and notifies this event in detailed report to the
administrator. The attack are recognized and
processed by SNORT rules, the source IP address is
automatically sent into firewall by SNORTSam and
the intruder’s IP is blocked. This is very flexible,
reliable and effective implementation. Dropping
attack based on IP directly in the Linux kernel is
much more efficient than to check messages on the
application level. Only first messages are going to
SNORT filter. When SNORT identifies a suspicious
traffic, next messages from the same IP are blocked.
In next BESIP releases, we are going to to
implement ipqbdb mechanism which will be even
more self-defending. It is based on IP denoting.

Fig. 3. Attack effectivity based on REGISTER
flood.

Fig. 4. Attack effectivity based on INVITE flood.

 If more soft faults apper from some IP, it is
blocked at the IPTABLES level, this approach can
effectively block incorrectly configured clients and
servers. For example, if client sends REGISTER

with proper credentials, it is not obviously security
attack but the client attempt to register again and
again, with every registration requires computing
sources at SIP REGISTRAR server. Such attempts
can be denoted and blocked for a time interval.
Administrators can use Zabbix or NAGIOS agent
inside BESIP to gather all information directly into
their monitoring system. The monitoring is very
important part of the security module and BESIP
team was already focused on the issue in early
design [14].
Partially, BESIP is resistant to some kind of DoS
attacks. It depends on hardware used. If hardware is
strong enough to detect some security incidents on
application level, the source IP is immediately
dropped. But for weak hardware it can be serious
problem. In such case, it is better to stop DoS
attacks before it reaches BESIP. For example,
SNORT on a dedicated machine will be much more
flexible than if is an integral part of VoIP system.
Therefore, we recommend to use an external IPS
system to make VoIP service robust and secure.
Nevertheless BESIP includes own IPS/IDS system
[11].
 The features of our security module were verified
in test-bed and results are depicted in Fig. 3 and 4.
The CPU load was monitored during trivial SIP
attacks. The line SSI (Snort, SnortSam, IPtables)
represents the response in case of active security
module in BESIP whereas next dependencies were
measured without SSI. There were emulated only
two types of DoS attacks, namely REGISTER flood
and INVITE flood. In order to generate these
attacks, we used sipp generator and in case of
INVITE also inviteflood tool. The dependencies in
both figures clearly prove the ability of security
module to mitigate the performed attacks.

3.4 Monitoring Module
The overall solution of the monitoring system
consists of several different open source
components and also of the part that was directly
developed for this purpose to meet the defined
requirements. System structure is depicted in Fig. 5.
The system itself consists of three logical
components, which are – web interface that serves
the administrators (Web GUI), part of the script
(Scripts) that controls the obtaining the information
necessary to compute the speech quality in the
simplified E-model [13]. Last component is part of
the Quality Monitor, which contains the logic for
calculation itself and performs processing of data
obtained by scripts. In the overview SQLite3
database, which is used to store the results.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 263

Web GUI

Quality Monitor

Scripts

... ...

RTP Packets

SQLite DB

Fig. 5. Overview of the logical structure of VQM.

The developed application offers the comfort of
management in a web application, the developed
interface aggregates required functions. Web
interface is the main part of user interaction with a
monitoring tool. Monitoring tool is turned off in the
default configuration and can be enabled using the
intuitive main interface of BESIP any time . This
part of the monitoring tools is also used as a mean to
display the measured and computed results.
Structure of the presented data is as follows: Time,
Source IP, Destination IP, MOS and used Codec.
An example of user interface is shown in Fig. 6.

Fig. 6. Sample of web GUI of monitoring speech
quality.

4 Conclusion
The contribution of our work is entire BESIP
concept and its implementation. As we have
mentioned, BESIP consists of several components
which are distributed under GPL as an open-source
solution. A few of them have been fully adopted
such as the components in Security and PBX

modules, some of them modified, concerning the
CORE module and finally we have developed own
tool for Speech quality assessment. The contribution
of our work is not only few hundreds of hours spent
on the development, on the coding BESIP system,
we bring a new idea of the unified configuration
management, with unified CLI syntax which
enables to configure different systems, Asterisk and
Kamailio in our case. We perceive that we need to
solve a lot of issues, Individual packages are
working and after several pre-releases, the version
1.0 was released in November 2011. BESIP is
distributed as a functional image for x86 platform
but is possible to run it on Vmware or KVM.
Configuration is available through web-browser or
SSH client. Today, there is a trunk version in SVN
which is actively developed and individual
improvements are included in next subversions.
After testing, version 2.0 will be released, new
release 2.0 will be based completely on NETCONF
with one API to configure entire system. Next to
this, CLI syntax is developed and will be connected
to NETCONF. CLI will be independent of internal
software so if some internal software is modified,
there will be no change in configuration. Even more,
CLI and NETCONF configuration will be
independent on hardware and version. To export
configuration from one box and to import it to the
next one will be simple task. Users will modify only
one configuration file to manage entire box. After
this step, all internals of configuration will be
hidden as was mentioned in introduction. Entire
BESIP management and development is available at
[13] and Binary images from nightly autobild can be
downloaded from [14].

Acknowledgement
This work has been supported by the Ministry of
Education of the Czech Republic within the project
LM2010005.

References:
[1] F. Rezac, M. Voznak, J. Ruzicka, Security

Risks in IP Telephony, CESNET Conference
2008-Security, pp.31-38, 2008.

[2] L. Spitzner, Honeypots: Tracking Hackers,
Addison-Wesley Proffesional, 2002.

[3] D. Sisalem, J. Kuthan, T.S. Elhert, F.
Fraunhofer, Denial of Service Attacks
Targeting SIP VoIP Infrastructure: Attack
Scenarios and Prevention Mechanisms. IEEE
Network, 2006.

[4] M. Voznak, F. Rezac, Threats to voice over IP
communications systems, WSEAS Transactions

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 264

on Computers, Volume 9, Issue 11, November
2010, Pages 1348-1358

[5] M. Voznak, F. Rezac, SIP Threats Detection
System, 9th WSEAS International Conference
on Data Networks, Communications,
Computers, Faro, 2010, pp. 125-130

[6] D. Endler, M. Collier, Hacking Exposed VoIP,
McGraw-Hill Osborne Media, 2009.

[7] N. Provos, T. Holz, Virtual honeypots,
Addison-Wesley Professional, 2007.

[8] R.C. Joshi, A. Sardana Honeypots: A New
Paradigm to Information Security, Science
Publishers,2011.

[9] M. Voznak, F. Rezac and K. Tomala, SIP
Penetration Test System, 33rd International
Conference on Telecommunications and Signal
Processing (TSP 2010), pp. 504-508, 2010.

[10] M. Voznak, F. Rezac, Web-based IP telephony
penetration system evaluating level of
protection from attacks and threats, WSEAS
Transactions on Communications, Volume 10,
Issue 2, February 2011, Pages 66-76

[11] M. Voznak, J. Safarik, DoS attacks targeting
SIP server and improvements of robustness,
International Journal of Mathematics and
Computers in Simulation, Volume 6, Issue 1,
2012, Pages 177-184.

[12] M. Voznak, M. Tomes, Z. Vaclavikova, M.
Halas, SIP Threats Detection System, 9th
WSEAS International Conference on Data
Networks, Communications, Computers, Faro,
2010, pp. 119-124

[13] Management of BESIP Project, LipTel Team,
2011. URL
https://homeproj.cesnet.cz/projects/besip/wiki

[14] Source code of BESIP Project, LipTel Team,
2011.URL
http://liptel.vsb.cz/mirror/besip/nightly

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 265

