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Abstract: - Robustness of computations in engineering is one of key issues as it is necessary to solve technical 
problems leading to ill conditioned solutions. Therefore the robustness and numerical stability is becoming a 
key issue more important that the computational time. In this paper we will show selected computational issues 
in numerical precision, well known cases of failures in computations. The Euclidean representation is used in 
today’s computations, however the projective space (an extension of the Euclidean space) representation leads 
to more compact and robust formulations and to matrix-vector operations supported in hardware, e.g. by GPU. 
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1 Introduction 
Data processing is one of the main fields in 

computer science. Data processing itself can be split 
to two main areas: 
• processing of textual data 
• processing of numerical data 

Nowadays, computers use binary system for 
information and data representation.  

The above mentioned main two areas are quite 
different, but have many common algorithms, e.g. 
hashing. In the case of textual data we have 
“unlimited” dimensionality (”unlimited” length of a 
string) but limited interval of values (usually given by 
a number of symbols in the given alphabet). On the 
contrary in the case of numerical or geometrical data 
we have a limited dimensionality (usually 2 or 3 in 
the case of E2 or E3) but “unlimited” interval of values 
(usually (-∞, ∞)).  

Numerical data processing and numerical 
computations bring quite significant difficulties due to 
the limited precision of a real number representation 
as the floating point representation offers only a 
limited length of a mantissa and exponent [49]. 
Today’s programming standard languages do not 
offer constructions for computation with an 
“arbitrarily” long integers or “unlimited” mantissa 
length (Algol 68 had a construction long that could 
extend the basic data type, e.g. long ....... long real 
etc.). Unfortunately it leads to numerical problems 
and possibly to disasters in engineering applications. 

There are also problems connected to uncontrolled 
overflow, infinities and NaN results.  

It should be noted that the majority of computer 
science students and programmers are NOT AWARE 
of those aspects at all.  
 
 

2 Numerical Precision and Robustness 
Numerical data processing and numerical 
computation is the heart of nearly all engineering 
problems solution. On the other hand it seems to that 
in the engineering courses there is no attention given 
to the numerical precision in connection with the 
robustness of algorithms. 

It can be seen from the floating point 
representation that the absolute precision depends on 
the actual exponent significantly, as the precision is 
given by the length of the mantissa multiplied by the 
exponent. As the mantissa is of the given length, not 
all numbers even rational numbers can be represented 
in a computer; of course irrational numbers cannot be 
stored in any case. It means that a value x is somehow 
modified in order to fit into the actual floating point 
representation. It means that a stored value x 
represents actually an interval [a, b], i.e. any value 
from this interval is represented in a memory as one 
value x. 

As values are used in numerical operations it is 
necessary to ask, at least in the case of basic 
arithmetic operations, what is the influence to the 
precision?  
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Let as assume that we have two numbers x and y 
x = [a,b], y = [c,d].  

The following interpretation of the basic 
arithmetic operations demonstrate how actual 
precision is defined. 
• x + y = [a + c, b + d] x - y = [a - d, b - c] 
• x × y = [min(ac, ad, bc, bd),  

max(ac, ad, bc, bd)] 
• x / y = [min(a/c, a/d, b/c, b/d),  

max(a/c, a/d, b/c, b/d)]  if y ≠ 0 

There are well known identities like  

ߙଶݏ݋ܿ ൅ ߚଶݏ݋ܿ ൌ 1  xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅  ሻݕ

However these identities are not valid if the floating 
point representation is used. For a computation of 
xଶ െ yଶ it is better to use ሺݔ െ ݔሻሺݕ ൅  ሻ  due toݕ
better precision in evaluation, as if  |ݔ| ൐  then |ݕ|
ଶݔ ب  ଶݕ ଶ and therefore some last digits of theݕ
mantissa might be lost in the final subtraction. Also 
constructions like  

if <float>=<float> then... if <float>≠<float> then… 

should not be allowed in programming languages or 
at least a warning message should be generated. 
Usually this problem is “solved” by constructions 

if abs (x - y) < epsilon then …      or    
if abs (x) < epsilon then q:= y / x else ERROR  , 

but nobody knows what is the proper value of epsilon. 
Let us explore a little bit the numerical problems 

on very simple examples, now. 
 
Quadratic Equation Solution 
Let us consider two formulations as follows [6]: 

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0  

The solution usually used is ݐଵ,ଶ ൌ ି௕േ√௕మିସ௔௖

ଶ௔
 

or if substituted ݐ ൌ 1 ߬ൗ         ߬ଵ,ଶ ൌ ଶ௖

ି௕േ√௕మିସ௔௖
 

However in some cases the “standard” formula can 
lead to incorrect results due to a limited number 
precision. If ܾଶ ب 4ܽܿ then it is recommended to 
use the following formula: 

ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2 

ଵݐ ൌ ݍ
ܽൗ ଶݐ           ൌ ܿ⁄ܽ  

to get more reliable results.  
It can be seen that even such a simple case might 

be quite sensitive to the numerical precision.  
 
Function Value Computation 
Computation of a function value is one of the basic 
common operations in engineering problems. 
However many programmers are not aware of the 

danger in the coding process. There seems to be two 
the most dangerous cases: 
• division by a value close to zero, e.g. in an 

intersection computation of two nearly parallel 
lines 

• addition or subtraction of two values with 
significantly different absolute value, e.g. 
recently mentioned xଶ േ yଶ . 

As the result of this, the summation (repeated 
addition) result depends on the order of summation in 
general.  

Let us explore one very interesting case [4] and 
some other interesting comments [1], [7], [28]. 

݂ሺݔ, ሻݕ ൌ ଺ݕ333.75

൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ
൅ ଼ݕ5.5 ൅  ሻݕሺ2/ݔ

The question is, what is the value of the function if it 
is evaluated at  ݔ ൌ ݕ  ,77617 ൌ 33096 if different 
floating point precision is used. 
݂ ൌ 6.33835 10ଶଽ    in single precision 
݂ ൌ 1,1726039400532   in double precision 
݂ ൌ 1,1726039400531786318588349045201838 
             in extended precision  
However even the result in the extended precision is 
incorrect and even the sign itself is incorrect. The 
correct! The correct result is “somewhere” in the 
interval of 
ሾെ0,827396059946821368141165095479816 
                                                                                29૛૙૙૞, 
െ0,827396059946821368141165095479816 
                                                                                29૚ૢૡ૟ሿ  
if approx. 40 digits were used [4]. Of course this 
function is constructed in a special way, but it 
demonstrate that 
• simple increase of precision does not guarantee 

the correctness of the result 
• roundoff error has significant influence to for a 

limited floating point computation. 
Detailed analysis of this function can be found in [1] 
and the correct result is 

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2
ൌ

54767
66192

 

Unfortunately precision of the numerical results are 
significantly influenced by compilers properties and 
options used, as the optimization of the code is not 
considering the numerical stability issues. 
 
Addition and Computational Order 
So far we have dealt with “complicated cases”, 
usually seen as “not practical”. Power series 
summation is one of the very practical and often used 
computations. Let us imagine simple examples of 
summation if single precision is used [25]: 
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෍ 10ିଷ  ൌ 0.999990701675415

ଵ଴య

௜ୀଵ

 

or 

෍ 10ିସ  ൌ 1.000053524971008

ଵ଴ర

௜ୀଵ

 

It can be seen that in the both cases the result should 
be one. The correctness in summation is very 
important in power series computations, e.g. 

෍
1
݊

 ൌ 14.357357

ଵ଴ల

௡ୀଵ

 
 
or ෍

1
݊

 ൌ 14.392651

ଵ

௡ୀଵ଴ల

 

It means that even for a small number of elements we 
do not obtain correct results.  
 
Recursion 
Recursion is very useful tool for finding a nice 
description of a problem solution, e.g. well known 
Tower of Hanoi, however if implemented directly it 
might causes some problems, like the stack overflow 
etc. The algorithm itself can be described as follows: 

MOVE (A, C, n);      # MOVE (from, to, number) # 
{MOVE(A,B,n-1); MOVE(A,C,1); MOVE(B,C,n-1) 
} 

This recursive elegant solution is simple to implement 
and only stack overflow can be expected; Iterative 
solution is known as well. The recursive definition 
usually leads to two main searching strategies in 
implementation, i.e. depth first search or breath first 
search. Let us explore recursive definition of the well 
known Ackermann defined as function [20]: 
,ሺ݉ܣ ݊ሻ

ൌ ቐ
݊ ൅ 1                                 ݂݅ ݉ ൌ 0                    
ሺ݉ܣ െ 1,1ሻ                      ݂݅ ݉ ൐ 0 ܽ݊݀ ݊ ൌ 0
൫݉ܣ െ 1, ,ሺ݉ܣ ݊ െ 1ሻ൯  ݂݅ ݉ ൐ 0 ܽ݊݀ ݊ ൐ 0

 

This function is simple, but the problem its 
computation as the value of the function grows very 
fast as  

ሺ4,4ሻܣ ൌ 2ଶమలఱఱయల
ൌ 2ଶభబభవళమవల

 

As the computation is made in integers, no overflow 
is detected at all.  

However engineering applications are more 
oriented to computation with numbers in floating 
point representation. 
 
Continuous Fractions 
There is one very interesting approach based on 
continuous fractions. It enables to represent even 
irrational numbers in some cases. The basic definition 
can be described as: 

ݔ ൌ ܾ଴ ൅
ܽଵ

ܾଵ ൅
ܽଶ

ܾଶ ൅
ܽଷ

ܾସ ൅
ܽଷ
…

  

For generalized continuous fractions ܽ௜ ് 1 and we 
can express as ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ if 
ܽ௜ ൌ 1 

As ߨ ൌ  can be expressed as [23] ߨ ሺ1ሻ then ݊ܽݐܿݎܽ 4

ߨ ൌ
4

1 ൅
1ଶ

3 ൅
2ଶ

5 ൅ 3ଶ

…

 

Such a number representation is quite different and 
detailed description can be found in [5]. 

We have presented some selected fundamental 
issues in numerical computations that have direct 
influence to results of numerical computation. 

There is a significant question how today’s 
computations are reliable and robust as we are using a 
continuous mathematical models, but using discrete 
systems for physical phenomena representation; 
number of digits for a number representation is 
limited. Only very careful coding with regard to 
numerical errors can prevent disaster situations and 
possible losses on humans. 

 
Matrix Inversion 
Matrix inversion is very often used in solution of 
engineering problems. However in many cases the 
matrix is ill conditioned and the results are not 
checked to the correctness of the solution. Many 
libraries available just return a matrix, which might be 
far from the matrix inverted we would expect without 
any message or warning message.  

Let us assume a matrix inversion as 
࢞࡭ ൌ ࢞   ࢈ ൌ  ࢈ଵି࡭

and the Hilbert’s Matrix    

௜௝ࡴ   ൌ
ଵ

௜ା௝ିଵ
 

then the inversion of the matrix is known in the 
analytical form and can be expressed as 

௜௝ࡴ
ିଵ ൌ ሺെ1ሻ௜ା௝ሺ݅ ൅ ݆ െ 1ሻ 

൬
݊ ൅ ݅ െ 1

݊ െ ݆ ൰ ቀ݊ ൅ ݆ െ 1
݊ െ ݅

ቁ ቀ݅ ൅ ݆ െ 2
݅ െ 1

ቁ
ଶ
 

The inversion of the Hilbert’s matrix can be used to 
evaluate algorithms or available numerical library for 
the stability and correctness of results delivered. 
Matrix inversion and a linear system of equations can 
be solved effectively without division operation if 
projective geometry is used [8], [9]. 
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3 Numerical Disasters 
There are famous examples of numerical disasters. 
When reading the original reports and followed 
comments and details one must be really surprised 
how simple errors occur and should be worried what 
could happen in complex problems solution. Let us 
shortly explore some “traditional” cases.  

The following is a modified excerpt from public 
resources [21], [22]. 
 
Explosion of Ariane 5 
An Ariane 5 rocket was launched by the European 
Space Agency (ESA) on June 4, 1996. The 
development cost over $7 billion. The rocket 
exploded after lift-off in about 40 sec. Destroyed 
rocket and cargo were valued at $500 million. The 
cause of a failure was a software error in inertial 
reference system.  
 
Patriot Missile Failure 
The system was originally designed in mid-1960 for a 
short and flexible operation and for intercepting 
cruise missiles running at MACH 2 speeds. It was 
used to intercept the Scud missile running at 
MACH 5. The computation of intercepting and hitting 
was based on time counting with 24 bits integers with 
the clock of 1/10[s] and speed computation in floats. 
The clock setting to 1/10[s] was a critical issue and 
not acceptable even for application in sport activities 
at that time. Unfortunately 1/10 = 
1/24+1/25+1/28+1/29+1/212+.... and therefore the error 
on 24 bits is about 0.000000095 and in 100 hours the 
error is 0.34. As the Scud flies at MACH 5, the error 
was actually 687[m] and the missile was out of the 
“range gate” (a space window) area. 

 
Offshore Platform Sinking 
Another well known example is the Sleipner offshore 
platform sinking. It should be noted that the top deck 
is about 57 000 tons, drilling and support equipments 
weight about 40 000 tons and the deck provides an 
accommodation for about 200 people. 

The Sleipner platform structure was “optimized” 
using a finite element system and the shear stresses 
were underestimated nearly by 50%. It led to serious 
cracks in the structure and water leakage that the 
pumps were unable to cope with. The sinking of the 
platform estimated cost is about $700 million. 

These examples show how danger the numerical 
errors can be. 
 
 

4 Intersection of two planes 
The Euclidean space representation is used in today’s 
computations with the floating point representation. 
Unfortunately the imprecision of the floating point 
computations is given by a number of mantissa digits 
that is limited. However the robustness of algorithms 
is more connected with the mathematical formulation 
and the actual implementation as well. 

In many cases the Euclidean representation leads 
to unnecessary computations that even decrease the 
computational precision. The division operation is 
heavily used in engineering computations and it 
decreases the precision of computation significantly. 
There is a question whether the division operation can 
be eliminated or at least postponed within the 
computational pipeline. In geometry, the projective 
representation is a way how things could be made 
simple, robust and easy to implement.  
 
Plücker Coordinates 

Let us consider two points in the homogeneous 
coordinates: 

x1 = [x1, y1, z: w1]
T      x2 = [x2, y2, z2: w2]

T 
The Plücker coordinates lij are defined as follows: 

l41 = w1x2 – w2x1          l23 = y1z2 – y2z1 
l42 = w1y2 – w2y1          l31 = z1x2 – z2x1 
l43 = w1z2 – w2z1          l12 = x1y2 – x2y1 

It is possible to express the Plücker coordinates as  
TT
1221 xxxxL −=  

where: lij = - lji and lii = 0.  
Let us define two vectors ω and v as:  

ω = [l41 , l42 , l43 ]
T       v = [l23 , l31 , l12 ]

T 

The vector ω represents the “directional vector”, 
while v represents the “positional vector”. The line p 
is then defined as  

( ) tt ω
ω

ω v
q +

×
=

2
 

Let us imagine that we have to solve a dual 
problem, i.e. a line defined as an intersection of two 
given planes ρ1 and  ρ2 in the Euclidean space:  

ρ1 = [a1, b1, c1: d1]
T     ρ2 = [a2, b2, c2: d2]

T 

It is well known that the directional vector s of the 
line is given by those two planes as a ratio: 

22

11

22

11

22

11 ::::
ba

ba

ac

ac

cb

cb
sss zyx =

 
that is actually the ratio l23 : l31 : l12 if the principle of 
duality is used, i.e. vector of [ai, bi, ci: di]

T  instead of 
[xi, yi, zi: wi]

T is used, and it defines the vector v 
instead of ω. Applying the principle of duality as we 
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can interchange the terms “point” and “plane” and 
exchange v and ω in the equation for q(t) and we get: 

( ) tt v
v

v ω
q +

×
=

2
 

If 0=v  then the given planes are parallel. 

It means that we have obtained the known formula 
for an intersection of two planes ρ1, ρ2 in the 
Euclidean coordinates: 

( ) tt 30 nqq +=  

where: 213 nnn ×= ,   q0 = [X0, Y0, Z0]
T and planes 

0: 111 =+ dT xnρ        0: 222 =+ dT xnρ  
The intersection point X0 of three planes in the 
Euclidean coordinates is defined as: 

ܺ଴ ൌ
ௗమฬ

௕భ ௖భ
௕య ௖య

ฬିௗభฬ
௕మ ௖మ
௕య ௖య

ฬ

஽ா்
   ଴ܻ ൌ

ௗమቚ
௔య ௖య
௔భ ௖భ

ቚିௗభቚ
௔య ௖య
௔మ ௖మ

ቚ

஽ா்
 

ܼ଴ ൌ
ௗమฬ

௔భ ௕భ
௔య ௕య

ฬିௗభฬ
௔మ ௕మ
௔య ௕య

ฬ

஽ா்
ܶܧܦ         ൌ อ

ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ 

An intersection of two planes is the case very often 
solved in computer graphics and computer vision. 
However the formula above is neither robust nor 
convenient for GPU use. 

In the following a new formulation of intersection 
of two planes is presented and if the projective space 
is used for formulation, the solution is quite simple. 

 
Figure 1: Intersection of two planes 

 
Let us consider two planes ࣋ଵ and ࣋ଵ given as  

࣋ଵ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ் 

and the normal vectors of those planes are 

ଵ࢔ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ࢔ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ் 

It is obvious that a directional vector of a line is 
determined as an intersection of two planes ࣋ଵ and ࣋ଵ 
given as 

࢙ ൌ ଵ࢔ ൈ  ଶ࢔

However, the “starting” point ࢞଴ of the line is 
determined in quite complicated ways, sometimes 
even not robustly enough and based on a user choice 
of some value, or on a solution of a system of linear 
equations leading to a standard formula given above. 

The formula is quite “horrible” one and for 
students not acceptable as it is too complex and they 
do not see from the formula comes from. 

However, there is a quite simple geometrical 
explanation and solution. So the question is how to 
find the “starting” point ࢞଴ of the line ࢖ given by two 
planes ࣋ଵ and ࣋ଶ. If a robust solution is required a 
user should be prevented from a selection of some 
“parameters”.  

Let us imagine that there exists a plane ࣋଴, whose 
normal vector is given as  ࢙ ൌ ଵ࢔ ൈ  ଶ. It means that࢔
its position needs to be “fixed” in the space. As there 
is no other requirement on this plane, we can “fix” it 
so it passes through the origin of the Euclidean 
coordinate system, i.e. the plane ࣋଴ is given as 

࣋଴ ൌ ሾܽ଴, ܾ଴, ܿ଴: 0ሿ்   
and the line  ࢖ is orthogonal to the plane ࣋଴ This is 
resulting into a robust geometric position. 

Now, the intersection point of those three planes is 
the “starting” point ࢞଴ we are looking for. 
Coordinates of the point ࢞଴  are determined by 
generalized cross-product as 

࢞଴ ൌ ࣋ଵ ൈ ࣋ଶ ൈ ࣋଴  
It is obvious that the point ࢞଴ is also the closest point 
on the line to the origin, too. The formula is very 
compact and it is suitable for GPU application.  

From the formulation presented above, it can be 
seen that it is not only very simple, easy to understand 
and remember, but also easy to implement as well. As 
a result, the Plücker coordinates formulation of this 
problem solution is not needed when looking for such 
properties. 
 
 

6 Conclusion 
This paper briefly describes some problems in 
numerical computations, advantages of the projective 
space representation use and some well known 
disasters caused by impropriate use in numerical 
computations.  

The projective space representation and 
reformulation of geometrical problems lead to more 
robust algorithms and simple formulations as shown 
above. The matrix-vector operations lead to more 
compact algorithms and due to the today’s hardware 
architecture also to additional computation 
acceleration, especially if GPU is used. 
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