

Duality and Robust Computation

VACLAV SKALA
Department of Computer Science and Engineering

Faculty of Applied Sciences, University of West Bohemia
Univerzitni 8, CZ 306 14 Plzen

Czech Republic
skala@kiv.zcu.cz http://www.VaclavSkala.eu

Abstract: - Robustness of computations in engineering is one of key issues as it is necessary to solve technical
problems leading to ill conditioned solutions. Therefore the robustness and numerical stability is becoming a
key issue more important that the computational time. In this paper we will show selected computational issues
in numerical precision, well known cases of failures in computations. The Euclidean representation is used in
today’s computations, however the projective space (an extension of the Euclidean space) representation leads
to more compact and robust formulations and to matrix-vector operations supported in hardware, e.g. by GPU.

Key-Words: - Euclidean space, projective space, homogeneous coordinates, duality, intersections, barycentric
coordinates, planes intersection, Plücker coordinates, numerical precision.

1 Introduction
Data processing is one of the main fields in

computer science. Data processing itself can be split
to two main areas:
• processing of textual data
• processing of numerical data

Nowadays, computers use binary system for
information and data representation.

The above mentioned main two areas are quite
different, but have many common algorithms, e.g.
hashing. In the case of textual data we have
“unlimited” dimensionality (”unlimited” length of a
string) but limited interval of values (usually given by
a number of symbols in the given alphabet). On the
contrary in the case of numerical or geometrical data
we have a limited dimensionality (usually 2 or 3 in
the case of E2 or E3) but “unlimited” interval of values
(usually (-∞, ∞)).

Numerical data processing and numerical
computations bring quite significant difficulties due to
the limited precision of a real number representation
as the floating point representation offers only a
limited length of a mantissa and exponent [49].
Today’s programming standard languages do not
offer constructions for computation with an
“arbitrarily” long integers or “unlimited” mantissa
length (Algol 68 had a construction long that could
extend the basic data type, e.g. long long real
etc.). Unfortunately it leads to numerical problems
and possibly to disasters in engineering applications.

There are also problems connected to uncontrolled
overflow, infinities and NaN results.

It should be noted that the majority of computer
science students and programmers are NOT AWARE
of those aspects at all.

2 Numerical Precision and Robustness
Numerical data processing and numerical
computation is the heart of nearly all engineering
problems solution. On the other hand it seems to that
in the engineering courses there is no attention given
to the numerical precision in connection with the
robustness of algorithms.

It can be seen from the floating point
representation that the absolute precision depends on
the actual exponent significantly, as the precision is
given by the length of the mantissa multiplied by the
exponent. As the mantissa is of the given length, not
all numbers even rational numbers can be represented
in a computer; of course irrational numbers cannot be
stored in any case. It means that a value x is somehow
modified in order to fit into the actual floating point
representation. It means that a stored value x
represents actually an interval [a, b], i.e. any value
from this interval is represented in a memory as one
value x.

As values are used in numerical operations it is
necessary to ask, at least in the case of basic
arithmetic operations, what is the influence to the
precision?

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 166

Let as assume that we have two numbers x and y
x = [a,b], y = [c,d].

The following interpretation of the basic
arithmetic operations demonstrate how actual
precision is defined.
• x + y = [a + c, b + d] x - y = [a - d, b - c]
• x × y = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)]
• x / y = [min(a/c, a/d, b/c, b/d),

max(a/c, a/d, b/c, b/d)] if y ≠ 0

There are well known identities like

ߙଶݏ݋ܿ ൅ ߚଶݏ݋ܿ ൌ 1 xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅ ሻݕ

However these identities are not valid if the floating
point representation is used. For a computation of
xଶ െ yଶ it is better to use ሺݔ െ ݔሻሺݕ ൅ ሻ due toݕ
better precision in evaluation, as if |ݔ| ൐ then |ݕ|
ଶݔ ب ଶݕ ଶ and therefore some last digits of theݕ
mantissa might be lost in the final subtraction. Also
constructions like

if <float>=<float> then... if <float>≠<float> then…

should not be allowed in programming languages or
at least a warning message should be generated.
Usually this problem is “solved” by constructions

if abs (x - y) < epsilon then … or
if abs (x) < epsilon then q:= y / x else ERROR ,

but nobody knows what is the proper value of epsilon.
Let us explore a little bit the numerical problems

on very simple examples, now.

Quadratic Equation Solution
Let us consider two formulations as follows [6]:

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0

The solution usually used is ݐଵ,ଶ ൌ ି௕േ√௕మିସ௔௖

ଶ௔

or if substituted ݐ ൌ 1 ߬ൗ ߬ଵ,ଶ ൌ ଶ௖

ି௕േ√௕మିସ௔௖

However in some cases the “standard” formula can
lead to incorrect results due to a limited number
precision. If ܾଶ ب 4ܽܿ then it is recommended to
use the following formula:

ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2

ଵݐ ൌ ݍ
ܽൗ ଶݐ ൌ ܿ⁄ܽ

to get more reliable results.
It can be seen that even such a simple case might

be quite sensitive to the numerical precision.

Function Value Computation
Computation of a function value is one of the basic
common operations in engineering problems.
However many programmers are not aware of the

danger in the coding process. There seems to be two
the most dangerous cases:
• division by a value close to zero, e.g. in an

intersection computation of two nearly parallel
lines

• addition or subtraction of two values with
significantly different absolute value, e.g.
recently mentioned xଶ േ yଶ .

As the result of this, the summation (repeated
addition) result depends on the order of summation in
general.

Let us explore one very interesting case [4] and
some other interesting comments [1], [7], [28].

݂ሺݔ, ሻݕ ൌ ଺ݕ333.75

൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ
൅ ଼ݕ5.5 ൅ ሻݕሺ2/ݔ

The question is, what is the value of the function if it
is evaluated at ݔ ൌ ݕ ,77617 ൌ 33096 if different
floating point precision is used.
݂ ൌ 6.33835 10ଶଽ in single precision
݂ ൌ 1,1726039400532 in double precision
݂ ൌ 1,1726039400531786318588349045201838
 in extended precision
However even the result in the extended precision is
incorrect and even the sign itself is incorrect. The
correct! The correct result is “somewhere” in the
interval of
ሾെ0,827396059946821368141165095479816
 29૛૙૙૞,
െ0,827396059946821368141165095479816
 29૚ૢૡ૟ሿ
if approx. 40 digits were used [4]. Of course this
function is constructed in a special way, but it
demonstrate that
• simple increase of precision does not guarantee

the correctness of the result
• roundoff error has significant influence to for a

limited floating point computation.
Detailed analysis of this function can be found in [1]
and the correct result is

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2
ൌ

54767
66192

Unfortunately precision of the numerical results are
significantly influenced by compilers properties and
options used, as the optimization of the code is not
considering the numerical stability issues.

Addition and Computational Order
So far we have dealt with “complicated cases”,
usually seen as “not practical”. Power series
summation is one of the very practical and often used
computations. Let us imagine simple examples of
summation if single precision is used [25]:

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 167

෍ 10ିଷ ൌ 0.999990701675415

ଵ଴య

௜ୀଵ

or

෍ 10ିସ ൌ 1.000053524971008

ଵ଴ర

௜ୀଵ

It can be seen that in the both cases the result should
be one. The correctness in summation is very
important in power series computations, e.g.

෍
1
݊

 ൌ 14.357357

ଵ଴ల

௡ୀଵ

or ෍

1
݊

 ൌ 14.392651

ଵ

௡ୀଵ଴ల

It means that even for a small number of elements we
do not obtain correct results.

Recursion
Recursion is very useful tool for finding a nice
description of a problem solution, e.g. well known
Tower of Hanoi, however if implemented directly it
might causes some problems, like the stack overflow
etc. The algorithm itself can be described as follows:

MOVE (A, C, n); # MOVE (from, to, number) #
{MOVE(A,B,n-1); MOVE(A,C,1); MOVE(B,C,n-1)
}

This recursive elegant solution is simple to implement
and only stack overflow can be expected; Iterative
solution is known as well. The recursive definition
usually leads to two main searching strategies in
implementation, i.e. depth first search or breath first
search. Let us explore recursive definition of the well
known Ackermann defined as function [20]:
,ሺ݉ܣ ݊ሻ

ൌ ቐ
݊ ൅ 1 ݂݅ ݉ ൌ 0
ሺ݉ܣ െ 1,1ሻ ݂݅ ݉ ൐ 0 ܽ݊݀ ݊ ൌ 0
൫݉ܣ െ 1, ,ሺ݉ܣ ݊ െ 1ሻ൯ ݂݅ ݉ ൐ 0 ܽ݊݀ ݊ ൐ 0

This function is simple, but the problem its
computation as the value of the function grows very
fast as

ሺ4,4ሻܣ ൌ 2ଶమలఱఱయల
ൌ 2ଶభబభవళమవల

As the computation is made in integers, no overflow
is detected at all.

However engineering applications are more
oriented to computation with numbers in floating
point representation.

Continuous Fractions
There is one very interesting approach based on
continuous fractions. It enables to represent even
irrational numbers in some cases. The basic definition
can be described as:

ݔ ൌ ܾ଴ ൅
ܽଵ

ܾଵ ൅
ܽଶ

ܾଶ ൅
ܽଷ

ܾସ ൅
ܽଷ
…

For generalized continuous fractions ܽ௜ ് 1 and we
can express as ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ if
ܽ௜ ൌ 1

As ߨ ൌ can be expressed as [23] ߨ ሺ1ሻ then ݊ܽݐܿݎܽ 4

ߨ ൌ
4

1 ൅
1ଶ

3 ൅
2ଶ

5 ൅ 3ଶ

…

Such a number representation is quite different and
detailed description can be found in [5].

We have presented some selected fundamental
issues in numerical computations that have direct
influence to results of numerical computation.

There is a significant question how today’s
computations are reliable and robust as we are using a
continuous mathematical models, but using discrete
systems for physical phenomena representation;
number of digits for a number representation is
limited. Only very careful coding with regard to
numerical errors can prevent disaster situations and
possible losses on humans.

Matrix Inversion
Matrix inversion is very often used in solution of
engineering problems. However in many cases the
matrix is ill conditioned and the results are not
checked to the correctness of the solution. Many
libraries available just return a matrix, which might be
far from the matrix inverted we would expect without
any message or warning message.

Let us assume a matrix inversion as
࢞࡭ ൌ ࢞ ࢈ ൌ ࢈ଵି࡭

and the Hilbert’s Matrix

௜௝ࡴ ൌ
ଵ

௜ା௝ିଵ

then the inversion of the matrix is known in the
analytical form and can be expressed as

௜௝ࡴ
ିଵ ൌ ሺെ1ሻ௜ା௝ሺ݅ ൅ ݆ െ 1ሻ

൬
݊ ൅ ݅ െ 1

݊ െ ݆ ൰ ቀ݊ ൅ ݆ െ 1
݊ െ ݅

ቁ ቀ݅ ൅ ݆ െ 2
݅ െ 1

ቁ
ଶ

The inversion of the Hilbert’s matrix can be used to
evaluate algorithms or available numerical library for
the stability and correctness of results delivered.
Matrix inversion and a linear system of equations can
be solved effectively without division operation if
projective geometry is used [8], [9].

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 168

3 Numerical Disasters
There are famous examples of numerical disasters.
When reading the original reports and followed
comments and details one must be really surprised
how simple errors occur and should be worried what
could happen in complex problems solution. Let us
shortly explore some “traditional” cases.

The following is a modified excerpt from public
resources [21], [22].

Explosion of Ariane 5
An Ariane 5 rocket was launched by the European
Space Agency (ESA) on June 4, 1996. The
development cost over $7 billion. The rocket
exploded after lift-off in about 40 sec. Destroyed
rocket and cargo were valued at $500 million. The
cause of a failure was a software error in inertial
reference system.

Patriot Missile Failure
The system was originally designed in mid-1960 for a
short and flexible operation and for intercepting
cruise missiles running at MACH 2 speeds. It was
used to intercept the Scud missile running at
MACH 5. The computation of intercepting and hitting
was based on time counting with 24 bits integers with
the clock of 1/10[s] and speed computation in floats.
The clock setting to 1/10[s] was a critical issue and
not acceptable even for application in sport activities
at that time. Unfortunately 1/10 =
1/24+1/25+1/28+1/29+1/212+.... and therefore the error
on 24 bits is about 0.000000095 and in 100 hours the
error is 0.34. As the Scud flies at MACH 5, the error
was actually 687[m] and the missile was out of the
“range gate” (a space window) area.

Offshore Platform Sinking
Another well known example is the Sleipner offshore
platform sinking. It should be noted that the top deck
is about 57 000 tons, drilling and support equipments
weight about 40 000 tons and the deck provides an
accommodation for about 200 people.

The Sleipner platform structure was “optimized”
using a finite element system and the shear stresses
were underestimated nearly by 50%. It led to serious
cracks in the structure and water leakage that the
pumps were unable to cope with. The sinking of the
platform estimated cost is about $700 million.

These examples show how danger the numerical
errors can be.

4 Intersection of two planes
The Euclidean space representation is used in today’s
computations with the floating point representation.
Unfortunately the imprecision of the floating point
computations is given by a number of mantissa digits
that is limited. However the robustness of algorithms
is more connected with the mathematical formulation
and the actual implementation as well.

In many cases the Euclidean representation leads
to unnecessary computations that even decrease the
computational precision. The division operation is
heavily used in engineering computations and it
decreases the precision of computation significantly.
There is a question whether the division operation can
be eliminated or at least postponed within the
computational pipeline. In geometry, the projective
representation is a way how things could be made
simple, robust and easy to implement.

Plücker Coordinates

Let us consider two points in the homogeneous
coordinates:

x1 = [x1, y1, z: w1]
T x2 = [x2, y2, z2: w2]

T
The Plücker coordinates lij are defined as follows:

l41 = w1x2 – w2x1 l23 = y1z2 – y2z1
l42 = w1y2 – w2y1 l31 = z1x2 – z2x1
l43 = w1z2 – w2z1 l12 = x1y2 – x2y1

It is possible to express the Plücker coordinates as
TT
1221 xxxxL −=

where: lij = - lji and lii = 0.
Let us define two vectors ω and v as:

ω = [l41 , l42 , l43]
T v = [l23 , l31 , l12]

T

The vector ω represents the “directional vector”,
while v represents the “positional vector”. The line p
is then defined as

() tt ω
ω

ω v
q +

×
=

2

Let us imagine that we have to solve a dual
problem, i.e. a line defined as an intersection of two
given planes ρ1 and ρ2 in the Euclidean space:

ρ1 = [a1, b1, c1: d1]
T ρ2 = [a2, b2, c2: d2]

T

It is well known that the directional vector s of the
line is given by those two planes as a ratio:

22

11

22

11

22

11 ::::
ba

ba

ac

ac

cb

cb
sss zyx =

that is actually the ratio l23 : l31 : l12 if the principle of
duality is used, i.e. vector of [ai, bi, ci: di]

T instead of
[xi, yi, zi: wi]

T is used, and it defines the vector v
instead of ω. Applying the principle of duality as we

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 169

can interchange the terms “point” and “plane” and
exchange v and ω in the equation for q(t) and we get:

() tt v
v

v ω
q +

×
=

2

If 0=v then the given planes are parallel.

It means that we have obtained the known formula
for an intersection of two planes ρ1, ρ2 in the
Euclidean coordinates:

() tt 30 nqq +=

where: 213 nnn ×= , q0 = [X0, Y0, Z0]
T and planes

0: 111 =+ dT xnρ 0: 222 =+ dT xnρ
The intersection point X0 of three planes in the
Euclidean coordinates is defined as:

ܺ଴ ൌ
ௗమฬ

௕భ ௖భ
௕య ௖య

ฬିௗభฬ
௕మ ௖మ
௕య ௖య

ฬ

஽ா்
 ଴ܻ ൌ

ௗమቚ
௔య ௖య
௔భ ௖భ

ቚିௗభቚ
௔య ௖య
௔మ ௖మ

ቚ

஽ா்

ܼ଴ ൌ
ௗమฬ

௔భ ௕భ
௔య ௕య

ฬିௗభฬ
௔మ ௕మ
௔య ௕య

ฬ

஽ா்
ܶܧܦ ൌ อ

ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ

An intersection of two planes is the case very often
solved in computer graphics and computer vision.
However the formula above is neither robust nor
convenient for GPU use.

In the following a new formulation of intersection
of two planes is presented and if the projective space
is used for formulation, the solution is quite simple.

Figure 1: Intersection of two planes

Let us consider two planes ࣋ଵ and ࣋ଵ given as

࣋ଵ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ்

and the normal vectors of those planes are

ଵ࢔ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ࢔ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ்

It is obvious that a directional vector of a line is
determined as an intersection of two planes ࣋ଵ and ࣋ଵ
given as

࢙ ൌ ଵ࢔ ൈ ଶ࢔

However, the “starting” point ࢞଴ of the line is
determined in quite complicated ways, sometimes
even not robustly enough and based on a user choice
of some value, or on a solution of a system of linear
equations leading to a standard formula given above.

The formula is quite “horrible” one and for
students not acceptable as it is too complex and they
do not see from the formula comes from.

However, there is a quite simple geometrical
explanation and solution. So the question is how to
find the “starting” point ࢞଴ of the line ࢖ given by two
planes ࣋ଵ and ࣋ଶ. If a robust solution is required a
user should be prevented from a selection of some
“parameters”.

Let us imagine that there exists a plane ࣋଴, whose
normal vector is given as ࢙ ൌ ଵ࢔ ൈ ଶ. It means that࢔
its position needs to be “fixed” in the space. As there
is no other requirement on this plane, we can “fix” it
so it passes through the origin of the Euclidean
coordinate system, i.e. the plane ࣋଴ is given as

࣋଴ ൌ ሾܽ଴, ܾ଴, ܿ଴: 0ሿ்
and the line ࢖ is orthogonal to the plane ࣋଴ This is
resulting into a robust geometric position.

Now, the intersection point of those three planes is
the “starting” point ࢞଴ we are looking for.
Coordinates of the point ࢞଴ are determined by
generalized cross-product as

࢞଴ ൌ ࣋ଵ ൈ ࣋ଶ ൈ ࣋଴
It is obvious that the point ࢞଴ is also the closest point
on the line to the origin, too. The formula is very
compact and it is suitable for GPU application.

From the formulation presented above, it can be
seen that it is not only very simple, easy to understand
and remember, but also easy to implement as well. As
a result, the Plücker coordinates formulation of this
problem solution is not needed when looking for such
properties.

6 Conclusion
This paper briefly describes some problems in
numerical computations, advantages of the projective
space representation use and some well known
disasters caused by impropriate use in numerical
computations.

The projective space representation and
reformulation of geometrical problems lead to more
robust algorithms and simple formulations as shown
above. The matrix-vector operations lead to more
compact algorithms and due to the today’s hardware
architecture also to additional computation
acceleration, especially if GPU is used.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 170

7 Acknowledgments
The author would like to express thanks colleagues at
the University of West Bohemia, Plzen and to
anonymous reviewers for their critical and
constructive comments that helped to improve the
manuscript.

This work was supported by the Ministry of
Education – projects No.ME10060 and LH12181.

References:
[1] Cuyt,A., Verdonk,B., Becuwe,S., Kuterna,P.: A

remarkable Example of Catastrophics
Cancellation Unraveled, Computing 66, pp.309-
320, 2011

[2] Jimenez,J.J., Segura,R.J., Feito,F.R.: Efficient
Collision Detection between 2D Polygons,
Journal of WSCG, Vol.12, No.1-3, 2003

[3] Johnson,M.: Proof by Duality: or the Discovery
of “New” Theorems, Mathematics Today,
December 1996.

[4] Leclerc,A.P.: Efficient and Reliable Global
Optimization, PhD Thesis, Ohio State
University, 1992

[5] Lorentzen,L.: Continued Fractions, Atlanties
Studies in Mathematics for Engineering and
Science, World Scientific Publ., 2008

[6] Press,W.H., Teukolsky,S.A., Vetterling,W.T.,
Flannery,B.P.: Numerical recipes in C,
Cambridge University Press, 1999

[7] Rump,S.M.: Realiability in Computing, The role
of Interval Methods in Scientific Computing,
Academic Press, 1988

[8] Skala,V., Kaiser,J., Ondracka,V.: Library for
Computation in the Projective Space, 6th
Int.Conf. Aplimat, Bratislava, pp. 125-130, 2007

[9] Skala,V., Ondracka,V.: A Precision of
Computation in the Projective Space, Recent
Researches in Computer Science, pp.35-40, 15th
WSEAS Int.Conference on Computers, Corfu,
Greece, 2011

[10] Skala,V.: A New Line Clipping Algorithm with
Hardware Acceleration, CGI’2004 conference
proceedings, IEEE, Greece, 2004

[11] Skala,V.: Computation in Projective Space,
MAMECTIS conference, La Laguna, Spain,
WSEAS, pp.152-157, 2009

[12] Skala,V.: Duality and Intersection Computation
in Projective Space with GPU support, Applied
Mathematics, Simulation and Modeling - ASM
2010 conference, NAUN, Corfu, Greece, pp.66-
71, 2010

[13] Skala,V.: Geometric Computation, Duality and
Projective Space, ICGG 2010 conference,
pp.363-364, Kyoto, Japan, 2010

[14] Skala,V.: Intersection Computation in Projective
Space using Homogeneous Coordinates,
Int.Journal on Image and Graphics, Vol.8, No.4,
pp.615-628, 2008

[15] Skala,V.: Length, Area and Volume
Computation in Homogeneous Coordinates,
International Journal of Image and Graphics,
Vol.6., No.4, pp.625-639, 2006.

[16] Skala,V: A new Approach to Line and Line
Segment Clipping in Homogeneous Coordinates,
The Visual Computer, Vol.21, No.11, pp.905-
914, 2005

[17] Skala,V: Duality and Intersection Computation
in Projective Space with GPU Support, WSEAS
Trans.on Mathematics, Vol.9., No.6., pp.407-
416, 2010

[18] Oh,E., Walster,W.G.: Rump’s Example
Revisited, Reliable Computing, Kluwer
Academic Publ., Vol.9., pp.245-248, 2002.

[19] Yamaguchi,F., Niizeki,M.: Some basic
geometric test conditions in terms of Plücker
coordinates and Plücker coefficients, The Visual
Computer, Vol.13, pp.29-41, 1997

WEB resources

[20] Ackermann function,
http://en.wikipedia.org/wiki/Ackermann_functio
n, <retrieved 2012-02-23>

[21] Arnold,D.A.: The sinking of the Sleipner
offshore Platform,
http://www.ima.umn.edu/~arnold/disasters/sleipn
er.html <retrieved 2012-02-02>

[22] Arnold,D.A.: Two disasters caused by computer
arithemtic error,
http://www.ima.umn.edu/~arnold/455.f96/disaste
rs.html <retrieved 2012-02-02>

[23] Continuous Fractions
http://www.numericana.com/answer/fractions.ht
m <retrieved 2012-01-29>

[24] IEEE-754 Data Format,
http://en.wikipedia.org/wiki/IEEE_754-2008
<retrieved 2012-01-29>

[25] Tucker,W.: Automatic Differentiation,
http://www.sintef.no/project/eVITAmeeting/2010
/vn2010.pdf <retrieved 2012-01-29>

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 171

