
Image Processing Methods Optimization by Means of GPU Computing

SKORPIL, V.*, ZIDEK, K.**, KOUBEK, T.**, LANDA, J.**, ENDRLE, P.*
*Faculty of Electrical Engineering and Communication

Brno University of Technology,
Purkynova 118, 612 00 Brno,

**Faculty of Business and Economics
Mendel University in Brno
Zemedelska 1, 61300, Brno

CZECH REPUBLIC
skorpil@feec.vutbr.cz, tomas.koubek@mendelu.cz, xlanda@node.mendelu.cz,

xendrl00@stud.feec.vutbr.cz, http:/www.vutbr.cz/, http:/www.mendelu.cz/

Abstract:- Optimization of computer resources allocation is crucial for real-time image processing applications.
One of the optimization possibilities is the use of GPU (Graphics Processing Unit) instead of CPU for
computing. The article explains augmented reality application (AuRel) and the possibility of speeding-up the
image preprocessing phase. Further, two image processing algorithms – threshold and convolution are tested.
These algorithms are tested in various implementations from naïve code performed on CPU to optimized code
running on GPU.

Key-Words:- Image processing, GPGPU, CUDA, OpenCL, Augmented Reality

1 Introduction
Image processing is widely used in many
applications from industry and medical research to
consumer and entertainment electrotechnics such as
mobile phones and tablets. Depending on the
application, the image processing can be a lengthy
process. Appropriate optimization is needed to
shorten the process, particularly in case of real time
applications [10], [12].

One of the optimization possibilities is the use of
GPU (Graphics Processing Unit) instead of CPU for
computing. Actually last generation of mobile and
desktop graphic cards are powered by graphics
chips that provide sufficient performance
capabilities. Because of the technologies such as
NVidia CUDA and OpenCL, it is possible to
transfer image processing calculations from CPU to
GPU. This transfer provides better performance
capabilities, especially for real time applications.

Firstly, the augmented reality (AR) application
AuRel is presented. This application uses a specific
image processing algorithms. These algorithms are
discussed in relationship to how much computing
power they require. Secondly, the use of GPU is
discussed with two most common frameworks,
CUDA and OpenCL. Finally, two common image
processing algorithms are tested using different
CPU and GPU implementations. These algorithms
are the basis of AuRel image preprocessing phase.

2 AR Application
One of the uses of image processing is in
Augmented Reality [1]. Augmented reality is widely
used in many applications; one of them is
augmented prototyping. In augmented reality
prototyping tool AuRel, more described [1] and [2],
specific image preprocessing in marker recognition
phase [14] is used.

AuRel is developed in C++ and OpenCV library
[3] that implements various computer vision
algorithms. Our application is based on [4] and uses
morphology operations to detect markers. The first
step is the camera image acquisition. A VGA web
camera with 640x480 pixels resolution is usually
used, but the application can use any USB camera or
video file with high resolution as a source. The next
step is the gray-scale conversion and image
smoothing by Gaussian blur for noise and details
removal.

The following step is image adaptive
thresholding. Based on blurred image, it creates the
thresholded value for each pixel. Finally it detects
contours, from contours derives polygons and tries
to identify potential markers by searching for
quadrangles. These potential markers are then
identified with the use of Golay error correction
code. If the marker is identified, the transformation

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 95

matrix is computed and the appropriate 3D model is
displayed at the marker location.

In case of VGA camera usage (640x480 pixels
resolution), the application runs in almost real time,
but when using higher resolution, the time needed to
detect and identify marker rises. Image
preprocessing is area with one of the highest
computational needs. These needs are relatively
constant in time, for VGA and HD (1280x720
pixels) resolution take approx. 30 % of processor
time. For FullHD (1920x1080 pixels) resolution this
value grows, it is 40 % of processor time. However,
all demands grow for high resolution images, so
saving of resources is requested.

As described earlier, the image preprocessing
uses convolution (in case of blurring) and also the
threshold is used, one in case of adaptive threshold
and also when using a Golay error correction code.
These two operations have high computational
demands. Because of this, we decided to test the
capability of speeding these processes by using of
GPGPU.

3 General-purpose computing on GPU
The idea of General-purpose computing on graphics
processing units (GPGPU) is to use GPU not only
for rendering, but also to use the potential of the
parallel computing architecture for general
computations. The goal is to transfer calculations
usually done on CPU to GPU.

The GPU architecture was designed for
rasterization and later for specific graphic operations
(3D graphics pipeline). But with the rise of more
demanding graphic effects, the architecture was
extended by programmable pixel and shader units.
Even though these units are primarily for image
data, they are widely used for general computations
on GPU. Nowadays, two platforms for GPGPU -
CUDA and OpenCL are massively used.

GPGPU are used in many applications. [5]
describes a framework for implementation of
hyperspectral image processing algorithms which
takes advantage of multiple levels of parallelism
found in modern GPU. They show that using GPU
is superior to using common CPU or high
performance clusters.

The reference [6] uses GPU to speed up the
registration process of 3D medical images using
commodity GPU. They show 50 times the
improvement over the standard CPU
implementation. Because of this enhancement, the

process is almost real-time. Nevertheless, they
clearly state that to use GPU, one must be prepared
to rethink existing methods and adapt them to
parallel processing environment.

Another use of GPU shows [7] and [8]. They use
GPU to increase the efficiency of well-known
Lucas-Kanade registration algorithm. Their
implementation shows that using GPU increases
performance significantly.

Although the GPU is mostly used for image
processing, the examples of different applications
can be found, e.g. KinectFusion [9]. KinectFusion is
a system for surface reconstruction that uses only
Microsoft Kinect and any commodity graphics card.
They present a novel GPU pipeline that allows
accurate camera tracking and surface reconstruction
in interactive real-time rates.

The ability to use GPU is not limited to
consumer or professional computers. Transferring
computations from CPU to GPU is also used in
mobile devices. [11] shows a GPU-accelerated face
annotation system for smartphones. They show that
the performance can be increased significantly (4x)
making the response time within the real-time
requirements. More applications of GPGPU can be
found in [13].

3.1 CUDA
CUDA (Compute Unified Device Architecture) is
an architecture developed by California company
NVidia. Every new graphic card from NVidia
contains given number of CUDA cores. These cores
replaced the need for separate pixel and vertex
shaders and are able to perform necessary
computations regardless of the operation type.
Through CUDA, the programmer has the ability to
use the potential of all available CUDA cores.

Because the CUDA architecture is available only
for NVidia graphic cards, any code for CUDA can
be used only with NVidia card. CUDA is supported
by all graphic cards based on G80 architecture or
higher. Nevertheless, it is clear that professional
Quadro card will have better results than basic
consumer GeForce card. As the development of new
graphic cards progresses, also the development of
CUDA goes forward and even though there is a
back compatibility between versions, the new
functions are not supported with old cards.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 96

3.2 OpenCL
OpenCL (Open Computing Language) is a standard
extension of C and C++ of data types, data
structures and functions [15] that facilitates parallel
programing not only for GPU, but also for common
CPU. OpenCL was created by Apple for the purpose
of creating unified interface for hardware
programing.

4 Testing
There are two methods tested in this article,
threshold and convolution. Threshold is tested on
several different implementations of optimized and
unoptimized code and convolution is tested on
CUDA and OpenCL. These two algorithms
represent part of AuRel image preprocessing phase.
The preprocessed image is then used for detecting
markers in AuRel.

The testing was performed on HP8710p with
NVidia Quadro 320M. As a operating system was
used Ubuntu 11.10 with a proprietal driver NVidia
280.13.

4.1 Threshold
Thresholding is a basic image processing operation
and can be performed on any type of image.
Because of the simplicity of the thresholding
algorithm, it is very easy to compare it in different
implementations. The threshold was tested because
threshold and other operations of this kind are key
parts of the application.

4.1.1 CPU
Threshold implementation, with only a use of CPU,
demonstrates the common approach used to deal
with thresholding without any optimization. To
simulate the naive code implementation, OpenCV
library was used. Camera image is stored and
processed in cv::Mat data type. The algorithm
accesses individual image pixel and computes the
thresholded value.

4.1.2 OpenCV
The second test was performed using standard
functions implemented in OpenCV. Because
OpenCV is primarily used for image processing, the
algorithms are optimized. Threshold is performed
using cv::Threshold method. OpenCV is mostly
used for computations on CPU, but allows user to
use many functions on both CPU and GPU. The

need to load image data into graphic card for GPU is
the significant difference between CPU and GPU
implementations. After being processed, the data
must be copied back to host device. The need for
image transfers from and to GPU is a key part of
any GPU implementation. Because of this, the data
type used for storing image data is different from
basic CPU version. Determining the computational
speed of GPU implementation is done in the third
test.

4.1.3 CUDA and OpenCL
The implementation on CUDA platform is more
difficult than previously discussed examples. The
application contains the code for graphic card
initialization and implementation of method that
sends data to graphic chip, processed data are sent
back and, very important, launches CUDA Kernel.
Kernel is a code that species activities performed on
graphic card with supplied data. Our thresholding
kernel is below.

#include ”kernel cuda .h” // CUDA kernel
__global__ void gpukernel(int rows, int cols ,
unsigned char∗ src data , unsigned char∗ dst data ,
int threshold){
 int n = blockIdx.x ∗ blockDim.x + threadIdx.x;
 if (n > cols∗rows) return ;
 if (src data[n] > threshold)
 dst data[n] = 255;
 else dst data [n] = 0;
}

Inside the kernel, first the position inside the array
of input value is computed and checked if the
position points to specific data inside the input
array. After that the thresholding is performed and
the output is stored inside output data array. The
graphic card memory allocation is more complex
then when using the basic functions implemented in
OpenCV.

OpenCL implementation is similar to CUDA.
The key principal, the transfer of image data to and
from graphic card, is analogous. The kernel itself is
not different from CUDA (except the header and
data types), however, the use of kernel is different.
The main difference between CUDA and OpenCL is
that OpenCL is defined for use on different
hardware platforms, whereas CUDA is limited only
to Nvidia graphic cards. Because of this, OpenCL
must firstly detect the platform on which the kernel
code is being used. Platform detection is a complex
problem because the large spectrum of possible
platforms must be taken into consideration.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 97

Therefore poorly written implementation can result
in coding the possibility of code functioning only on
specific type of devices.

Fig.1: Duration of threshold algorithm performing
in various implementation (time in ms)

4.1.4 Threshold testing results
The results clearly show the ineffectivity of the
naive code implementation on CPU. When
comparing the classic CPU implementation with
OpenCV CPU implementation, the OpenCV version
is clearly superior. This shows that the optimization
of algorithms can make very large difference even
when using only the CPU and not GPU. Even when
using very large images, the OpenCV CPU
implementation performs better then CUDA and
OpenCL.

Table 1: Duration of threshold algorithm
performance in various implementations (ms)

Resolution CPU

OpenCV

CUDA OpenCL
CPU GPU

320x200 1,11 0,05 0,07 0,25 0,25

640x400 4,14 0,30 0,12 0,89 0,93

1280x800 16,42 0,85 0,39 3,52 3,67

2560x1600 64,58 4,08 1,50 14,31 14,58

5120x3200 253,72 18,15 6,00 56,45 65,06

The best results were measured with OpenCV
GPU. With small images, the difference is

negligible, but with larger images, the difference is
in 10x better then with CUDA and OpenCL.

4.2 Convolution
To further test both CUDA and OpenCL platforms,
the implementation of basic image processing
algorithms was tested. The implementation of
convolution with 5x5 matrix was chosen.
Convolution enables the use of many image
processing algorithms, e.g. Gaussian Blur. The key
principles of working with both platforms remain
unchanged; however the number of input parameters
has increased. Besides the source image, the matrix
representing convolution kernel was added.

Table 2: Duration of convolution algorithm
performance in various implementations (ms)

Resolution CUDA OpenCL

320x200 23,68 23,69

640x400 94,11 94,02

1280x800 375,93 376,39

2560x1600 1508,90 1512,30

5120x3200 6061,98 6053,82

As results demonstrate the times needed to perform
convolution are almost same. This means that the
difference in performance time of both platforms is
negligible. The slight differences can be credited to
the different approaches used in performance
measuring.

Fig.2: Duration of convolution algorithm
performance in various implementations (ms)

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 98

5 Conclusion
The test of different CPU and GPU implementations
clearly shows that the transfer from CPU to GPU
significantly reduces the time needed for operations.
For augmented reality and other real-time
applications, the use GPU acceleration is possible
solution in a relationship to rising image resolution
requirements. It is important to be able to use image
in high resolution (1920x1080), which is not yet
possible in our application. Nevertheless, according
to our results, even processing speed of low
resolution images in real-time applications (e.g.
640x480) is substantially improved by usage of
GPU. Therefore, the GPU acceleration is not
suitable only for processing of huge amounts of
data.
 A substantial advantage of the OpenCL
technology is its support by mobile GPUs in tablets
and smartphones. Especially these devices must deal
with limited resources and must be also effectively
designed with regard to the limited battery capacity.
The results also show that simple transfer from CPU
to GPU provides only a partial computation speed-
up. Other factor in computation speed-up is the code
optimization. Comparison is shown in Table 1,
where optimized code, represented by OpenCV
library, reaches better result than naive code,
regardless if it is performance on GPU or CPU.
Accordingly, besides hardware enhancement of
image processing method, there must be an
algorithm and code optimization for results
improvement.

Acknowledgment:
This work has been supported by the grants:
MSM 0021630529 Intelligent systems in
automation (Research of Brno University of
Technology), FSI-S-11-31 Application of artificial
intelligence methods (Research design of Brno
University of Technology) and MSM
6215648904/03 (Research design of Mendel
University in Brno), OPVK No
CZ.1.07/2.2.00/28.0062, Joint activities of BUT and
TUO while creating the content of accredited
technical courses in ICT, No. ED 2.1.00/03.0072,
Centre of sensor information and communication
systems (SIX) and No. FEKT-S-11-15 Research of
electronic communication systems.

References:
[1] Prochazka, D. Stencl, M. Popelka, O. Stastny,

J., Mobile Augmented Reality Applications.

Mendel 2011: 17th International Conference on
Soft Computing. Brno University of Technology,
2011, pp. 469-476.

[2] Stastny, J., Prochazka, D., Koubek, T., Landa,
J., Augmented reality usage for prototyping
speed up, Acta Universitatis Agriculturae et
Silviculturae Mendelianae Brunensis. 2011.
VOL. LIX, No. 2, pp. 353--359.

[3] Laganiere, R.: OpenCV 2 Computer Vision
Application Programming Cookbook. Packt
Publishing, 2011.

[4] Kato, H. Tachibana, K. Billinghurst, M. and
Grafe, M. A registration method based on
texture tracking using ARToolKit, In
Augmented Reality Toolkit Workshop, pp. 77-
85, 2003.

[5] Setoain, J. et al. Parallel Hyperspectral Image
Processing on Commodity Graphics Hardware,
International Conference Workshops on
Parallel Processing, 2006, pp. 465-472.

[6] Shams, R. et al. Parallel computation of mutual
information on the GPU with application to
real-time registration of 3D medical images,
Computer Methods and Programs in
Biomedicine, Vol. 99, 2010, pp. 133-146.

[7] Duvenhage, B., Delport, J. P., Villiers, J.
Implementation of the Lucas-Kanade image
registration algorithm on a GPU for 3D
computational platform stabilization, 7th
International Conference on Computer
Graphics, Virtual Reality, Visualisation and
Interaction in Africa, pp. 83-90.

[8] Marzat, J., Dumortier, Y., Ducrot, A. Real-Time
Dense and Accurate Parallel Optical Flow
using, WSCG 2009, 2009, pp. 105-111.

[9] Izadi, S. et al. KinectFusion: Real-time 3D
Reconstruction and Interaction Using a Moving
Depth Camera, ACM Symposium on User
Interface Software and Technology, 2011, pp.
559-568.

[10] Stastny, J., Skorpil, V. New Methods for
Face Recognition. TSP 2010: 33rd International
Conference on Telecommunication and Signal
Processing. Vienna, Austria, 2010, pp. 156-159.
ISBN 978-963-88981-0-4.

[11] Wang, Y., Pang, S., Cheng, K. A GPU-
accelerated face annotation system for
smartphones, International conference on
Multimedia, 2010, pp. 1667-1668.

[12] Minarik, M., Stastny, J. Recognition of
Randomly Deformed Objects. MENDEL 2008:
14th International Conference on Soft
Computing. Brno University of Technology,
2008, pp. 275-280. ISBN 978-80-214-3675-6.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 99

[13] Owens, J. D. et al. A Survey of General-
Purpose Computation on Graphics Hardware,
Eurographics 2005, State of the Art Reports,
2005, pp. 21-51.

[14] Skorpil, V., Stastny, J. Comparison
Methods for Object Recognition. Proceedings
of the 13th WSEAS International Conference on
Systems. Rhodos, Greece, 2009. pp. 607-610.
ISBN 978-960-474-097- 0.

[15] Scarpino, M. OpenCL in action: how to
accelerate graphics and computation. Shelter
Island: Manning, 2012, 434 s. ISBN 978-1-
617290-17-6.

Recent Researches in Communications and Computers

ISBN: 978-1-61804-109-8 100

