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Abstract: - A scale invariant model of statistical mechanics is applied to derive invariant forms of 

conservation equations.  A modified form of Cauchy stress tensor for fluid is presented that leads to 

modified Stokes assumption thus a finite coefficient of bulk viscosity. The phenomenon of Brownian 

motion is described as the state of equilibrium between suspended particles and molecular clusters 

that themselves possess Brownian motion.  Physical space or Casimir vacuum is identified as a 

tachyonic fluid that is “stochastic ether” of Dirac or “hidden thermostat” of de Broglie, and is 

compressible in accordance with Planck’s compressible ether.  The stochastic definitions of Planck h 

and Boltzmann k constants are shown to respectively relate to the spatial and the temporal aspects of 

vacuum fluctuations.  Hence, a modified definition of thermodynamic temperature is introduced that 

leads to predicted velocity of sound in agreement with observations.  Also, a modified value of Joule-

Mayer mechanical equivalent of heat is identified as the universal gas constant and is called De 

Pretto number 8338 which occurred in his mass-energy equivalence equation. Applying Boltzmann’s 

combinatoric methods, invariant forms of Boltzmann, Planck, and Maxwell-Boltzmann distribution 

functions for equilibrium statistical fields including that of isotropic stationary turbulence are 

derived.   The latter is shown to lead to the definitions of (electron, photon, neutrino) as the most-

probable equilibrium sizes of (photon, neutrino, tachyon) clusters, respectively.  The physical basis 

for the coincidence of normalized spacings between zeros of Riemann zeta function and the 

normalized Maxwell-Boltzmann distribution and its connections to Riemann Hypothesis are 

examined.  The zeros of Riemann zeta function are related to the zeros of particle velocities or 

“stationary states” through Euler’s golden key thus providing a physical explanation for the location 

of the critical line.  It is argued that because the energy spectrum of Casimir vacuum will be 

governed by Schrödinger equation of quantum mechanics, in view of Heisenberg matrix mechanics 

physical space should be described by noncommutative spectral geometry of Connes.  Invariant 

forms of transport coefficients suggesting finite values of gravitational viscosity as well as 

hierarchies of vacua and absolute zero temperatures are described. Some of the implications of the 

results to the problem of thermodynamic irreversibility and Poincaré recurrence theorem are 

addressed.  Invariant modified form of the first law of thermodynamics is derived and a modified 

definition of entropy is introduced that closes the gap between radiation and gas theory. Finally, new 

paradigms for hydrodynamic foundations of both Schrödinger as well as Dirac wave equations and 

transitions between Bohr stationary states in quantum mechanics are discussed.  
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1 Introduction 
It is well known that the methods of statistical 

mechanics can be applied to describe  physical  

 

phenomena over a broad range of scales of space 

and time from the exceedingly large scale of 
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cosmology to the minute scale of quantum 

optics as schematically shown in Fig. 1.   
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Fig. 1 A scale invariant view of statistical mechanics 

from cosmic to tachyon scales.  

 

All that is needed is that the system should 

contain a large number of weakly coupled 

particles. The similarities between stochastic 

quantum fields [1-17] and classical 

hydrodynamic fields [18-29] resulted in recent 

introduction of a scale-invariant model of 

statistical mechanics [30] and its application to 

thermodynamics
31

, fluid mechanics [32-34], 

and quantum mechanics [35].   

 In the present paper the invariant model of 

statistical mechanics and its implications to the 

physical foundations of thermodynamics, 

kinetic theory of ideal gas [36-42], and 

quantum mechanics are further examined.  

Whereas outline of the main ideas are 

described in this introduction references to 

most of the specific literature will be presented 

in the corresponding Sections.    

 After a brief introduction of a scale 

invariant model of statistical mechanics the 

invariant definitions of density, “atomic”, 

element and system velocities are presented in 

Sec. 2.  The invariant forms of conservation 

equations for mass, energy, linear and angular 

momentum based on linearization of 

Boltzmann equation and in harmony with 

Enskog [43]
 
method are described in Sec. 2.  

Because by definition fluids can only support 

normal stresses, following Cauchy a modified 

form of the stress tensor for fluids is 

introduced that leads to modified Stokes 

assumption thus a finite value of bulk viscosity 

such that in the limit of vanishing interatomic 

spacing all tangential stresses in the fluid vanish 

in accordance with the perceptions of Cauchy 

and Poisson.  In addition, the concept of absolute 

enthalpy and iso-spin are introduced and 

incorporated in the derivation of scale invariant 

forms of energy and angular momentum 

conservation equations following the classical 

method of summational invariants [35].  The 

nature of the equation of motion for (a) 

equilibrium flow in absence of iso-spin (b) 

laminar potential flow (c) viscous flow in 

presence of spin are identified.   

 In Sec. 4 hierarchies of embedded statistical 

fields from Planck to cosmic scales are 

described.  It is shown that the scale factor of 
17

10


 appears to separate the equilibrium 

statistical fields of chromodynamics (Planck 

scale), electrodynamics, hydrodynamics, 

planetary-dynamics (astrophysics), and 

galactodynamics (cosmology). The phenomenon 

of Brownian motion is described in terms of the 

statistical field of equilibrium cluster-dynamics 

ECD.  The stochasticity of cascade of statistical 

fields is found to continue to Casimir vacuum 

that is identified as a tachyonic fluid that is 

Dirac stochastic ether or de Broglie hidden 

thermostat and is considered to be compressible 

in accordance with compressible ether of Planck.  

Stochastic definitions of Planck h and Boltzmann 

k constants are presented and shown to be 

respectively associated with the spatial and the 

temporal aspects of vacuum fluctuations and 

lead to finite gravitational mass of photon.  

Atomic mass unit is then identified as the total 

energy of photon thus suggesting that all 

baryonic matter is composed of light. It is shown 

that when thermodynamic temperature is 

modified by a factor of 1/2 based on the energy 

kT/2 per degree of freedom in accordance with 

Boltzmann equipartition principle, one resolves 

the classical Newton problem and obtains the 

velocity of sound in close agreement with 

observations.  The factor of 1/2 in the definition 

of temperature also results in modified Joule-

Mayer mechanical equivalent of heat that is 

identified as the modified universal gas constant 

and is called De Pretto number 8338 (J/kcal) that 
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appeared in the mass-energy equivalence 

equation of De Pretto. 

 In Sec. 5 invariant Boltzmann distribution 

function is derived by application of 

Boltzmann combinatoric method.  The 

invariant Planck energy distribution is then 

derived directly from the invariant Boltzmann 

distribution in Sec. 6.  The universality of 

invariant Planck energy distribution law from 

cosmic to photonic scales is described.  

Parallel to Wien displacement law for 

wavelength, a frequency displacement law is 

introduced and the connection between the 

speed of light and the root-mean-square speed 

of ideal photon gas is revealed.  The important 

role of Boltzmann combinatoric method to the 

foundation of quantum mechanics is discussed. 

It is suggested that at a given temperature the 

Maxwell-Boltzmann distribution function 

could be viewed as spectrum of stochastically 

stationary sizes of particle clusters.  Since 

according to the scale invariant model of 

statistical mechanics the “atom” of statistical 

field at scale  is identified as the most-

probable cluster size of the lower scale  

(Fig. 13), the definitions of (electron, photon, 

neutrino) are introduced as the most-probable 

equilibrium sizes of (photon, neutrino, 

tachyon) clusters.  Also, definitions of both 

dark energy (electromagnetic mass) and dark 

matter (gravitational mass) are introduced. 

 Next Maxwell-Boltzmann speed 

distribution is directly derived from invariant 

Planck energy distribution in Sec. 7. Hence, at 

thermodynamic equilibrium particles of 

statistical fields of all scales (Fig. 1) will have 

Gaussian velocity distribution, Planck energy 

distribution, and Maxwell-Boltzmann speed 

distribution.  Montgomery-Odlyzko law of 

correspondence between distribution of 

normalized spacing of zeros of Riemann zeta 

function and those of eigenvalues of Gaussian 

unitary ensemble (GUE) is shown to extend to 

normalized Maxwell-Boltzmann distribution 

function in Sec. 8.   Thus, a connection is 

established between analytic number theory on 

the one hand and the kinetic theory of ideal gas 

on the other hand.  The spacings between 

energy levels are then related to frequency 

spacings through Planck formula for quantum 

of energy  = h.  Next, the frequencies of 

Heisenberg-Kramers virtual oscillators are taken 

as powers of prime numbers and expressed in 

terms of Gauss’s clock calculators or Hensel’s p-

adic numbers.  Finally, the spacings between 

zeros of particle velocities are related to zeros of 

Riemann zeta function through Euler’s golden 

key.  In addition, it is argued that since physical 

space or Casimir vacuum is identified as a 

tachyonic quantum fluid with energy spectra 

given by Schrödinger equation and hence 

Heisenberg matrix mechanics, it should be 

described by noncommutative spectral geometry 

of Connes. 

 The implication of invariant model of 

statistical mechanics to transport phenomena is 

addressed in Sec. 9.  Following Maxwell, 

invariant definition of kinematic viscosity is 

presented that gives Boussinesq eddy viscosity 

for isotropic turbulence at the scale of 

equilibrium eddy-dynamics. The scale 

invariance of the model suggests possible 

dissipative effects at the much smaller scales of 

electrodynamics and chromodynamics.  

Hierarchies of “absolute zero” thermodynamic 

temperatures and associated vacua in harmony 

with inflationary models of cosmology are 

described.  Also, the impact of Poincaré [44]
 

recurrence theory on the problem of 

irreversibility in thermodynamics is discussed. 

 The derivation of invariant form of the first 

law of thermodynamics and modified definition 

of entropy per photon are presented in Sec. 10.  

It is shown that space quantization leads to a 

modified expression for the number of photons 

in a given volume resulting in exact 

correspondence between photon gas and the 

classical monatomic ideal gas thus closing the 

gap between radiation and gas theory. 

 The derivation of invariant Schrödinger 

equation from invariant Bernoulli equation for 

potential incompressible flow is discussed in 

Sec. 11.  A new paradigm of physical foundation 

of quantum mechanics is presented according to 

which Bohr stationary states correspond to 

statistically stationary sizes of particle clusters, 

de Broglie wave packets, which are governed by 

Maxwell-Boltzmann distribution function.   

Finally, invariant Dirac relativistic wave 

equation and its derivation from invariant 
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equation of motion in the presence of viscous 

effects hence iso-spin is described 

 

2 A Scale Invariant Model of 

Statistical Mechanics  
Following the classical methods [43, 45-49] 

the invariant definitions of density

  and 

velocity of “atom” u, element v, and system 

w at the scale  are given as [35]
 

mp 1
n m m f du        ,         ρ
      

   u v


   (1) 

1

mp 1
m f d           ,           ρ



       
 v u u w v

    (2) 

 

Similarly, the invariant definition of the 

peculiar and diffusion velocities are introduced 

as  

          ,           
     
    V u v V v w

       (3) 

such that 
 

1 
V V                       (4) 

 For each statistical field, one defines 

particles that form the background fluid and are 

viewed as point-mass or "atom" of the field.  

Next, the elements of the field are defined as 

finite-sized composite entities each composed 

of an ensemble of "atoms" as shown in Fig. 1.  

According to equations (1)-(2) the atomic and 

system velocities of scale  ( , )
 

u w  are the 

most-probable speeds of the lower and upper 

adjacent scales 
mp 1 mp 1

( , )
 

v v  as shown in Fig. 

13.  Finally, the ensemble of a large number of 

"elements" is defined as the statistical "system" 

at that particular scale. 
 

 

3 Scale Invariant Forms of the 

Conservation Equations 
Following the classical methods [43, 45-49] the 

scale-invariant forms of mass, thermal energy, 

linear and angular momentum conservation 

equations at scale  are given as [32, 50] 

 iβ

iβ iβ iβ

βt





  


v  (5) 

 

 iβ

iβ iβ

β

ε
ε 0

t


 


v  (6) 

 

 iβ

iβ jβ ijβ

βt


  



p
p v P   (7) 

 

 iβ

iβ iβ

β

0
t


 



π
π v  (8) 

 

that involve the volumetric density of thermal 

energy
i i i i i

h h
    
    , linear momentum 

i i i  
 vp , and angular momentum 

i i i  
   ,

i i 
  v . Also, 

i
 is the chemical 

reaction rate, 
i

h

is the absolute enthalpy [32] 

 

  

T

iβ piβ β
0

h c dT                      (9)  

and 
ij

P  is the stress tensor [45]  

ijβ β iβ iβ jβ jβ β β
m (  )(  ) duf  P u v u v

                   (10) 

Derivation of Eq. (7) is based on the definition of 

the peculiar velocity in Eq. (3) along with the 

identity 

i j i i i j j i j i j
( )( )

         
      V V u v u v u u v v       (11) 

The definition of absolute enthalpy in Eq. (9) 

results in the definition of standard heat of 

formation o

ifβ
h

 
for chemical specie I [32] 

 

  

oT
o

fiβ piβ β
0

h c dT                 (12) 

where To is the standard temperature.  The 

definition in Eq. (12) helps to avoid the 

conventional practice of arbitrarily setting the 

standard heat of formation of naturally occurring 

species equal to zero.  Furthermore, following 

Nernst-Planck statement of the third law of 

thermodynamics one has 
β

0h   in the limit 
β

T 0  

as expected. 
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 The classical definition of vorticity 

involves the curl of linear velocity 
 

 v   

thus giving rotational velocity of particle a 

secondary status in that it depends on its 

translational velocity v.  However, it is known 

that particle’s rotation about its center of mass is 

independent of the translational motion of its 

center of mass.  In other words, translational, 

rotational, and vibrational (pulsational) motions 

of particle are independent degrees of freedom 

that should not be necessarily coupled.  To 

resolve this paradox, the iso-spin of particle at 

scale  is defined as the curl of the velocity at 

the next lower scale of 
  

                                                 
 

1 1     v u             (13) 

 

such that the rotational velocity, while having a 

connection to some type of translational motion 

at internal scale  retains its independent 

degree of freedom at the external scale  as 

desired. A schematic description of iso-spin and 

vorticity fields is shown in Fig. 2. The nature of 

galactic vortices in cosmology and the 

associated dissipation have been discussed [25, 

52]. 
 

   
 
  

Fig. 2 Description of internal (iso-spin) versus 

external vorticity fields in cosmology [51].  

 

 The local velocity 
v in equations (5)-(8) 

is expressed in terms of the convective 
w  

and the diffusive 
V  velocities [32]  

 

g   w v V      ,      g ln( )D   V   (14a)

tg   w v V       tg ln( )    V       (14b)

hg   w v V       hg ln( )   V p  (14c) 

rhg   w v V        rhg ln( )   V π  (14d) 

 

where
β

D is mass diffusivity, 
β


 

is dynamic 

viscosity, 
β β β

/  
 

is kinematic viscosity, 

tβ β β p
/ ck 

 
is thermal diffusivity, and 

t h rh
( ,  , , )

g g g g   
V V V V are respectively the diffusive, the 

thermo-diffusive, the translational and rotational 

hydro-diffusive velocities. 

   Because by definition fluids can only support 

compressive normal forces, following Cauchy the 

stress tensor for fluids is expressed as [32]
 

 

ijβ β ijβ β ij β lk lk ij
p 2kk ee              

      
β ijβ β ij β kk ijkkp 2 ee               (15) 

 

As discussed below the classical Stokes 

assumption [53]
 
of zero bulk viscosity b = 0 is 

modified such that the two Lame constants 

β β
( ,  )  are related as  
 

β β β β

2 1

3 3
b               (16)  

 

 

that by Eq. (15) leads to the total stress tensor 

[32] 

 

ij

ij ij t h ij
p (p p )

3
= ( / 3 / 3



       
     P v


  

                  (17) 
 

involving thermodynamic pt and hydrodynamic 

ph pressures.   

 The expression for hydrodynamic pressure in 

Eq. (17) could also be arrived at directly by first 

noting that classically hydrodynamic pressure is 

defined as the mean normal stress 

h xx yy zz
p ( ) / 3/ 3

    
        (18) 

since shear stresses in fluids vanish by definition.  

Next, normal stresses are expressed as diffusional 

flux of the corresponding momenta by Eq. (14c) 

as 

i iii ii h     v vV    (19) 

Substituting from Eq. (19) into Eq. (18) results in 
 

hp
3

  


   v               (20)

 
 

that is in accordance with Eq. (17).  The 

occurrence of a single rather than two Lame 

constants in Eq. (16) is in accordance with the 
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perceptions of Cauchy and Poisson who both 

assumed the limit of zero for the expression 

[54]  
 

β β

4

0
( ) 0

R
LimR f R


                  (21)
 

 

It is because of Eq. (21) that the Stokes 

assumption in Eq. (16) is equal to  3

  rather 

than zero and as the intermolecular spacing 

vanishes 0R   by Eq. (21) all stresses become 

normal in accordance with Eqs. (17)-(20).  

Because in the limit given in equation (21) as 

was noted by Darrigol  [54] 

 
“Then the medium loses its rigidity since the transverse 

pressures disappear.”    
 

one may identify the medium in the limit in Eq. 

(21) as fluid requiring only a single Lame 

coefficient as anticipated by Navier [54]. 

 Following the classical methods [43, 45-

47] by substituting from equations (14)-(17) 

into (5)-(8) and neglecting cross-diffusion terms 

and assuming constant transport coefficients the 

invariant forms of conservation equations are 

written as [32]  

 

iβ 2

iβ i iβ i

t
D


 

  




   


+ w  

 
(22) 

 

i 2

i i i i i iβ pi

T
T T h / ( c )

t




      




     


+ w   (23) 

 

i i2

i i i

i

p

t ρ

 

   




    



v
+ w v v


 

 

                               

i i

i

iβ

i
( )

3 

 




 

v
v 

  
(24)

 

i i i2

i i i i

iβ
t

  

     



 
    



ω ω
+ w ω ω ω w


   (25) 


 The main new feature of the modified form 

of the equation of motion (24) is its linearity due 

to the difference between the convective w 

versus the local velocity v as compared with 

the non-linear classical Navier-Stokes equation 

of motion 

 

2 p
( )

t

1

3


    




v
+ v v v v 


   (26) 

 

The convection velocity in Eq. (24) must be 

obtained from the solution of the equation of 

motion for outer potential flow at the next larger 

scale w = vmp.  One further notes that in Eq. 

(24) the absence of convection results in none-

homogeneous diffusion equation while in Eq. (26) 

the absence of velocity leads to the vanishing of 

almost the entire equation of motion [32].  Also, 

the linearity of Eq. (24) in harmony with Carrier 

equation [55]
 
resolves the classical paradox of 

drag reciprocity [56, 57].  Comparisons between 

predictions based on modified equation of motion 

(24) and experimental observations reported in 

literature on velocity profiles in “laminar” 

boundary layer over flat plates are shown in Fig. 3 

[35].   
 

              
      (a)               
 

                
                                      (b)  
 

 

                
                     (c)  
 

Fig. 3 Comparison between the predicted velocity 

profiles (a) LED-LCD, (b) LCD-LMD, (c) LCD-LAD 

with experimental data in the literature over 10
8
 range 

of spatial scales [35].  
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The close agreement between theory and 

observations shown in Fig. 3 extends over four 

generations of statistical fields from EED to 

EAD (Fig. 1) and therefore corresponds to the 

spatial range of 10
8
.  It is also noted that 

according to the present model (Fig. 1) 

“laminar” flows at the scales LED, LCD, and 

LMD are actually locally “turbulent” flows that 

are being advected by a global convective 

velocity.  An error in the sign of the vortex-

stretching term in modified Helmholtz vorticity 

equation (24) in the earlier studies [32, 35] has 

been corrected.
 

 The central question concerning Cauchy 

equation of motion Eq. (7) say at  = m is how 

many “molecules” are included in the 

definition of the “local” mean molecular 

velocity   

mj mj cj
   v u u .  One can identify 

three distinguishable cases:  

 (a) When 
m c
v u  is itself random then all 

three velocities 
m m m

( , , )u v V  in Eq. (3) are 

random in a stochastically stationary field 

made of ensembles of clusters and molecules 

with Brownian motions and hence Gaussian 

velocity distribution, Planck energy 

distribution, and Maxwell-Boltzmann speed 

distribution. If in addition both the vorticity 

m m
0  v   as well as the iso-

spin
mm 0 u   are zero then for an 

incompressible flow the continuity Eq. (5) and 

Cauchy equation of motion (7) lead to 

Bernoulli equation.  In Sec. 11 it will be shown 

that under the above mentioned conditions 

Schrödinger equation (206) can be directly 

derived [35]
 
 from Bernoulli equation (202) 

such that the energy spectrum of the 

equilibrium field will be governed by quantum 

mechanics and hence by Planck law.  

 (b) When 
m c
v u  is not random but the 

vorticity vanishes 
m

0   the flow is 

irrotational and ideal, inviscid m= 0, and 

once again one obtains Bernoulli equation 

from equations (5) and (7) with the solution 

given by the classical potential flow. 

 (c) When 
m c
v u  is not random and 

vorticity does not vanish
m

0 v  the 

rotational non-ideal viscous 
m

0  flow will be 

governed by the equation of motion (24) with the 

convection velocity 
β β+1
w v  obtained from the 

solution of potential flow at the next larger scale 

of .  In Sec. 11 it will be shown that the 

viscous equation of motion Eq. (24) is associated 

with Dirac relativistic wave equation.  In the 

sequel, amongst the three cases of flow 

conditions discussed in Ref. 35 only cases (a) 

and (b) will be examined. 
 

4 Hierarchies of Embedded Statistical 

Fields  
The invariant model of statistical mechanics 

shown in Fig. 1 and described by equations (1)-

(4) suggests that all statistical fields are turbulent 

fields and governed by equations (5)-(8) [33, 34].  

First, let us start with the field of laminar 

molecular dynamics LMD when molecules, 

clusters of molecules (cluster), and cluster of 

clusters of molecules (eddy) form the “atom”, the 

“element”, and the “system” with the 

velocities m m m
( ,  , )u v w .  Similarly, the fields of 

laminar cluster-dynamics LCD and eddy-

dynamics LED will have the velocities c c c
( ,  , )u v w  

and e e e
( ,  , )u v w  in accordance with equations (1)-

(2).  For the fields of EED, ECD, and EMD 

typical characteristic “atom”, element, and system 

lengths are [50]
 

 

EED     
5 3 1

e e e
( ,  , L ) (10 , 10 ,  10 ) m

  
   (27a) 

ECD    
7 5 3

c c c
( ,  , L ) (10 , 10 ,  10 ) m

  
   (27b) 

EMD   
9 7 5

m m m
( ,  , L ) (10 , 10 ,  10 ) m

  
 

 
(27c) 

 

If one applies the same (atom, element, system) = 

( ,  , L )
  
  relative sizes in Eq. (27) to the entire 

spatial scale of Fig. 1 and considers the relation 

between scales as 
1 2

  L=
  
  then the resulting 

cascades or hierarchy of overlapping statistical 

fields will appear as schematically shown in Fig. 

4.  According to Fig. 4, starting from the 

hydrodynamic scale 3 1 1 3
(10 10 10 10,  ,  ,  )

   after 

seven generations of statistical fields one reaches 

the electro-dynamic scale with the element 

size
17

10


 and exactly after seven more generations 
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one reaches Planck length scale 
353 1/2

( G / c 10) m , where G is the 

gravitational constant. Similarly, seven 

generations of statistical fields separate the 

hydrodynamic scale 3 1 1 3
(10 10 10 10, , , )

   from the 

scale of planetary dynamics (astrophysics) 
17

10 and the latter from galactic-dynamics 

(cosmology) 35

10  m.   There are no physical or 

mathematical reasons for the hierarchy shown in 

Fig. 4 not to continue to larger and smaller 

scales ad infinitum.  Hence, according to Fig. 4 

contrary to the often quoted statement by 

Einstein that God does not play dice; the 

Almighty appears to be playing with infinite 

hierarchies of embedded dice.  
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Fig. 4 Hierarchy of statistical fields with 

( ,  , L )
  
  from cosmic to Planck scales [34].  

 
 The left hand side of Fig. 1 corresponds to 

equilibrium statistical fields when the 

velocities of elements of the field are random 

since at thermodynamic equilibrium particles 

i.e. oscillators of such statistical fields will 

have normal or Gaussian velocity distribution.  

For example, for stationary homogeneous 

isotropic turbulence at EED scale the 

experimental data of Townsend [58] confirms 

Gaussian velocity distribution of eddies as 

shown in Fig. 5. 

 
 

Fig. 5 Measured velocity distribution in isotropic 

turbulent flow [58].  

 

 According to Fig. 1, the statistical fields of 

equilibrium eddy-dynamics and molecular-

dynamics are separated by the equilibrium field 

of cluster-dynamics at an intermediate scale.  

The evidence for the existence of the statistical 

field of equilibrium cluster-dynamics ECD (Fig. 

1) is the phenomena of Brownian motions [25, 

59-69].  Modern theory of Brownian motion 

starts with Langevin equation [25] 

p

p

d
(t)

dt
  

u
u A

      (28) 

where up is the particle velocity.  The drastic 

nature of the assumptions inherent in the 

division of forces in Eq. (28) was emphasized by 

Chandrasekhar [25].   

 To account for the stationary nature of 

Brownian motions fluid fluctuations at scales 

much larger than molecular scales are needed as 

noted by Gouy [59].  Observations have shown 

that as the size of the particles decrease their 

movement become faster [59]. According to 

classical arguments Brownian motions are 

induced by multiple collisions of a large number 

of molecules with individual suspended particle.  

However, since the typical size of particle is 

about 100 times larger than that of individual 

molecules, such collisions preferentially from 

one side of the particle could not occur in view 

of the assumed Maxwell-Boltzmann distribution 

of molecular motions.  On the other hand, if one 

assumes that Brownian motions are induced by 

collisions of particles with groups, i.e. clusters, 

of molecules then in view of the stationary 

nature of Brownian motions, the motions of such 

clusters themselves must also be governed by 
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Maxwell-Boltzmann distribution.  But this 

would mean the existence of the statistical 

field of equilibrium cluster dynamics.  

 The description of Brownian motions as 

equilibrium between suspended particles and a 

spectrum of molecular clusters that themselves 

possess Brownian motions resolves the 

paradox associated with the absence of 

dissipation and hence violation of the Carnot 

principle or Maxwell’s demon paradox 

emphasized by Poincaré [70] 

 
“M. Gouy had the idea of looking a little more 

closely, and thought he saw that this explanation was 

untenable; that the motion becomes more active as 

the particle become smaller, but that they are 

uninfluenced by the manner of lighting.  If, then, 

these motions do not cease, or, rather, if they come 

into existence incessantly, without borrowing from 

any external source of energy, what must we think?  

We must surely not abandon on this account the 

conservation of energy; but we see before our eyes 

motion transformed into heat by friction and 

conversely heat changing into motion, and all without 

any sort of loss, since the motion continues forever.  

It is the contradiction of Carnot’s principle.  If such 

is the case, we need no longer the infinitely keen eye 

of Maxwell’s demon in order to see the world move 

backward; our microscope suffices.” 

 

Therefore, as was anticipated by Poincaré [70] 

the revolution caused by violation of the 

second law of thermodynamics due to 

Brownian motions namely Maxwell’s demon 

paradox is just as great as that due to his 

Principle of Relativity [70].   The dynamic 

theory of relativity of Poincaré -Lorentz that is 

causal since it is induced by compressibility of 

tachyonic fluid that constitutes the physical 

space (ether) as opposed to the kinematic 

theory of relativity of Einstein were described 

in a recent study [35]. 

 Clearly, the concept of spectrum of 

molecular clusters undergoing Brownian 

motions in ECD (Fig. 1) is in harmony with 

the perceptions of Sutherland [62]
 
regarding 

“ionic aggregates” or large “molecular 

masses”.  The central importance of the work 

of Sutherland [62] on Brownian motion and its 

impact on the subsequent work of Einstein is 

evidenced by the correspondence between 

Einstein and his friend Michele Besso in 1903 

described in the excellent study on history and 

modern developments of the theories of 

Brownian motion by Duplantier [71] 

 
“In 1903, Einstein and his friend Michele Besso 

discussed a theory of dissociation that required the 

assumption of molecular aggregates in combination 

with water, the “hypothesis of ionic aggregates”, as 

Besso called it.  This assumption opens the way to a 

simple calculation of the sizes of ions in solution, based 

on hydrodynamical considerations.  In 1902, 

Sutherland had considered in Ionization, Ionic 

Velocities, and Atomic Sizes
38

 a calculation of the sizes 

of ions on the basis of Stokes’ law, but criticized it as in 

disagreement with experimental data
39

.  The very same 

idea of determining sizes of ions by means of classical 

hydrodynamics occurred to Einstein in his letter of 17 

March 1903 to Besso
40

,  where he reported what 

appears to be just the calculation that Sutherland had 

performed,” 

 

The importance of Sutherland’s earlier 1902 

work [62] on ionic sizes have also been 

emphasized [71] 

 
“However, upon reading these letters of 1903, one 

cannot refrain from wondering whether Besso and 

Einstein were not also acquainted with and discussing 

Sutherland’s 1902 paper on ionic sizes.  In that case, 

Sutherland suggestion to use hydrodynamic Stokes’ 

law to determine the size of molecules would have been 

a direct inspiration to Einstein’s dissertation and 

subsequent work on Brownian motion!” 
 

 Because of Sutherland’s pioneering 

contributions to the understanding of Brownian 

motion the dual name Sutherland-Einstein is to 

be associated with the expression for diffusion 

coefficient [62, 64]
 

o

o

a

R T 1

N 6 r
D 


     (29a) 

as discussed by Duplantier  [71]
 

 

“In this year 2005, it is definitely time, I think, for the 

physics community to finally recognize Sutherland’s 

achievements, and following Pais’ suggestion, to re-

baptize the famous relation (2) with a double name!” 
 

In equation (29a) ra is “atomic” radius, R
o
 is the 

universal gas constant, and N
o
 is the Avogadro-

Loschmidt number.  According to the ultra-

simplified model of ideal gas [49] the diffusion 

coefficient becomes identical to the molecular 

kinematic viscosity  =  D given by 
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Maxwell relation 
x x

/ 3u
   


 
from Eq. (146) 

of Sec. 9.  It is therefore interesting to examine 

if the equality D   is also satisfied by 

Sutherland-Einstein relation in Eq. (29a).  

Although equation (29a) at first appears to 

suggest that D and are inversely related, the 

equality of mass and momentum diffusivity 

becomes evident when Eq. (29a) is expressed 

as 
 

o o 2 o

a a a

RT 1 p p

N 6 r 6 r N 6 r N
D


  

  



  
  

2 o 2 2 o
2 2 o

a a
mx mx a

p p p

16 r N 6 r N
6 ( u ) r N

3


  
 



  




 

2 o 2 o

ax a mx a

2 2

m mx

p p

1
r N ( u ) r N ( u )

3 3 3

 
 

 

   

 

o
2 o 3 o

ax a a

p

4 ˆN
r N p r N

3 3

v
  
 

  


 

  

   
o

(amu)N
 


     (29b) 

 

In Eq. (29b) substitutions have been made for 

the kinematic viscosity
m mx mx

/ 3u


 , the 

Avogadro-Loschmidt number N
o
 from Eq. (38), 

and
2 2

mx mx
u 2u


 .  Also, when the atomic mean 

free path is taken as atomic 

diameter
mx ax a

2r  , atomic volume 

3

a
ˆ 4 r / 3v   results in v̂ = amu that is the atomic 

mass unit defined in Eq. (40).  

 Because at thermodynamic equilibrium the 

mean velocity of each particle or Heisenberg-

Kramers [72]
 
virtual oscillator vanishes <u> 

= 0, the translational kinetic energy of particle 

oscillating in two directions (x+, x) is 

expressed as  

2 2 2

x x x
m u / 2 m u / 2 m u

         
            

2 1/2 2 1/2
 p

  
      

     (30) 

 

where 2 1/2

x
m u< p

   
     is the root-mean-

square momentum of particle and <u
2
x> 

=<u
2
x> by Boltzmann equipartition principle.  

At any scale  the result in Eq. (30) can be 

expressed in terms of either frequency or 

wavelength  

2 2 1/2 2 1/2
 m u hp

       
            

    (31a) 

2 2 1/2 2 1/2
 m u kp

       
            

    (31b) 

when the definition of stochastic Planck and 

Boltzmann factors are introduced as [33]  

2 1/2
 h p

  
    

   (32a) 

2 1/2
 k p

  
    

        (32b) 

 

 At the important scale of EKD (Fig. 1) 

corresponding to Casimir [73] vacuum 

composed of photon gas, the universal constants 

of Planck [74, 75] and Boltzmann [31] are 

identified from equations (31)-(32) as 

2 1/2 34

k k k
J/sh h m c 6.626 10  

     
   (33a) 

2 1/2 23

k k k
J/Kk k m c 1.381 10   

     
     (33b) 

Next, following de Broglie hypothesis for the 

wavelength of matter waves [2]  

h / p
 

 
   (34) 

the frequency of matter waves is defined as [31] 

k / p
 

 
   (35) 

For matter and radiation in the state of 

thermodynamic equilibrium equations (32) and 

(33) can be expressed as 
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 k
h h h

 

       ,         k
k k k

 

  (36) 

 The definitions in equations (34)-(35) 

result in the gravitational mass of photon [31] 
 

3 1/2 41

k
m (hk / c ) 1.84278 10 kg  

  
  (37) 

that is much larger than the reported [76] value 

of 51
4 10


  kg.  The finite gravitational mass of 

photons was anticipated by Newton [77] and is 

in accordance with Einstein-de Broglie [78-82]
 

theory of light.  Avogardo-Loschmidt number 

was predicted as [31] 

 
o 2 23

kN 1/(m c ) 6.0376 10                   (38) 

 

leading to the modified value of the universal 

gas constant  
 

o o
R N k 8.338    kJ/(kmol-K)       (39) 
 

Also, the atomic mass unit is obtained from 

equations (37)-(38) as 
 

2 1/2 27

k
kg/kmolamu m c (hkc) 1.6563 10   

   
 (40) 

Since all baryonic matter is known to be 

composed of atoms, the results in equations 

(38) and (40) suggest that all matter in the 

universe is composed of light [83].  From 

equations (32)-(33) the wavelength and 

frequency of photon in vacuum 
2 1/2 2 1/2

k k
c      

are   

 
2 1/2 o

k k 1/ R 0.119935       m    ,     

     
2 1/2 9

k k 2.49969 10        Hz     (41) 

 

 The classical definition of thermodynamic 

temperature based on two degrees of freedom  

2 2 2

mp mpx mpx
2kT 2 4mv mv mv


   

   (42) 

was recently modified to a new definition 

based on a single degree of freedom [83] 

 
2 2

mpx mpx2kT 2mv mv           (43) 

 

such that  
 

T 2T   (44) 

The factor 2 in Eq. (44) results in the predicted 

speed of sound in air [84]  

 
 

rmsxv p / (2ρ)a      
 

   3kT / (2m) 3kT / m 357  m/s    (45) 

 
 

in close agreement with observations.  Also, Eq. 

(45) leads to calculated root-mean-square 

molecular speeds (1346, 336, 360, 300, 952, 

287) m/s that are in reasonable agreement with 

the observed velocities of sound (1286, 332, 337, 

308, 972, 268) m/s in gases: (H2, O2, N2, Ar, He, 

CO2) [84]. 

 The square root of 2 in Eq. (45) resolves the 

classical problem of Newton concerning his 

prediction of velocity of sound as 

p / ρa 
      (46) 

discussed by Chandrasekhar [85] 

 
 “Newton must have been baffled, not to say 

disappointed.  Search as he might, he could find no 

flaw in his theoretical framework—neither could 

Euler, Lagrange, and Laplace; nor, indeed, anyone 

down to the present” 

 

Indeed, predictions based on the expressions 

introduced by Euler 2
p v / 3ρ , Lagrange 

4/3
p ρ  as well as Laplace’s assumption of 

isentropic relation p   , where  is a 

constant and p vc / c  , that leads to the 

conventional expression for the speed of sound 

in ideal gas 

RTa  
      (47) 

are all found to deviate from the experimental 

data [39]. 

 The factor of 2 in Eq. (44) also leads to the 

modified value of Joule-Mayer mechanical 

equivalent of heat J introduced in Ref. 83 
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c  J/kcalJ 2J 2 4.169 8338     
  (48) 

where the value cJ 4.169 4.17 [kJ/kcal] is 

the average of the two values Jc = (4.15, 4.19) 

reported by Pauli [86].  The number in Eq. 

(48) is thus identified as the universal gas 

constant in Eq. (39) when expressed in 

appropriate MKS system of units  
 

o o
J/(kmol.K)R kN J 8338      (49) 

The modified value of the universal gas 

constant in Eq. (49) was recently identified 

[87] as De Pretto number 8338 that appeared 

in the mass–energy equivalence equation of De 

Pretto [88]
 

 
2 2

Joules E mc      = mc /8338    kca  (50) 

 

 Unfortunately, the name of Olinto De 

Pretto in the history of evolution of mass 

energy equivalence is little known.  Ironically, 

Einstein’s best friend Michele Besso was a 

relative and close friend of Olinto De Pretto’ s 

brother Augusto De Pretto.   The relativistic 

form of Eq. (50) was first introduced in 1900 

by Poincaré [89] 

 
2

rE m c             (51) 

 

where 
2 2

r o
m m / 1 v / c  is the Lorentz 

relativistic mass [83].  Since the expression 

(50) is the only equation in the paper by De 

Pretto [88], the exact method by which he 

arrived at the number 8338 is not known even 

though one possible method was recently 

suggested [87].  The important contributions 

by Hasenöhrl [90] and Einstein [91] as well as 

the principle of equivalence of the rest or 

gravitational mass and the inertial mass were 

discussed in a recent study [83].    

5. Invariant Boltzmann Distribution 

Function 
The kinetic theory of gas as introduced by 

Maxwell [36] and generalized by Boltzmann 

[37, 38] is based on the nature of the molecular 

velocity distribution function that satisfies 

certain conditions of space isotropy and 

homogeneity and being stationary in time. 

However, in his work on generalization of 

Maxwell’s result Boltzmann introduced the 

important concept of “complexions” and the 

associated combinatorics [41] that was 

subsequently used by Planck in his derivation of 

the equilibrium radiation spectrum [74, 75].  In 

the following the invariant model of statistical 

mechanics and Boltzmann‘s combinatorics will 

be employed to arrive at Boltzmann distribution 

function.   

 To better reveal the generality of the 

concepts, rather than the usual scale of 

molecular-dynamics, we consider the statistical 

field of equilibrium eddy-dynamics EED at the 

scale  = e.  According to Fig. 1, the 

homogenous isotropic turbulent field of EED is a 

hydrodynamic system 
h

h  composed of an 

ensemble of fluid elements  

 

EED k

k

System Hydro System h f     (52) 

Next, each fluid element 
k

f  is an ensemble of a 

spectrum of eddies 

 

EED k jk

j

Element Fluid Element = f e     (53) 

 

Finally, an eddy or the “atom” of EED field is by 

definition (1) the most probable size of an 

ensemble of molecular clusters (Fig.1)  

 

EED j ij

i

Atom Eddy e c         (54) 

 

At the lower scale of ECD each eddy of type j 

will correspond to the energy level j and is 

composed of ensemble of clusters or quantum 

states cij within the energy level j.  Cluster of 

type cij does not refer to different cluster 

“specie” but rather to its different energy. The 

above procedure could then be extended to 

higher and lower scales within the hierarchy 

shown in Fig.1 
 

1
System Element Elements

  
       (55) 

1
Element Atom Atom

  
       (56) 
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It is noted again that by Eq. (27) typical system 

size of (EED, ECD, EMD) scales are 
1 3 5

e c m
(L ,  L , L ) (10 , 10 ,  10 ) m

  
 . 

 Following Boltzmann [37, 38] and Planck 

[74] the number of complexions for 

distributing Nj indistinguishable eddies among 

gj distinguishable cells or “quantum states” or 

eddy-clusters of ECD scale is 
 

 

j j

j

j j

(N g 1)!
W

N ! (g 1)!

 



 (57) 

The total number of complexions for system of 

independent energy levels Wj is obtained from 

Eq. (57) as  
 

 

j j

j j j

(N g 1)!
W

N ! (g 1)!

 





 (58) 

 As was discussed above, the 

hydrodynamic system is composed of gj 

distinguishable fluid elements that are 

identified as energy levels of EED system.  

Each fluid element is considered to be 

composed of eddy clusters made of 

indistinguishable eddies. However, the 

smallest cluster contains only a single eddy 

and is therefore considered to be full since no 

other eddy can be added to this smallest 

cluster.  Because an empty cluster has no 

physical significance, the total number of 

available cells or quantum states will be
j

(g 1) .  

Therefore, Planck-Boltzmann formula (57) is 

the exact probability of distribution of 
j

N  

indistinguishable oscillators (eddies) amongst 

j
(g 1)  distinguishable available eddy clusters.  

The invariant model of statistical mechanics 

(Fig. 1) provides new perspectives on the 

probabilistic nature of Eq. (57) and the 

problem of distinguishability discussed by 

Darrigol [41].   

 Under the realistic assumptions 
  

j j
g N

     ,            j
N 1

    (59) 

it is known that the number of complexions for 

Bose-Einstein statistics in Eq. (57) simplifies 

such that all three types namely “corrected” 

Boltzmann, Bose-Einstein, and Fermi-Dirac 

statistics will have [92] 

j

j

N

j j
W g / N !

    (60) 

The most probable distribution is obtained by 

maximization of Eq. (60) that by Sterling’s 

formula results in  

j j j j j j
ln W N ln g N ln N N  

    (61) 

and hence  

j j j j
d(ln W ) dN ln(g / N ) 0 

    (62) 

 In the sequel it will be argued that at 

thermodynamic equilibrium because of the 

equipartition principle of Boltzmann the energy 

of all levels 
j

U  should be the same and equal to 

the most probable energy that defines the 

thermodynamic temperature such that  

j j j j j
d dN N d 0U     

     (63) 

or 

 

j j

j j j j

j

N d
d dN dN

dN
U


  

j j

j j j

j

d(N )
dN dN

dN


     

   
j

j j j

j S,V

d
dN dN

dN

U
  

 
 
 

j j j j
ˆdN dN      (64) 

 

where Gibbs chemical potential is defined as 

 

  i j

j

j j j j

j S, V, N

ˆ ˆ / N
N

U
g G



 
     

     (65) 

 

Introducing the Lagrange multipliers  and 

one obtains from equations (62) and (64)   
 

j j j j j
ˆdN {ln(g / N ) ( )} 0   

     (66) 
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that leads to Boltzmann distribution 
 

j j j j
ˆ ˆ( ) ( )/kT

j j j
N g e g e

     
 

 

      (67) 

It is emphasized that as opposed to the 

common practice in the above derivation the 

constant Lagrange multiplier  is separate and 

distinct from the chemical potential 
j

̂  that is a 

variable as required.  Hence, for photons 

k
ˆ 0  one can have 

k
ˆ 0   without having to 

require  = 0 corresponding to non-

conservation of the number of photons.  

Following the classical methods [92-94] the 

first Lagrange multiplier becomes 1/ kT  . In 

Sec. 10 it is shown that the second Lagrange 

multiplier is = 1.     

6. Invariant Planck Energy 

Distribution Function 
In this section, the invariant Planck energy 

distribution law will be derived from the 

invariant Boltzmann statistics introduced in the 

previous section.  To obtain a correspondence 

between photon gas at EKD scale and the 

kinetic theory of ideal gas in statistical fields 

of other scales, by equations (29)-(30) particles 

with the energy 2
h ν hν m v

     
    are 

viewed as virtual oscillator [72] that act as 

composite bosons [95] and hence follow Bose-

Einstein statistics.  It is well known that the 

maximization of the thermodynamic 

probability given by Planck-Boltzmann 

formula Eq. (57) leads directly to Bose-

Einstein distribution [92-94]  

 

j

j

j /kT

g
N

e 1





          (68) 

 

However, since Boltzmann distribution in Eq. 

(67) was derived by maximization of Eq. (57) 

as discussed in the previous section, it should 

also be possible to arrive at Eq. (68) directly 

from Eq. (67).   

 The analysis is first illustrated for the two 

consecutive equilibrium statistical fields of 

EED scale  = e when (“atom”, cluster, 

system) are (eddy, fluid element, 

hydrodynamic system) identified by (e, f, h) with 

indices (j, k, h) and ECD at scale  = c when 

(“atom”, element, system) are (molecule, cluster, 

eddy) identified by (m, c, e) with indices (m, i, 

j).   

 The statistical field of EED is a 

hydrodynamic system composed of a spectrum 

of fluid elements (energy levels) that are eddy 

clusters of various sizes as shown in Fig. 1.  For 

an ideal gas at constant equilibrium temperature 

internal energy 
f

U  will be constant and by Eq. 

(65) one sets 
f

ˆ 0  and the number of fluid 

element of type f (energy level f) in the 

hydrodynamic system from Eq. (67) becomes 

f /kT

fh fh
N g e




 (69) 

Assuming that the degeneracy of all levels f is 

identical to a constant average value 
fh fh

g g , 

the average number of fluid elements in the 

hydrodynamic system h from Eq. (69) becomes 

 
f f/kT /kT

fh fh fh

f f

 N g e g e     

    
j

j j j
N

N /kT /kT

fh fh

j j

g e g e
  

    

         
j

fh

/kT

g

1 e





  (70) 

 

In the derivation of Eq. (70) the relation 

 

f jf j jf j

j

N U             (71) 

 

for the internal energy of the fluid element f has 

been employed that is based on the assumption 

that all eddies of energy level f are at 

equilibrium and therefore stochastically 

stationary indistinguishable eddies with 

stationary size and energy. 

 At the next lower scale of ECD, the system 

is a fluid element composed of a spectrum of 

eddies that are energy levels of ECD field. 

Eddies themselves are composed of a spectrum 

of molecular clusters i.e. cluster of molecular-

clusters hence super-cluster. Again, following 

the classical methods of Boltzmann [92-94], for 

an ideal gas at constant temperature hence 
j

U  by 
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Eq. (65) 
j

ˆ 0 and from Eq. (67) the number of 

eddies in the energy level j within the fluid 

element f becomes 

j /kT

jf jf
N g e




   (72) 

The result in Eq. (72) is based on the fact that 

all eddies of element jf are considered to be 

indistinguishable with identical energy 

j ij i ij i

i

N U     
   (73) 

that is in harmony with Eq. (71). 

 

 It is now possible to determine the 

distribution of eddies as Planck oscillators 

(Heisenberg-Kramers virtual oscillators) 

among various energy levels (fluid elements) 

with degeneracy under the constraint of a 

constant energy of all levels in Eq. (63).  From 

equations (70)-(72), the average number of 

eddies in the energy level f of hydrodynamic 

system can be expressed as 

 

j

j
jh fh jfj /kT

g
N N N N

e 1


  


    (74) 

 

 

that is Bose-Einstein distribution in Eq. (68) 

when the total degeneracy is defined 

as
j jh jf fh

g g g g  .   

 In the sequel it will be shown that the 

relevant degeneracy ge for ideal gas at 

equilibrium is similar to the classical Rayleigh-

Jeans [96-97]
 
expression for degeneracy of 

equilibrium radiation here expressed as  

 

2

j j j3

j

8
dg d

u


  

V
         (75) 

 
At thermal equilibrium Eq. (75) denotes the 

number of eddies (oscillators) at constant mean 

“atomic” velocity uj in a hydrodynamic system 

with volume V within the frequency interval j 

to j + dj.  The results in equations (74) and 

(75) lead to Planck [74, 35] energy distribution 

function for isotropic turbulence at EED scale 

 

 
j

3

j j j

jh /kT3

j

dN 8 h
d

u e 1


 
 

V
     (76) 

 

 

when the energy of each eddy is
j j

h   .  The 

calculated energy distribution from Eq. (76) at T 

= 300 K is shown in Fig. 6.   

 

   2 1013 4 1013 6 1013 8 1013
0

1. 10 19

2. 10 19

3. 10 19

4. 10 19

 
 
 
 

Fig. 6 Planck energy distribution law governing the 

energy spectrum of eddies at the temperature T = 300 

K.  

 

 The three-dimensional energy spectrum 

E(k) for isotropic turbulence measured by Van 

Atta and Chen [98-99] and shown in Fig. 7 is in 

qualitative agreement with Planck energy 

spectrum shown in Fig. 6 (Ref. 35).   

 

 
 
 

Fig. 7 Normalized three-dimensional energy spectra for 

isotropic turbulence [98]. 

 

In fact, it is expected that to maintain stationary 

isotropic turbulence both energy supply as well 

as energy dissipation spectrum should follow 

Planck law in Eq. (76).  The experimental data 

[100] obtained for one dimensional dissipation 

spectrum along with Planck energy distribution 
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as well as this same distribution shifted by a 

constant amount of energy are shown in Fig. 8.  
 

    
Fig. 8 One-dimensional dissipation spectrum [100] 

compared with (1) Planck energy distribution (2) 

Planck energy distribution with constant 

displacement.  2 

 

 Similar comparison with Planck energy 

distribution as shown in Fig. 8 is obtained with 

the experimental data for one-dimensional 

dissipation spectrum of isotropic turbulence 

shown in Fig. 9 from the study of Saddoughi 

and Veeravalli [101]   

 

            
 

Fig. 9 One-dimensional dissipation spectra (a) u1-

spectrum (b) u2-spectrum (c) u3-spectrum [101]. 

 
 In a more recent experimental 

investigation the energy spectrum of turbulent 

flow within the boundary layer in close 

vicinity of rigid wall was measured by 

Marusic et al. [102] and the reported energy 

spectrum shown in Fig. 10 appear to have 

profiles quite similar to Planck distribution 

law.  

 
 

Fig. 10 Reynolds number evolution of the pre-

multiplied energy spectra of stream wise velocity at the 

inner-peak location (z+ = 15) for the true 

measurements (A) and the prediction based on the 

filtered u signal measured in the log region (B) [102]. 

 

Also, the normalized three-dimensional energy 

spectrum for homogeneous isotropic turbulent 

field was obtained from the transformation of 

one-dimensional energy spectrum of Lin [103] 

by Ling and Huang [104] as 

 

2

2

( ) exp(- )
3

E K K K
   


 

 


 
           (77) 

 

with the distribution comparable with Fig. 6.  

  A most important aspect of Planck law is 

that at a given fixed temperature the energy 

spectrum of equilibrium field is time invariant.  

Since one may view Planck distribution as 

energy spectrum of eddy cluster sizes this means 

that cluster sizes are stationary. Therefore, even 

though the number of eddies 
jf

N  and their energy 

jf
  in different fluid elements (energy levels) are 

different their product that is the total energy of 

all energy levels is the same 

j j j j j 1 mpj

j

 N ...U U U U


       
   (78) 

in accordance with Eq. (63).  Thus Boltzmann’s 

equipartition principle is satisfied in order to 

maintain time independent spectrum (Fig. 6) and 

avoid Maxwell’s demon paradox [33].  

Therefore, in stationary isotropic turbulence, 

energy flux occurs between fluid elements by 

transition of eddies of diverse sizes while 

leaving the fluid elements stochastically 

stationary in time. A schematic diagram of 
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energy flux across hierarchies of eddies from 

large to small size is shown in Fig. 11 from the 

study by Lumley et al. [105]. 
 

              
 
 

 Fig.11 A realistic view of spectral energy flux [105]. 

 

 In Sec. 11, it will be suggested that the 

exchange of eddies between various size fluid 

elements (energy levels) is governed by 

quantum mechanics through an invariant 

Schrödinger equation (206).  Therefore, 

transition of an eddy from a small rapidly 

oscillating fluid element to a large slowly 

oscillating fluid element results in energy 

emission by “subatomic particle” that for EED 

will be a molecular cluster cji as schematically 

shown in Fig. 12. 
 

 

   

   fluid  
element-j

eddy

   fluid  
element-i

f j

f i

eji

cluster
cji

 
 
 

Fig. 12 Transition of eddy eij from fluid element-j to 

fluid element-i leading to emission of cluster cij. 

 

Hence, the stochastically stationary states of 

fluid elements are due to energy exchange 

through transitions of eddies according to 

ji j i j i
h( )

    
      

 (79) 

parallel to Bohr’s stationary states in atomic 

theory [72] to be further discussed in Sec. 11.  

   The above procedures in equations (68)-

(76) could be applied to other pairs of adjacent 

statistical fields (ECD-EMD), (EMD-EAD), 

(EAD-ESD), (ESD-EKD), (EKD-ETD), … 

shown in Fig. 1 leading to Planck energy 

distribution function for the energy spectrum 

of respectively molecular-clusters, molecules, 

atoms, sub-particles (electrons), photons, 

tachyons, . . . at thermodynamic equilibrium.  

Therefore, Eq. (76) is the invariant Planck 

energy distribution law and can be written in 

invariant form for any scale  as [35] 

3

h /kT3

dN 8 h
d

u e 1V 

  





 
 


 (80) 

with the spectrum shown in Fig. 6. 

 The invariant Planck energy distribution in 

Eq. (80) is a universal law giving energy spectra 

of all equilibrium statistical fields from cosmic 

to sub-photonic scales shown in Fig. 1. Such 

universality is evidenced by the fact that the 

measured deviation of Penzia-Wilson cosmic 

background radiation temperature of about 2.73 

K from Planck law is about 5

10
 K.  In view of the 

finite gravitational mass of photon in Eq. (37), it 

is expected that as the temperature of the 

radiation field is sufficiently lowered photon 

condensation should occur parallel to 

superconductivity, BEC, and superfluidity at the 

scales of electro-dynamics, atomic-dynamics, 

and molecular-dynamics [51].  Such phenomena 

have indeed been observed in a recent study 

[106] reporting on light condensation and 

formation of photon droplets.  Furthermore, one 

expects a hierarchy of condensation phenomena 

to continue to tachyonic [107], or sub-tachyonic 

fields … ad infinitum.  

 The important scales ESD  = s and EKD  

= k are respectively associated with the fields of 

stochastic electrodynamics SED and stochastic 

chromo-dynamics SCD [1-17].  For EKD scale 

of photon gas  = k, also identified as Casimir 

[73]
 
vacuum or the physical space with the most 

probable thermal speed of photon in vacuum uk 

= vmpt = c [83], the result in Eq. (80) corresponds 

to a spectrum of photon clusters with energy 

distribution given by the classical Planck energy 

distribution law [74] 

3

3 h /kT

dN 8 h
d

c e 1V

 



  
 

    (81) 

The notion of “molecules of light” as clusters of 

photons is in accordance with the perceptions of 

de Broglie [41, 108, 109].  It is emphasized that 
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the velocity of light is therefore a function of 

the temperature of Casimir [73]
 
vacuum, i.e. 

the tachyonic fluid [83] that is Dirac [110] 

stochastic ether or de Broglie [3] hidden 

thermostat.  However since such vacuum 

temperature changes by expansion of the 

cosmos through eons [35], one may assume 

that c is nearly a constant for the time 

durations relevant to human civilization.  

 The historical evolution of Planck law of 

equilibrium radiation, his spectral energy 

distribution function (81), and the central role 

of energy quanta  = h are all intimately 

related to the statistical mechanics of 

Boltzmann discussed in the previous section.  

This is most evident from the following 

quotation taken from the important 1872 paper 

of Boltzmann [37, 39] 

 
 “We wish to replace the continuous variable x by a series 

of discrete values , 2, 3 … p.  Hence we must assume 

that our molecules are not able to take up a continuous 

series of kinetic energy values, but rather only values that 

are multiples of a certain quantity .  Otherwise we shall 

treat exactly the same problem as before. We have many 

gas molecules in a space R.  They are able to have only the 

following kinetic energies: 

 
  , 2, 3, 4,  . . .   p.   

 
No molecule may have an intermediate or greater energy. 

When two molecules collide, they can change their kinetic 

energies in many different ways.  However, after the 

collision the kinetic energy of each molecule must always 

be a multiple of .  I certainly do not need to remark that 

for the moment we are not concerned with a real physical 

problem.  It would be difficult to imagine an apparatus 

that could regulate the collisions of two bodies in such a 

way that their kinetic energies after a collision are always 

multiples of .  That is not a question here. ” 
 

 

The quotation given above and the 

introduction of the statistical mechanics of 

complexions discussed in the previous section 

are testimony to the significant role played by 

Boltzmann in the development of the 

foundation of quantum mechanics as was also 

emphasized by Planck in his Nobel lecture [61, 

111]. 

 Similarly, Boltzmann gas theory had a 

strong influence on Einstein in the 

development of the theory of Brownian motion 

even though Boltzmann himself made only a 

brief passing remark about the phenomena [61] 

“. . . likewise, it is observed that very small particles in 

a gas execute motions which result from the fact that 

the pressure on the surface of the particles may 

fluctuate.” 
 

Although Einstein did not mention the 

importance of Boltzmann’s gas theory in his 

autobiographical sketch [61] 
 

 “Not acquainted with the earlier investigations of 

Boltzmann and Gibbs which appeared earlier and 

which actually exhausted the subject, I developed the 

statistical mechanics and the molecular kinetic theory 

of thermodynamics which was based on the former.  

My major aim in this was to find facts which would 

guarantee as much as possible the existence of atoms of 

definite finite size.  In the midst of this I discovered 

that, according to atomic theory, there would have to 

be a movement of suspended microscopic particles 

open to observation, without knowing that 

observations concerning Brownian motion were long 

familiar” 
 

much earlier in September of 1900 Einstein did 

praise Boltzmann’s work in a letter to Mileva  

[61, 112]
 
 

 

 “The Boltzmann is magnificent.  I have almost finished 

it.  He is a masterly expounder.  I am firmly convinced 

that the principles of the theory are right, which means 

that I am convinced that in the case of gases we are 

really dealing with discrete mass points of definite size, 

which are moving according to certain conditions.  

Boltzmann very correctly emphasizes that the 

hypothetical forces between the molecules are not an 

essential component of the theory, as the whole energy 

is of the kinetic kind.  This is a step forward in the 

dynamical explanation of physical phenomena” 
 

Similar high praise of Boltzmann’s theory 

appeared in April 1901 letter of Einstein to 

Mileva [112] 
 

 “I am presently studying Boltzmann’s gas theory 

again.  It is all very good, but not enough emphasis is 

placed on a comparison with reality.  But I think that 

there is enough empirical material for our investigation 

in the O. E. Meyer.  You can check it the next time you 

are in the library.  But this can wait until I get back 

from Switzerland. In general, I think this book 

deserves to be studied more carefully.”  
 

The central role of Boltzmann in Einstein’s work 

on statistical mechanics has also been recently 

emphasized by Renn [113]
 

 

 “In this work I argue that statistical mechanics, at least in 

the version published by Einstein in 1902 (Einstein 1902b), 

was the result of a reinterpretation of already existing results 

by Boltzmann.”   
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 In order to better reveal the nature of 

particles versus the background fields at (ESD-

EKD) and (EKD-ETD) scales, we examine the 

normalized Maxwell-Boltzmann speed 

distribution in Eq. (119) from Sec. 8 shown in 

Fig. 13.   
 

       
 
Fig. 13 Maxwell-Boltzmann speed distribution for 

ESD, EKD, and ETD fields. 

 

 According to Fig. 13, in ETD field one 

starts with tachyon [107] “atom” to form a 

spectrum of tachyon clusters.   Next, photon or 

de Broglie “atom of light” [108] is defined as 

the most probable size tachyon cluster of the 

stationary ETD field (Fig. 13).  Moving to the 

next larger scale of EKD, one forms a 

spectrum of photon clusters representing ideal 

photon gas of equilibrium radiation field. 

Finally, one identifies the “electron” as the 

most probable size photon cluster (Fig. 13) of 

stationary EKD field.  From ratio of the 

masses of electron and photon in Eq. (37) the 

number of photons in an electron is estimated 

as  

31

10

41ke

9.1086 10
N 4.9428 10 Photons

1.84278 10
   








  

  (82) 

The above definition of electron suggests that 

not all electrons may be exactly identical since 

by Eq. (82) a change of few hundred photons 

may not be experimentally detectable due to 

small photon mass. With electron defined as the 

“atom” of electrodynamics, one constructs a 

spectrum of electron clusters to form the 

statistical field of equilibrium sub-particle 

dynamics ESD (SED) as ideal electron gas in 

harmony with the perceptions of Lorentz [114] 

 
“Now, if within an electron there is ether, there can 

also be an electromagnetic field, and all we have got to 

do is to establish a system of equations that may be 

applied as well to the parts of the ether where there is 

an electric charge, i.e. to the electrons, as to those 

where there is none.” 
 

The most probable electron cluster of ESD field 

is next identified as the “atom” of EAD field. As 

shown in Fig. 13, the most probable element of 

scale  becomes the “atom” of the higher scale 

 and the “system” of lower scale  

mp 1 2w v u   
     (83) 

in accordance with equations (1)-(2). 

 At EKD scale Planck law (81) gives energy 

spectrum of photon conglomerates, Sackur’s 

“clusters”, or Planck’s “quantum sphere of 

action” as described by Darrigol [41] with sizes 

given by Maxwell-Boltzmann distribution (Fig. 

13) in harmony with the perceptions of de 

Broglie [109] 

 
 “Existence of conglomerations of atoms of light whose 

movements are not independent but coherent”   

 

Thus photon is identified as the most probable 

size tachyon cluster (Fig. 13) of stationary ETD 

field.  From ratio of the masses of photon in Eq. 

(37) and tachyon 69

t g
m m 3.08 10


    kg [85, 

115] the number of tachyons in a photon is 

estimated as  

41

27

tk 69

1.84278 10
N 5.983 10 Tachyons

3.08 10
   






  

  (84) 

Comparison of equations (82) and (84) suggests 

that there may be another particle (perhaps 

Pauli’s neutrino) with the approximate mass of 
55

10m



kg between photon and tachyon scales.  

Also, as stated earlier, the “atoms” of all 

statistical fields shown in Figs. 1, 4, and 13 are 
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considered to be “composite bosons” [95] 

made of “Cooper pairs” of the most probable 

size cluster of the statistical field of the 

adjacent lower scale (Fig. 13).  Indeed, 

according to de Broglie as emphasized by 

Lochak [109],  

 
“Photon cannot be an elementary particle and must 

be composed of a pair of particles with small mass, 

maybe “neutrinos”.” 

 

Therefore, one expects another statistical field 

called equilibrium neutrino-dynamics END to 

separate EKD and ETD fields shown in Figs. 1 

and 13. 

 The invariant Planck law in Eq. (80) leads 

to the invariant Wien [93] displacement law  

w 2
T 0.2014c


 

    (85) 

For = k by equations (29) and (30) the 

second radiation constant c2 is identified as the 

inverse square of the universal gas constant in 

Eq. (39) 

 
2 4

k
2 2 2 2 o2 o2

m chc hkc 1 1
c

k k k k N R
       (86) 

 

such that one may also express Eq. (85) as 

 

m o2

0.2014
T 0.002897

R
     m-deg   (87) 

 

It is also possible to express Eq. (87) in terms 

of the root mean square wavelength of photons 

in vacuum 

 

2k k k
2 k

k k k

m cc chc
c

k m c

 
    

 
     (88) 

 

from Eq. (41) 

k
m0.119933    

    (89) 

By the definition of Boltzmann constant in 

equations (31b), (33), and (36) the absolute 

thermodynamic temperature becomes the root 

mean square wavelength of the most probable 

state 

2 1/2

w mp
T

 
    

 (90) 

Therefore, by equations (87) and (89) Wien 

displacement law in Eq. (85) may be also 

expressed as 

 
2 2

wk mp,k k
T 0.2014    

         (91) 

 

relating the most probable and the root mean 

square wavelengths of photons in radiation field 

at thermodynamic equilibrium. 

 It is possible to introduce a displacement 

law for most probable frequency parallel to 

Wien’s displacement law for most probable 

wavelength in Eq. (85).  By setting the derivative 

of Planck energy density to zero one arrives at 

the transcendental equation for maximum 

frequency as 

2 wc /kcT 2 w
c

e 1 0
3kcT

 
  

 (92) 

From the numerical solution of Eq. (92) one 

obtains the frequency displacement law 

2

w

cT h
0.354428 0.354428

c k
 


 (93) 

or 

5

w
5.8807375 10 T  

 (94) 

From Eq. (94) one obtains the frequency at the 

maxima of Planck energy distribution at 

temperature T such as  
13

w
1.764 10   Hz at T = 

300K in accordance with Fig. 6 and  
14

w
3.5284 10   Hz at T = 6000K in agreement 

with Fig. 6.1 of  Baierlein [94].  

 From division of Wien displacement laws 

for wavelength in Eq. (85) and frequency in Eq. 

(93) one obtains 

wk wk
0.5682 c  

 (95) 

Because by Eq. (41) the speed of light in vacuum 

is 
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k k  c  
   (96) 

one can express Eq. (95) as 
 

mp,kmk mk mk

k k r.m.s,k

v v
0.57 

v c

 
 

 
   (97) 

 

The result in Eq. (97) may be compared with 

the ratio of the most probable speed 

mp
v kT / m  and the root mean square speed 

r.m.s
v 3kT / m  that is 

 

mp r.m.sv / v 1/ 3 0.577     (98) 

 

 The reason for the difference between 

equations (97) and (98) requires further future 

examination  

 At thermodynamic equilibrium each 

system of Fig. 13 will be stationary at a given 

constant temperature.  The total energy of such 

equilibrium field will be the sum of the 

potential and internal energy expressed by the 

modified form of the first law of 

thermodynamics [31] to be further discussed in 

Sec. 10  

p VQ H U
    
  

 (99) 

In a recent investigation [83] it was shown that 

for monatomic ideal gas with 
o

v
c 3R and 

o

p
c 4R one may express Eq. (99) as 

 

3 1

4 4
PVQ U H H H             

           de dmE E              (100) 
 

Therefore, the total energy (mass) of the atom 

of  scale is the sum of the internal energy 

(dark energy
1

DE


) and potential energy (dark 

matter
1

DM


) at the lower scale  (Ref. 83) 

1 1 1 1 1 1
pE V DMU + DE +

      
  

 (101) 

 To better reveal the origin of the potential 

energy 
1 1

p V
 

 in Eq. (101) one notes that by 

Eq. (30) the dimensionless particle energy in 

Maxwell-Boltzmann distribution in Eq. (111) 

could be expressed as 

 
2 2

j j j j

2

mp mp mp

h

h

mv mv

kT mv

 

 
             (102) 

 

that by 
j j j

v    gives 

1

j mp j mp
vv / ( / )


 

  (103) 

Therefore Maxwell-Boltzmann distribution in 

Eq. (111) may be expressed as a function of 

inverse of dimensionless wavelength by Eq. 

(103) thus revealing the relative (atomic, 

element, and system) lengths 
β β

( , , L) (0,1, )    

of the adjacent scales  and as shown in Fig. 

14.  
 

          
 
 

Fig. 14 Maxwell-Boltzmann speed distribution as a 

function of oscillator wavelengths (j/mp)
1

. 
 

 

According to Fig. 14, the interval (0, 1)

 of scale 

 becomes (1, )


 of  scale.   However, the 

interval (0, 1)


 is only revealed at  scale and 

is unobservable at the larger scale  (Figs. 14, 

18). Therefore, in three dimensions such 

coordinate extensions results in volume 

generation leading to release of potential energy 

as schematically shown in Fig. 15.   
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Fig. 15 Effects of internal versus external potential 

energy as the system volume is increased. 
 

 

Hence by equations (102)-(103) as one 

decompactifies the atom of scale , ¾ of the 

total mass (energy) of the atom “evaporates” 

into energy due to internal translational, 

rotational, and vibrational (pulsational) 

motions and is therefore none-baryonic and 

defined as dark energy (electromagnetic mass) 

[83].  The remaining ¼ of the total mass that 

appears as potential energy (dark matter), [83]  

in part “evaporates” as new volume generation 

(Figs. 15, 18) and in part forms the 

gravitational mass (dark matter) of the next 

lower scale [83]  

1 2 2 2
DM E DMDE +

   
 

 (104) 

The concepts of internal versus external 

potential energy are further discussed in the 

following section.   

 As an example, to determine the total 

energy of a photon one starts from the 

thermodynamic relation for an ideal photon 

gas 

 

h u pv    (105) 

with specific molar enthalpy, internal energy 

and volume (h, , ) (H, , ) / Nu v U V  that can also 

be expressed as 

o

p vc c R    (106) 

where o
N N / N , and o

NW m  is the molecular 

weight.  Since Poisson coefficient  of photon 

gas is
p v

c c 4 / 3/  , one arrives at o

p
c 4R  and 

o

v
c 3R  such that by Eq. (105) the total energy 

of the photon could be expressed as 

de dm

2 2

k kE (3 / 4)m c (1/ 4)m c E E
             (107) 

 

From Eq. (107) one concludes that of the total 

energy constituting a photon, ¾ is associated 

with the electromagnetic field (dark energy Ede) 

and ¼ with the gravitational field (dark matter 

Edm) [83].  Hence, as one decompactifies atoms 

of smaller and smaller scales by Eqs. (38), (40), 

and (100)-(107) ultimately all matter will be 

composed of dark energy or electromagnetic 

mass as was anticipated by both Lorentz [116] 

and Poincaré [117-119]. 

 It is known that exactly ¾ and ¼ of the total 

energy of Planck black body equilibrium 

radiation falls on > w and < w sides of w 

given by the Wien displacement law in Eq. (85).  

Indeed, the first part of Eq. (107) confirms the 

apparent mass  = 4E/3c
2
 that was measured for 

the black body radiation pressure in the 

pioneering experiments by Hasenöhrl [90]
 

in 

1905.  According to Eq. (107), the finite 

gravitational mass of the photon in Eq. (37) that 

is associated with Poincaré [117-119]
 

stress 

accounts for the remaining ¼ of the total mass as 

dark matter. This longitudinal component would 

be absent if photon gravitational mass were zero 

in harmony with the perceptions of Higgs [120].  

The result in Eq. (107) is also consistent with the 

general theory of relativity of Einstein [121] 

according to which of the total energy 

constituting matter ¾ is to be ascribed to the 

electromagnetic field and ¼ to the gravitational 

field. 

7. Invariant Maxwell-Boltzmann Speed 

Distribution Function 
Because of its definition, the energy spectrum of 

particles in an equilibrium statistical field is 

expected to be closely connected to the spectrum 

of speeds of particles. Indeed, it is possible to 

obtain the invariant Maxwell-Boltzmann 

distribution function directly from the invariant 
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Planck distribution function in Eq. (80) that in 

view of equations (34) and (37) can be written 

as 

2 3 2 2

/kT /kT3 3 3 3

d 8  m d8
dN

u u me 1 e 1

VV

 

      

  

   

      
 

 

/kT3 2

/kT3

8 m u du e

h 1 e

V 





  







   (108) 

Substituting for the partition function 
cj

/ kT / kT

mc mc
Z N g e g / (1 e )

 

     from Eq. (70), 

and the degeneracy for speed 
sβ mcβ

g g
 

 

2 3/2

sg 2 [(2 m kT) / h ]  V         (109) 
 

obtained from the normalization condition 
 

v
0

dN / N 1


             (110) 

 

into Eq. (108) results in the invariant Maxwell-

Boltzmann speed distribution function 
 

/kTu 3/2 2
dN m

4  ( ) u  e du
N 2 kT

  

 



 


  (111) 

 

By Eq. (111), one arrives at a hierarchy of 

embedded Maxwell-Boltzmann distribution 

functions for EED, ECD, and EMD scales 

shown in Fig. 16.  
 

 
 

 

Fig. 16 Maxwell-Boltzmann speed distribution 

viewed as stationary spectra of cluster sizes for EED, 

ECD, and EMD scales at 300 K [33]. 

 

 As stated earlier, the invariant results in 

equations (80) and (111) suggest that particles 

of all statistical fields (Fig. 1) will have 

Gaussian velocity distribution, Planck energy 

distribution, and Maxwell-Boltzmann speed 

distribution.    

 It is possible to express the number of 

degeneracy commonly obtained from field 

quantization [92-94] for particles, Heisenberg-

Kramers [72]
 
virtual oscillators in a spherical 

volume 
S

V  as 
 

3

S2g /  V                (112) 
 

where 3
  is the rectangular volume occupied by 

each oscillator 3

o
V


   when due to isotropy 

2 1/2 2 1/2 2 1/2

x y z              and the factor 2 

comes from allowing particles to have two 

modes either (up) or (down) iso-spin 

(polarization). The system spherical VS and 

rectangular V volumes are related as 
 

3

S

4 4
R

3 3

 
 V V           (113) 

 

 For systems in thermodynamic equilibrium 

the temperature 2

β β β
3kT m <u >  will be constant 

and hence 2 1/2 2 1/2 2 1/2

β β β
<u > <λ > <ν >=  or 

 

β β βλ u /ν=      (114) 
 

Substituting from equations (113)-(114) into Eq. 

(112) results in 
 

3

38
g

3u


 


 

V
             (115) 

 

that leads to the number of oscillators between 

frequencies 
β

ν  and 
β β

ν ν+d
 

 

3

28
dg d

u


  


  

V
            (116) 

 

in accordance with Rayleigh-Jeans expression in 

Eq. (75). 

 The expression in Eq. (116) for degeneracy 

is for application to Planck law involving 

frequency as the variable for energy quanta = 

h.  It is also possible to arrive at the degeneracy 

in Eq. (109) for Maxwell-Boltzmann speed 

distribution from Eq. (112). However, because 

only positive values of speeds (ux, uy, uz) are 

allowed one must take 1/8 of the total volume of 

the velocity space and Eq. (112) in terms of the 

relevant volume gives 
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3 3 3/2
3

s 3 3
2

2(L ) 2(2L / )
g /

8
 

 


   

  
 

V  

 

3 2 2 3/2 3 2 2 3/2

3 3 3 3

2(2L / ) ( m u ) 2L ( m u )

8 m u 8h

   

   

   
 


   

 

3/2 3/2

c 2 2

m kT 2 m kT
2 ( ) 2 ( )

h h

   



 
 V V       (117) 

  

that is in accordance with Eq. (109). In Eq. 

(117) the correct relevant volume of the speed 

space is 3

c
= (2L / ) / 8V   , while 3

= (L / )2V   , 

and h = h by Eq. (36).  The coordinate L  in 

Eq. (117) was first normalized as L 2L /   

with a measure based on Gauss’s error 

function as discussed in Ref. 122 and shown in 

Fig. 18.  The result in Eq. (117) is twice the 

classical translational degeneracy [92]   
 

3/2

t 2

2 mkT
g V( )

h


              (118) 

 

The additional factor of two arises from the 

fact that similar to Boltzmann factor 
h /kT

e
 

 in 

Planck distribution law in Eq. (81) by 

equations (42)-(44) the modified Maxwell-

Boltzmann distribution in Eq. (111) will also 

involve 
2

/kT mv /kT
e e  

  rather than the classical 

expression
2

mv /2kT
e
 . 

8. Connections between Riemann 

Hypothesis and Normalized Maxwell-

Boltzmann Distribution Function 

Because Maxwell-Boltzmann speed distribution 

in Eq. (111) may be also viewed as distribution 

of sizes of particle clusters, if expressed in 

dimensionless form it can also be viewed as 

the sizes of “clusters of numbers” or Hilbert 

“condensations”.  Therefore, a recent study 

[123] was focused on exploration of possible 

connections between the result in Eq. (111) and 

the theoretical findings of Montgomery [124] 

and Odlyzko [125] on analytical number theory 

that has resulted in what is known as 

Montgomery-Odlyzko  [124-125]
 
law   

 
 “The distribution of the spacings between successive non-

trivial zeros of the Riemann zeta function (suitably 

normalized) is statistically identical with the distribution of 

eigenvalue spacings in a GUE operator” 

 

The pair correlation of Montgomery [124] was 

subsequently recognized by Dyson to correspond 

to that between the energy levels of heavy 

elements [126-127] and thus to the pair 

correlations between eigenvalues of Hermitian 

matrices [128].   Hence, a connection was 

established between quantum mechanics on the 

one hand and quantum chaos [129]
 
on the other 

hand.  However, the exact nature of the 

connections between these seemingly diverse 

fields of quantum mechanics, random matrices, 

and Riemann hypothesis [126-127] is yet to be 

understood. 

 When the oscillator speeds (cluster sizes) in 

Eq. (111) are normalized through division by the 

most probable speed (the most probable cluster 

size) one arrives at Normalized Maxwell-

Boltzmann NMB distribution function [123] 
 

j

2[(2/ ) ]j2

j

x
8 /  x( ) (2 / )  e[ ] 



  

                        (119) 

 

The additional division by the “measure” 

β
π 2/ in Eq. (119) is for coordinate 

normalization as discussed in Ref. 122 and 

shown in Fig. 18.  Direct comparisons between 

Eq. (119) and the normalized spacings between 

the zeros of Riemann zeta function and the 

eigenvalues of GUE calculated by Odlyzko [125] 

are shown in Fig. 17.  Therefore, a definite 

connection has been established between analytic 

number theory, the kinetic theory of ideal gas, 

and the normalized spacings between energy 

levels in quantum mechanics [123].  
   

 
Fig. 17 Probability density of normalized spacing 

between zeros of Riemann zeta function [125] 
12 12

n
n 

      , normalized spacing between 
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eigenvalues of GUE [125], and the NMB distribution 

function from Eq. (119). 
 

 To further examine the connection 

between Riemann hypothesis and Maxwell-

Boltzmann kinetic theory of ideal gas the speed 

distribution is first related to distribution of 

sizes or wavelengths of number clusters (Fig. 

14).  According to equations (29)-(30) and (36) 

particle energy and frequency are related by  

2

tj j j
νε mv h 

 (120) 

Therefore, the normalized spacing between 

energy levels can be expressed in terms of the 

normalized spacing between frequencies of 

virtual oscillators as 

tj ti mp j i mp
(ε ε ) / ε = ( ) /   

 (121) 

 Because of Boltzmann’s equipartition 

principle the particles’ random rotational and 

vibrational (pulsational) kinetic energy in two 

directions (θ ,θ )  and (r , r )   will be equal to 

their translational kinetic energy in Eq. (120) 

and follow Planck law in Eq. (80).  Also, the 

corresponding momenta of all three degrees of 

freedom will be randomly distributed and once 

properly normalized should follow NMB 

distribution in Eq. (119).  Therefore, parallel to 

Eq. (30) the rotational counterpart of Eq. (120) 

is expressed as 

 
2 2 2

rjβ jβθ+ jβθ jβθ+ε ω / 2 ω / 2 ωI I I          
 

2 2 1/2 2 2 1/2

jβθ+ jβm r ω > (2πr) >    
 

2 1/2 2 1/2 2 1/2

jβ jβ jβ jβ(m u > λ > ) > hν        (122) 

 

where I is the moment of inertia and by 

equipartition principle <
2
> =<

2
>.  By 

Eq. (122) the normalized spacing between 

rotational energy levels will also be related to 

the normalized spacing between frequencies of 

oscillators in Eq. (121). 

 Following the classical methods [92] for 

the vibrational degree of freedom the potential 

energy of harmonic oscillator is expressed as 

 

2 2 2

vjβ jβ+ jβ jβ+ε x / 2 x / 2 x            

  
2 2 2 2

jβ+ jβ+ jβ jβm ω x m 2πx ν          

  
2 1/2 2 1/2 2 1/2

jβ jβ jβ jβ(m u λ ) ν hν            (123) 

 

where   is the spring constant and ω /m   

(Ref. 92).  Similar to equations (120) and (122), 

by Eq. (123) the normalized spacings between 

potential energy levels of harmonic oscillator are 

also related to the normalized spacings between 

frequencies of virtual oscillators in Eq. (121).  In 

summary, the normalized spacings between 

energy levels for translational, rotational, and 

vibrational motions are related to their 

corresponding normalized frequencies by 

qj qi qmp qj qi qmp
ν q = t, r, v(ε ε ) / ε = ( ν ) / ν    ,     

 (124) 

 Therefore, the classical model of diatomic 

molecule with rigid-body rotation and harmonic 

vibration [92] is herein considered to also 

possess an internal translational harmonic 

motion.  The internal translational degree of 

freedom is associated with thermodynamic 

pressure and may therefore be called internal 

potential energy.  In addition to this internal 

harmonic translation there will be an external 

harmonic motion due to the peculiar translational 

velocity in Eq. (3) and a corresponding external 

potential energy (Fig. 15).  In Sec. 11, it will be 

shown that the external potential energy appears 

in Schrödinger equation (206) and acts as 

Poincaré stress [117-119] that is responsible for 

“particle” stability.  The particle trajectory under 

all four degrees of freedom namely the three 

internal translational, rotational and vibrational 

motions and the external peculiar motion will be 

quite complicated.  Clearly, addition of radial 

oscillations about the center of mass to the rigid 

rotator will result in particle motion on a radial 

wave, de Broglie wave, along the circumference 

of the otherwise circular particle trajectory.             

 Now that the normalized spacings between 

energy levels have been related to the 

normalized spacings between oscillator 

frequencies j in Eq. (124), the latter should be 

connected to the zeros of Riemann zeta function.  

The zeros of Riemann zeta function are related to 
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prime numbers through Euler’s Golden Key 

[126] 

j

s 1

js

1
ζ(s) (1 )

n p

p
n

 
   

 (125) 

where s = a +ib is a complex number.  Clearly, 

the zeros of zeta function in Eq. (125) will 

coincide with the zeros of the powers of 

primes 

s a ib

j j
0p p


 

 (126) 

It is most interesting that according to his 

Nachlass [127] Riemann was working on the 

problem of Riemann Hypothesis and the 

hydrodynamic problem of stability of rotating 

liquid droplets simultaneously.  In view of Eq. 

(119) and the connections between normalized 

energy and frequency spacing shown in Fig. 

17, it is natural to consider the situation when 

particle frequencies are given by integral 

powers of prime numbers as 

j

1 2 3

j j j j j
, , ...

N

p
p p p p   

 (127) 

in harmony with Gauss’s clock calculator 

[127] and Hensel’s pj-adic numbers 
j

p
 (Ref. 

126).   

 Now, since the atomic energy of particles 

must be quantized according to Planck formula 

ε h  by Eq. (127) one writes   

j

2

j j j
mv  = h h h

N

p
p 

 (128) 

that by equations (30)-(31) and (36) suggest 

that the particle velocity may be expressed as 

N/2+iNblnN/2 1/2+ ib

j j j

iθ
h/m h/m h/mj

j

p

p
p e p


  v

  (129) 

where the angle 
j

Nb lnθ p  corresponds to the 

direction of velocity vector.  Therefore, by Eq. 

(129) the particle energy consistent with Eq. 

(128) becomes 

j

* N

j j j j
ε = m( . ) h h

p
p v v

 (130) 

Also, the dependence of particle speed on 

j
p

will be obtained from equations (128) and 

(129) as 

j

N/2 1/2

j j
v h/m h/m

p
p


 

 (131) 

that by the relation 
j j j

v = λ  gives particle 

wavelength  

j

1/2

j
λ h/m

p






 (132) 

 In the following it is shown that with the 

value a = ½ as the position of the critical line in 

accordance with Riemann Hypothesis  [126, 127] 

the zeros of particle velocities from Eq. (129) 

will coincide with the zeros of Riemann zeta 

function in Eq. (126).  One also expects the 

zeros of particle velocity from Eq. (129) to 

coincide with the zeros of particle speed in Eq. 

(131), and those of particle energy and hence 

frequency in Eq. (128).  Hence, at 

thermodynamic equilibrium all points of the 

normalized Maxwell-Boltzmann distribution in 

Fig. 17 correspond to stochastically stationary 

states of clusters of particles undergoing random 

translational, rotational, vibrational motions 

while satisfying the principle of detailed balance 

of quantum mechanics through continuous 

transitions between clusters (energy levels) 

further discussed in Sec. 11. 

 At thermodynamic equilibrium Maxwell-

Boltzmann speed distribution in Eq. (119) 

corresponds to translational, rotational, and 

vibrational particle velocities that must follow 

Gaussian distribution like Fig. 5. Also, space 

isotropy requires that the translational, 

rotational, and vibrational momenta of particles 

in two directions
+

( , )x x


, 
+

(θ θ, )


, 
+

(r r, )


 be equal 

in magnitude and opposite in direction such that 

by Eq. (129) at the zeros of particle velocity  

b

jln( )1/2

j

1/N 2N

j h/m
i p

p e


  v
 

1/2 b b

j j j

2N [cos(ln ) sin(ln )] 0h/mp p i p        (133a) 

 

the corresponding particle momenta become 

identically zero.  Therefore, one expects 
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“stationary states” at mean translational 

position ( 0)x  , mean angular position (θ 0) , 

and mean radial position ( r 0)  at which 

particle velocities 
t θ v

(v , v , v )  and hence 

energies 
t θ v

(ε , ε , ε )  vanish.  Hence, another 

argument for the position of the critical line 

being at a = ½ could be based on symmetry 

requirements for passage across stationary 

states and the Gaussian velocity distribution 

(Fig. 5) at equilibrium.  Because by Eq. (124) 

all three forms of energy could be expressed as 

products of Planck constant and frequency, 

one identifies the zeros of velocities in Eq. 

(129) as the “stationary states” of particle’s 

translational, rotational, and vibrational 

momenta.  The connection between the kinetic 

theory of ideal gas and Montgomery-Odlyzko 

law shown in Fig. 17 involves spacings 

between particle speeds in Eq. (131) whereas 

the zeros of Riemann zeta function are related 

to stationary states or the zeros of particle 

velocities in Eq. (129).  However, the zeros of 

particle speeds must coincide with the zeros of 

particle velocities that from Eq. (133a) are 

given by 

1/2 ib

j
0p

   (133b) 

Comparison between the zeros of particle 

velocity at stationary states in Eq. (133b) and 

the zeros of Riemann zeta function in Eq. 

(126) shows that they will coincide if a = ½ 

namely on the critical line in accordance with 

Riemann hypothesis. 

 It is interesting to examine the connection 

between analytical number theory and 

Riemann hypothesis in terms of particle 

wavelengths in Eq. (132) hence quantized 

spatial coordinates rather than particle speeds 

in Eq. (131).  In a recent study [122] a 

logarithmic system of coordinates was 

introduced as  
 

Ax ln N 
   (134) 

 

whereby the spatial distance of each statistical 

field (Fig. 1) is measured on the basis of the 

number of “atoms” of that particular statistical 

field NA.  With definition in Eq. (134) the 

counting of numbers must begin with the 

number zero naturally since it corresponds to a 

single atom.  The number of atoms in the system 

is expressed as [122] 
 
 

  ESN

AS AEN N


   (135) 
 

where 
AS ES AE

(N , N N ),
  

respectively refer to the 

number of atoms in the system, number of 

elements in the system, and number of atoms in 

the element.   The hierarchy of the resulting 

normalized coordinates is shown below [122] 

     .  . .
     

L_________________1 ______ 0  
    

                          1L ___ 11  10  


 . . .             (136) 
                                                                           

 The exact connections between spatial 

coordinates of hierarchies of statistical fields 

(Fig. 1) will involve the important concept of re-

normalization [130, 131]. Normalization in Eq. 

(136) is based on the concept of “dimensionless” 

or “measureless” numbers [122] 
 

ESx x / N   
     (137) 

where the “measure”   is defined by Gauss’s 

error function as 

 

 

2
1 1

1

x

1 1
0

e dx / 2
 





       (138) 

 

In view of equations (137)-(138), the range 

( 1 ,1 )
 

  of the outer coordinate x will 

correspond to the range 
1 1

( , )
 

   of the inner 

coordinate 1x
  leading to the coordinate 

hierarchy schematically shown in Fig. 18.  

 

 +  1 1 +  1 0 +  1 1 +1

0 1    1 

  +1

 =  
2 

 = 
2 

 
 

 

Fig. 18 Hierarchy of normalized coordinates 

associated with embedded statistical fields [122]. 
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 As discussed above and in Ref. 123 one 

naturally considers the prime numbers p1 = 2, 

p2 = 3, p3 = 5, …, to be the “atoms” of the 

statistical field at scale  that may also be 

viewed as different atomic “species”.  

However in view of equations (127) and (132) 

space quantization will be based on the inverse 

power of pj-adic numbers such that by Eq. 

(135)  

   ESj ESjN /2 N /21/2

ASj AEj j
N N p

 

  
 

 (139) 

that parallel to Eq. (132) is expressed as 

ESjN /2 1/2

j j m j
h / m h / m

p
p  

  
  

 (140) 

The reason for the choice of primes is that they 

represent indivisible “atoms” of arithmetic out 

of which all natural numbers at any scale could 

be constructed.  The quantized wavelengths in 

Eq. (140) like Eq. (132) will correspond to 

quantized frequencies in Eq. (127), energies in 

Eq. (130), and speeds in Eq. (131) all involving 

pj-adic numbers p  
that were employed in 

the construction of Adele space of 

noncommutative spectral geometry of Connes 

[126, 127, 132].   

 The wavelength in Eq. (140) is next 

normalized with respect to the most probable 

cluster size 

N/2 1/2

mj j m j
h / m h / m

p
p

 

  
  

 (141) 

and since at thermodynamic equilibrium the 

entire distribution function (Fig. 17) is 

stochastically stationary at all particle speeds 

j j j

v constant
  

     equations (102), (103), 

(140), and (141) give 

 
j

mp j j

j j jm

1/2N /2

pj1

j 1/2N/2

mpj

v
x

v

p

p

  

  





 






                 (142) 

 

With pj-adic numbers 
jβ

p
incorporated into the 

quantized wavelengths in Eq. (142) one arrives 

at dimensionless speeds in Eq. (131) and hence 

the Normalized Maxwell-Boltzmann (NMB) 

distribution in Eq. (119) for the prime “specie” 

pj. 

 To summarize, first the normalized spacings 

between energy levels were related to the 

normalized spacings between oscillator 

frequencies in Eq. (124).  Next, oscillator 

frequencies were taken as pj-adic numbers in 

Eq. (127) and the spacings between frequencies 

and zeros of energy levels in Eq. (128) were 

related to the spacings between “stationary 

states” or zeros of particle velocity in Eq. (129), 

that were in turn related to the zeros of Riemann 

zeta function by Eq. (126) through Euler’s 

golden key in Eq. (125).  The model therefore 

provides a physical explanation of Montgomery-

Odlyzko [126, 127]
 
law as well as Hilbert-Polya 

[126]
 
conjecture that spacings between the zeros 

of Riemann zeta function are related to spacings 

between eigenvalues of Hermitiam matrices.  

The close agreement shown in Fig. 17 is because 

at equilibrium by Eq. (124) the distribution of 

normalized particle energy in Eq. (130) and 

speed in Eq. (131) are related by Maxwell-

Boltzmann distribution in Eq. (119).   Moreover, 

because particle energy vanishes at the stationary 

states given by Eq. (133b) the energy spectrum 

will correspond to absorption spectrum in 

accordance with the prediction of 

noncommutative spectral geometry of Connes 

[132].   For complete resolution of Riemann 

Hypothesis one must now identify the 

appropriate normalization method to relate the 

zeros of Riemann zeta function by Eq. (125) 

hence Eq. (126) to the zeros of particle velocity 

in Eq. (129) hence Eq. (133b) that is simpler 

than the Riemann-Siegel formula [126].  

 Since each partial density in Eq. (119) 

corresponds to single “prime” specie, one next 

constructs a mixture density by summing all the 

partial probability densities of all “prime” 

species  
 
 

j

j

ρ ρ   (143) 

 

to arrive at 
 

 

 

2[(2/ ) ]2 x
8 /  x( ) (2 / )  eρ [ ] 



  

     (144) 
 

where  
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              (145) 

  

because the mean energy of all species are 

identical at thermodynamic equilibrium 
2 2

mj mij im v m v kT
 
  .   The grand ensemble of 

NMB pj-adic statistical fields in Eq. (144) will 

have a corresponding GUE that could be 

identified as Connes [124-127, 132] Adele 

space Aat a particular scale.  Therefore, the 

normalized Adele space Aat any particular 

scale is constructed from superposition of 

infinite NMB distribution functions like Fig. 

17 corresponding to atomic specie pj and 

cluster sizes in the form of pj-adic numbers.   

 With prime numbers pj as atomic species 

the spacings between wavelengths of number 

clusters or Hilbert condensations [126] are 

related to the spacings between particle speeds 

by Eq. (142) that are in turn related to the 

normalized spacings between energy levels by 

Eq. (124).  The connection to quantum 

mechanics is further evidenced by direct 

derivation of Maxwell-Boltzmann speed 

distribution in Eq. (111) from Planck 

distribution in Eq. (80) discussed in Sec. 7.  

Also, because the GUE associated with Eq. 

(144) is based on pj-adic type numbers, the 

normalized spacings between its eigenvalues 

should be related to the normalized spacings 

between the zeros of Riemann zeta function 

according to the theory of noncommutative 

geometry of Connes [132].  Although the exact 

connection between noncommutative geometry 

and Riemann hypothesis is yet to be 

understood according to Connes [127] 
 

 “The process of verification can be very painful: 

one’s terribly afraid of being wrong…it involves the 

most anxiety, for one never knows if one’s intuition is 

right- a bit as in dreams, where intuition very often 

proves mistaken” 

 

the model suggested above may help in the 

clarification of the physical foundation of such 

a mathematical theory. 

 The scale invariance of the model, possible 

electromagnetic nature of all matter discussed in 

Sec. VI, as well as the connection between 

analytic number theory and the kinetic theory of 

ideal gas (Fig. 17) all appear to confirm the 

perceptions of Sommerfeld [133]
 



"Our spectral series, dominated as they are by integral 

quantum numbers, correspond, in a sense, to the 

ancient triad of the lyre, from which the Pythagoreans 

2500 years ago inferred the harmony of the natural 

phenomena; and our quanta remind us of the role 

which the Pythagorean doctrine seems to have ascribed 

to the integers, not merely as attributes, but as the real 

essence of physical phenomena." 

 
as well as those of Weyl [134]. 

 Since the physical space or Casimir [73] 
 

vacuum itself is identified as a fluid and 

described by a statistical field [35, 83], it will 

have a spectrum of energy levels given by 

Schrödinger equation (206) that in view of 

Heisenberg [135, 35, 83] matrix mechanics will 

be described by noncommutative spectral 

geometry of Connes [132].  Hence, the above 

results in harmony with the perceptions of 

Pythagoras and Plato suggest that pure 

“numbers” maybe the basis of all that is 

physically “real” [35, 136]. 
 

9. Invariant Transport Coefficients and 

Hierarchies of Absolute Zero 

Temperatures and Vacua 

Following Maxwell [36, 39] the scale invariant 

definition of kinematic viscosity 
β β β

/   may 

be expressed as 
 

β β β β 1 β 1

1 1
u v

3 3
λ

 
 

 (146) 

 

At the scale of  = e corresponding to 

equilibrium eddy dynamics EED (Fig. 1) 

equation (146) gives Boussinesq eddy diffusivity 

[137] 
 

e e e c c

1 1
u v

3 3
λ 

 (147) 
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On the other hand, the kinematic viscosity at 

LCD scale involves the “atomic” length 
c
or 

the molecular mean free path m that appears 

in Maxwell’s formula for kinematic viscosity 

[30] 
  

c c c m m

1 1
ν u λ v

3 3
     ,      (148) 

 

associated with viscous dissipation in fluid 

mechanics.  It is important to note that the 

model predicts a finite kinematic viscosity for 

the scale  = s i.e. electrodynamics scale when 

energy can be dissipated to Casimir [73] 

vacuum at the lower chromodynamics scale 
 

 

k k k
s s s k k

k

λ v m1 1 1
ν u λ v

3 3(2π) 3(2π) m
    

 

 

                   k

k k

h1

3(2π) m 3m
           (149) 

 
in exact agreement with the result of de 

Broglie [3] provided that the equality of 

particle mean free path and 

wavelength
k k

λλ  holds.  Therefore, Ohmic 

dissipation could occur by transfer of energy 

from electrons into photon gas constituting 

Casimir [73]
 
vacuum.  In view of Fig. 1, it is 

natural to expect that energy of photon field at 

chromodynamics scale could be dissipated into 

a sub-photonic tachyon field that constitutes a 

new vacuum called vacuum-vacuum.  

According to the model electromagnetic waves 

propagate as viscous flow due to “viscosity” of 

radiation [41] or gravitational viscosity [138]
 

in harmony with the well-known concept of 

“tired light”. 

 In view of the definition of Boltzmann 

constant in equations (30b), (33) and (36), 

Kelvin absolute temperature is related to the 

most probable wavelength of oscillations by 

Eq. (90) and hence becomes a length scale. 

Therefore, Kelvin absolute temperature 

approaches zero through an infinite hierarchy 

of limits as suggested by Eq. (136) and Fig. 18.  

In other words, one arrives at a hierarchy of 

“absolute zero” temperatures defined as 

  . . .  

                                    

β β β 1 β 1
T 0 T 1

 
    

  
β-1 β-1 β-2 β-2

T 0 T 1      

       . . .         (150)   

                         (150) 

 As discussed in Sec.VI, physical space 

could be identified as a tachyonic fluid [139]   

that is the stochastic ether of Dirac [111] or 

"hidden thermostat" of de Broglie [3]. The 

importance of Aristotle’s ether to the theory of 

electrons was emphasized by Lorentz [140-141]
 
 

 

"I cannot but regard the ether, which is the seat of an 

electromagnetic field with its energy and its 

vibrations, as endowed with certain degree of 

substantiality, however different it may be from all 

ordinary matter" 

 

Also, in Sec. 6 photons were suggested to be 

composed of a large number of much smaller 

particles [139], like neutrinos that themselves are 

composed of large numbers of tachyons [107]. 

Therefore, following Casimir [73] and in 

harmony with Eq. (150) one expects a hierarchy 

of vacua   

β β-1
(vacuum-vacuum) ( acuum)v

      (151) 

as one attempts to resolve the granular structure 

of physical space and time at ever smaller scales 

described by the coordinates in Eq. (136). 

 The hierarchies of coordinates in Eq. (136) 

and vacua in Eq. (151) will have an impact on 

the important recurrence theory of Poincaré [44] 

and its implication to Boltzmann’s expression of 

thermodynamic entropy 
 

k lnS W   (152) 
 

In particular, the conflict between Poincaré 

recurrence theory and thermodynamic 

irreversibility emphasized by Zermelo [142] 

should be reexamined. As was emphasized by 

Boltzmann [143],
 

Poincaré [44] recurrence 

theory cannot be applied to thermodynamic 

systems because such systems cannot be truly 

isolated. That is, the unattainable nature of 

absolute vacuum-vacuum in Eq. (151) makes 

isolation of all physical systems impossible. The 

same limitation will apply to the entire universe 
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when our universe is considered to be just one 

universe as an open system among others 

according to Everett’s many universe theory 

described by DeWitt [144]. The hierarchy of 

vacua in Eq. (151) is in harmony with the 

inflationary theories of cosmology [145-148] 

and the finite pressure of Casimir [73]
 
vacuum 

given by the modified van der Waals law of 

corresponding states [149]
 

 

r

r c2

c r r

T1 9 3
p Z

Z v 1/ 3 8v 8
   



 
 
 

      (153) 

 
 

where Zc is the critical compressibility factor.  

 Clearly, the nature of thermodynamic 

irreversibility will be impacted by both the 

hierarchical definition of time discussed in Ref. 

35 as well as the cascade of embedded 

statistical fields shown in Fig. 1.  For example, 

let us consider at EED scale a hydrodynamic 

system composed of 2
10  fluid elements each of 

which composed of 2
10  clusters of eddies.  

Next, let eddy, defined as the most probable 

size ensemble of molecular-clusters at ECD 

scale, be composed of 2
10  mean molecular-

clusters each containing 8
10  molecules.  Let us 

next assume that only the cluster i of the eddy j 

of the fluid element f contains molecules of 

type B and that all other clusters of all other 

eddies are composed of molecules of type A.  

The system is then allowed to fully mix at the 

molecular level. The thermodynamic 

reversibility will now require that 
8

10  type B 

molecules to first become unmixed at 

hydrodynamic scale by leaving (
2

10 -1) fluid 

elements and collecting in the fluid element f.  

Next, all 
8

10  type B molecules must leave 

(
2

10 -1) eddies and collect in the eddy ejf.  

Finally 
8

10  type B molecules must leave (
2

10 -

1) clusters of eddy j and collect in the cluster 

cijf.  Clearly the probability of such preferential 

motions to lead to immixing against all 

possible random motions will be exceedingly 

small.  When the above hierarchy of mixing 

process is extended to yet smaller scales of 

molecular-dynamics, electrodynamics, and 

chromo-dynamics, the probability for 

reversibility becomes almost zero bordering 

impossibility in harmony with perceptions of 

Boltzmann [38]. The broader implications of the 

hierarchy of coordinate limits in Eq. (136) to the 

internal set theory of Nelson [150] and the 

recurrence theory of Poincaré [44] require 

further future investigations. 

10. Invariant Forms of the First Law of 

Thermodynamics and Definition of 

Entropy 
In this section, Boltzmann statistical mechanics 

for ideal monatomic gas discussed in Sec. 7 will 

be applied to arrive at invariant forms of 

Boltzmann equation for entropy and the first law 

of thermodynamics.  The results also suggest a 

new perspective of the nature of entropy by 

relating it to more fundamental microscopic 

parameters of the thermodynamic system.  

 As stated in Sec. 3, when the three 

velocities 
m m m

( , , )Vu v  in Eq. (3) are all random 

the system is composed of an ensemble of 

molecular clusters and single molecules under 

equilibrium state and one obtains from Eq. (3)  

 
2 2 2

x x xm m m  
      u v V

 
 

 

                   t tke pe tke
ˆ ˆ ˆ ˆ ˆpv      

  
(154) 

 

as the sum of the internal translational kinetic 

and “external” potential energies since 

x x
2  0

 

  v V .  One next allows the monatomic 

particles to also possess both rotational 
rke
̂

 
and 

vibrational (pulsational) 
vke
̂ kinetic energy [31] 

and invokes Boltzmann’s principle of 

equipartition of energy such that 

 

2

t x tke rke vke pe
ˆ ˆ ˆ ˆm

 
         v

 (155) 

With the results in Eqs. (154)-(155) the total 

energy of the particle could be expressed as 

ˆ ˆ ˆh pu v   
 (156) 

where ĥ
  

is the enthalpy, v̂

is the volume and  

tke rke ke tke
ˆ ˆ ˆ ˆˆ 3u      

 (157) 
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is the internal energy per molecule such that by 

Eq. (156) 

pH U V
   
 

 (158) 

where N ˆV v
  
 , N ĥH

  
  , and N ˆU u

  


 
are 

respectively volume, enthalpy, and internal 

energy.  

 In accordance with the perceptions of 

Helmholtz, one may view Eq. (158) as the first 

law of thermodynamics  

Q U W
  
 

    (159) 

when reversible heat and work are defined as  

[31]  

TQ H S    
    (160) 

and  

pW V
  


          (161) 

and S  is the entropy.  For an ideal gas 

equations (159) and (160) lead to 

T p HQ S U =V
         

               
3N kT N kT 4N kT+ =

     


     (162) 

 

 When photons are considered as 

monatomic ideal gas integration of Eq. (81) 

and maximization of Eq. (58) are known to 

lead to internal energy and entropy [92-94]   

4 5 4 3

3 3

8 kT) 32 k T

) )

(
       ,       

15(hc 45(hc

V V
U S

 

 

 
 

   (163) 

Since Poisson coefficient of photon is 

p v
ˆ ˆc c 4 / 3/   the result in Eq. (162) leads to  

 

4

3
T S U

                (164) 

 

in accordance with Eq.(163).  Also, since for 

an ideal gas Eqs. (157) and (159) give 

tke
3 3p 3N kTU V

   
   

     (165) 

by Eq. (162) entropy per photon 

k
ˆ / Ns S becomes 

k
ˆ 4ks 

      (166) 

as compared to  

k
ˆ 3.6ks 

      (167) 

based on the classical model [94].    

 The discrepancy between equations (166) 

and (167) is due to the classical formulation [94] 

for the number of photons in a given volumeV

.  

It is possible to express the total potential energy 

from the integration of mean energy and number 

density of oscillators over for spherical number 

density space as 

 
  

  

N N

0 0
dN kTdN NkT       

 

         
  

  

2
N N

2 x
x h /kT0 0

h (8 N )
n (4 N )dN dN

e 1





 
   

   

 

          
 

 

2
N

h /kT0

h (8 N / 3)
dN

e 1

 


     (168) 

 
One next considers the relation between the 

number of quantized oscillators in a cube of size 

L = Lx = Ly = Lz as  

x
N L / L / c


   

    (169) 

and the  isotropy condition 

2 2 2 2 2

x y z x
N N N N 3N

   
   

    (170) 

Because de Broglie [2]
  
“matter wave packets” or 

Heisenberg-Kramers [72]
  

virtual oscillators are 

now considered to represent actual particles of 

ideal gas according to Eq. (169) one requires 

integral numbers N of the full wavelength , as 

opposed to the conventional half wavelength 2 

to fit within the cavity of length L.  Substituting 

from equations (169)-(170) into Eq. (168) gives 
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2 2

h /kT0

8 h (L / c)
NkT (L / c)d

3 e 1





  
 

 = 

 

 

 

 

3 3

3 h /kT0

8 hL
d

3c e 1





 



 

 

4 3

3 x0

kT)

)

8 ( x
dx

3 (hc e 1





V

 

 

 

       

5 4

3

kT)

)

8 (

45 (hc




V
   (171) 

 
 Hence, the number of photons in volume V 

is given by Eq. (171) as 

35
kT8

N
45 hc

V


 
 
   (172) 

as compared to the classical result [94]  

3
kT

N 8 2.404
hc

V  
 
 
   (173) 

Also, from equations (172) and (162) one 

obtains the internal energy 

3NkTU   (174) 

that leads to the expected specific heat at 

constant volume 

o

vc 3R
 (175) 

that is in accordance with Eq. (106) 

 The result in Eq. (174) only 

approximately agrees with the classical 

expression for the internal energy [93-94] 

4
NkT

30 (3)
U




  (176) 

that leads to 
 

2.701NkTU   (177) 

According to Eq. (171) the expression in Eq. 

(176) should involve zeta function of 4 rather 

than 3 such that 

4
NkT

3NkT
30 (4)

U


 
  (178) 

that agrees with Eq. (174) and by Eq. (162) leads 

to the ideal gas law  

p NkTV   (179) 

instead of the classical result [93] 

p 0.900NkTV   (180) 

for equilibrium radiation.  

 Concerning the results in equations (177) 

and (180) it was stated by Yourgrau et al. [93]  
 

“The reader will not fail to recognize the close 

resemblance between relations and their counterparts 

pertaining to a classical ideal gas” 

 

With the modified results in equations (174) and 

(179) the correspondence between photon gas 

and classical ideal gas becomes exact thus 

closing the gap between radiation and gas theory 

discussed by Darrigol [151] and Stachel [152]. 

The important relation between radiation 

pressure and internal energy [92-94]  

ˆ ˆp / 3 / 3 / 3U V u v u    (181) 

is exactly satisfied by equations (174) and (179) 

and closely but only approximately satisfied by 

equations (173) and (180). 

 Since Kelvin absolute temperature scale is 

identified as a length scale by Eq. (90), 

thermodynamic temperature relates to spatial 

and hence temporal “measures” of the physical 

space [35] or Casimir [73]
 
vacuum. Therefore, 

the hierarchy of limiting zero temperatures in 

Eq. (150) will be related to hierarchy of 

“measures” that are employed to renormalize 

[130, 131] “numbers” by equations (137)-(138) 

and arrive at “dimensionless” coordinates (Fig. 

18) as discussed earlier [122].  For an ideal 

monatomic gas one has the o

p
c 4R and 

o

v
c 3R such that Eq. (162) reduces to the 

identity 

4 3 1
  
 

 (182) 
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Therefore, the mathematical relation (182) 

always holds for statistical fields of any scale 

(Fig. 1) as the thermodynamic temperature in 

Eq. (150) approaches the “absolute zero” 

0T
 
 (

1 1
1T

 
 ) associated with coordinates 

of that particular scale in Eq. (136). 

 The result in Eq. (162) could be also 

obtained from the Gibbs equation  

j j

j

ˆT d p dNdS U dV
     

  

 (183) 

, Gibbs-Duhem equation 

 

j j

j

ˆdT dp N dS V                   (184) 

and the equality of molar Gibbs free energy 

and chemical potential 
j j

ˆ ˆg    of j specie.  

Addition of equations (183) and (184) leads to 

Euler equation 

 

j j

j

ˆd(T ) d d(p ) d NS U V g           

                           d d(p ) dU V G        (185) 

 

At the state of thermodynamic equilibrium dG 

= 0 equation (185) leads to Eq. (162) upon 

integration and application of Nernst-Planck 

third law of thermodynamics requiring βh 0  

in the limit 
β

T 0  (Ref. 31). 

 Next, the invariant Boltzmann equation 

(152) for entropy is introduced as 

j j
k ln WS

 


   (186) 

hence 

jβ j j

j j j

k ln W k ln WS
 

   
   (187) 

or 

β k ln WS 
   (188) 

Substituting in Eq. (186) from Eq. (60) and 

applying Stirling’s formula gives  

 
jN

j j j jk ln W k ln(g / N !)S 

      

        j j j j jk[N ln g N ln N N )          
 

         j j jkN [ln(g / N ) 1]     (189) 

 

Also, substituting for Boltzmann distribution 

from Eq. (67) into Eq. (189) leads to  
 

j j j j
ˆkN [ / kT / kT 1]S

   
   

 (190) 

or 
 

j j j j j j
ˆT N N kT NS

     
    

 
j j j j j j

ˆp NU V g H G
      
     (191) 

Since Gibbs free energy is by definition  

j j j
TG H S

  
 

 (192) 

 one obtains from equations (191) and (185) 

1    (193) 

The results in equations (191) and (193) lead to 

Euler equation  

j j j j
T pS U V G

   
  

 (194) 

Summation of Eq. (194) over all energy levels 

results in 

T pS U V G
   
  

 (195) 

 Since the principle of equipartition of 

energy of Boltzmann by equations (155) and 

(162) leads to  
 

 

j j j j j j jtke
T 4N k T 4NH Q S

     
    

 (196) 

in view of Eq. (30b) the definition of entropy is 

introduced as Boltzmann factor    

2 1/2 2 1/2

j j j j ˆ 4k 4m us          
 (197) 
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that by Eq. (36) when multiplied by 

“temperature” 2 1/2

jj
T


  gives the “atomic” 

enthalpy of the energy level j at equilibrium 
 

j j j j j j j
ˆ ˆ ˆh 4k T 4kT T Ts s

       
   

 (198) 

At EKD scale  = k, the results in equations 

(196)-(198) are in accordance with Eq. (166) 

for photon gas.  Also, Eq. (198) is parallel to 

the way the universal Boltzmann constant k 

times equilibrium temperature T relates to the 

most probable atomic internal energy 

2

mp mp
ˆ 3kT m uu

   
   

 (199) 

At thermodynamic equilibrium the 

temperatures of all energy levels are identical 

j
T T

 
  such that both Planck energy spectrum 

(Fig. 6) and Maxwell-Boltzmann speed 

spectrum (Fig. 16) correspond to an isothermal 

statistical field at a given thermodynamic 

temperature T.  Hence, in Eq. (199) the most 

probable atomic internal energy is given as the 

product of temperature and the universal 

Boltzmann constant k from Eq. (36).  In Eq. 

(198) the atomic enthalpy is given as product 

of temperature and atomic entropy defined in 

Eq. (197) for the energy level j. 

 The invariant first law of thermodynamics 

in Eq. (162) when expressed per molecule, per 

unit mole, and per unit mass appears as 

 

 
ˆ ˆˆ ˆ ˆ ˆh u RT u kT u p v
       
         (200a) 

 

o
h u RT u R T u p v
       
        (200b) 

 

j j j j j j j
h u R T u R T u p v

       
       (200c) 

 

 

Thus one may express the universal gas 

constant per molecule, per unit mole, and per 

unit mass 
j

ˆ(R, R, R ) as 

 
o oR̂ R / N k          (201a) 
o oR = R = kN          (201b) 
o o o

j j j jR R R/ W / (N m ) k / m    (201c) 

11. Invariant Schrödinger and Dirac 

Wave Equations 
The fact that the energy spectrum of equilibrium 

isotropic turbulence is given by Planck 

distribution (Figs. 6- 10) is a strong evidence for 

quantum mechanical foundation of turbulence, 

[33, 35].  This is further supported by derivation 

of invariant Schrödinger equation from invariant 

Bernoulli equation in Ref. 35.   Hydrodynamic 

foundation of Schrödinger equation suggests that 

Bohr stationary states in quantum mechanics are 

connected to stationary sizes of clusters, de 

Broglie wave packets, in equilibrium fields.  

When both vorticity and iso-spin defined in Eq. 

(13) are zero one has a Hamiltonian non-

dissipative system and for non-reactive 

incompressible fluid the flow field will be 

potential with 




 v  and the continuity Eq. 

(5) and Cauchy equation of motion (7) lead to 

invariant Bernoulli equation [35]  

 

2
( ) [ ( )]

p cons tan t 0
t 2

   



   




 
   


 (202) 

 

The constant in Eq. (202) is set to zero since 

pressure acts as a potential that is only defined to 

within an additive constant.  Comparison of Eq. 

(202) with Hamilton-Jacobi equation of classical 

mechanics [2] written in invariant form 

 

2
S ( S )

U 0
t 2m

 



 

 
  


     (203) 

 

resulted in the introduction of the invariant 

action [35, 153]   

 

S ( , t)


 x
 


     (204) 

 

The gradient of the action in Eq. (203) gives 

volumetric momentum density in harmony with 

the classical results [3] 

S ( , t)
  

   x v
  
    p

     (205) 
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   In a recent study [35] it was shown that 

one can directly derive from the invariant 

Bernoulli equation (202) the invariant time-

independent Schrödinger equation [35, 154, 

155]  

 
2

2

2

8 m
(E U ) 0

h



   


              (206) 

 

 
as well as the invariant time-dependent 

Schrödinger equation 
 

 
 

2

2

oi U 0
t 2m

 

   




     


     (207) 

 

 

that governs the dynamics of particles from 

cosmic to tachyonic [35, 155] scales (Fig. 1).  

Since E T U
  
   (Ref. 35) Schrödinger 

equation (206) gives the stationary states of 

particles that are trapped within de Broglie 

wave packet under the potential acting as 

Poincaré stress.  In view of the fact that 

pressure U p n U
   
   (Ref. 35) plays the role 

of potential in Eq. (206), anticipation of an 

external pressure or stress as being the cause 

of particle stability by Poincaré [117-119] is a 

testimony to the true genius of this great 

mathematician, physicist, and philosopher. 

 One may now introduce a new paradigm 

of the physical foundation of quantum 

mechanics according to which Bohr [92] 

stationary states will correspond to the 

statistically stationary sizes of atoms, de 

Broglie atomic wave packets, which will be 

governed by Maxwell-Boltzmann distribution 

function in Eq. (111) as shown in Fig. 13. 

Different energy levels of quantum mechanics 

are identified as different size atoms 

(elements).  For example, in ESD field one 

views the transfer of a sub-particle (electron) 

from a small rapidly oscillating atom j to a 

large slowly oscillating atom i as transition 

from the high energy level j to the low energy 

level i, see Fig. 16, as schematically shown in 

Fig. 19. 

 

          

atom-j

atom-i

subparticle

aj

ai

s j i

photon
kj i

 
 
Fig. 19 Transition of electron eij from atom-j to atom-i 

leading to emission of photon kij  [51]. 

 

Such a transition will be accompanied with 

emission of a “photon” that will carry away the 

excess energy [34]  

ji j i j i
h( )

    
        (208) 

in harmony with Bohr [68] theory of atomic 

spectra.  Therefore, the reason for the quantum 

nature of “atomic” energy spectra in equilibrium 

isotropic electrodynamics field is that transitions 

can only occur between atoms with energy levels 

that must satisfy the criterion of stationarity 

imposed by Maxwell-Boltzmann distribution 

function, [35, 139].   

 The results in equations (80) and (111) as 

well as Figs. 12, 16, and 19 suggest a 

generalized scale invariant description of 

transitions between energy levels of a statistical 

field at arbitrary scale  schematically shown in 

Fig. 20. 

 

            

j

i

ji
2 ji

element-j

element-i

atom-ji
subatom-ji

 
 

Fig. 20 Transition of “atom” aij from element-j to 

element-i leading to emission of sub-atomic particle sij. 

 

According to Fig. 20, transition from high energy 

level j to low energy level i of “atomic” particle 

will lead to emission of a “sub-particle” at  

scale.  If such emissions are induced or 

stimulated rather than spontaneous then one 

obtains coherent tachyon rays, neutrino rays, 

photon rays (laser), sub-particles rays (electron 

rays), atomic rays, molecular rays, . . .  as 

discussed in Ref. 51. 
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 For non-stationary relativistic fields, it 

was recently shown that by relating 

Schrödinger and Dirac wave functions as 

β β Dβ
( ) ( ),

j j
z x t     with 

2

β β-1 β-1 j
exp[( m w / ) ]i z 

      (209) 

,
Dβ

exp( exp( w / )t / ) 
m j jm

E i xi  


  , and the 

total energy defined as 2

β-1 β-1 β-1
2m wE  , one can 

derive from the equation of motion (24) the 

scale invariant relativistic wave equation [35] 
 

Dβ Dβ

j m β-1 β-1

β-1 j

Dβ
0

1
( ) ( m w )
w t

i
x


 

 
 

    (210) 

At the scale below Casimir [73]
 
vacuum (ETD 

in Fig. 1) when 
β-1 t k

w v u c  
 
is the speed 

of light, equation (210) becomes Dirac 

relativistic wave equation for electron [156, 35] 
 

Dβ Dβ

j m Dβ

j

0
1

( ) ( mc)
t

i
c x

 


 
  

 
         (211) 

Therefore, the theory further described in Ref. 

[35] also provides a hydrodynamic foundation 

of Dirac relativistic wave equation for massive 

particles in the presence of spin. 

12. Concluding Remarks 
A scale invariant model of statistical 

mechanics and its implications to the physical 

foundations of thermodynamics and kinetic 

theory of ideal gas were examined.  

Boltzmann’s combinatoric method was 

employed to derive invariant forms of Planck 

energy and Maxwell-Boltzmann speed 

distribution functions. The impact of Poincaré 

recurrence theory on the problem of 

irreversibility in thermodynamics was 

discussed. The coincidence of normalized 

spacings between zeros of Riemann zeta 

function and normalized Maxwell-Boltzmann 

distribution and its connection to Riemann 

hypothesis were examined. Finally, 

hydrodynamic foundations of the invariant 

forms of both Schrödinger as well as Dirac 

wave equations were described. The universal 

nature of turbulence across broad range of 

spatio-temporal scales is in harmony with 

occurrence of fractals in physical science 

emphasized by Takayasu [157]. 

 

Acknowledgments: 

This research was in part supported by NASA 

grant No. NAG3-1863. 

 

References : 

 
[1] Broglie, L. de, “Interference and Corpuscular 

Light,” Nature 118, 2969, 1926, pp. 441-442; “ Sur 

la Possibilité de Relier les Phénomènes 

d'Interférence et de Diffraction à la Théorie des 

Quanta de Lumière,” C. R. Acad. Sci. Paris, 183, 

1927, pp. 447-448; “La Structure Atomique de la 

Matière et du Rayonnement et la Mécanique 

Ondulatoire,” 184, 1927, pp. 273-274; “Sur le Rôle 

des Ondes Continues en Mécanique Ondulatoire,” 

185, 1927, pp. 380-382 

[2] Broglie, L. de, Non-Linear Wave Mechanics: A 

Causal Interpretation, Elsevier, New York, 1960 

[3] Broglie, L. de, “The Reinterpretation of Wave 

Mechanics,” Found. Phys. 1, 5, 1970, pp. 5-15. 

[4] Madelung, E., “Quantentheorie in 

Hydrodynamischer Form,” Z. Physik. 40, 1926, pp. 

332-326. 

[5]  Schrödinger, E., “Über die Umkehrung der 

Naturgesetze,” Sitzber Preuss Akad Wiss Phys-

Math Kl, 1931, p. 144-153. 

[6] Fürth, R., “Über Einige Beziehungen zwischen 

klassischer Staristik und Quantenmechanik,” . 

Phys. 81, 1933, pp. 143-162. 

[7] Bohm, D., “A Suggested Interpretation of the 

Quantum Theory in Terms of “Hidden” Variables. 

I,” Phys. Rev. 85, 2, 1952, pp.166-179. 

[8] Takabayasi, T., “On the Foundation of Quantum 

Mechanics Associated with Classical Pictures,” 

Prog. Theor. Phys. 8, 2, 1952, pp. 143-182. 

[9] Bohm, D., and Vigier, J. P., “Model of the Causal 

Interpretation of Quantum Theory in Terms of a 

Fluid with Irregular Fluctuations,” Phys. Rev. 96, 1, 

1954, pp. 208-217. 

[10] Nelson, E. “Derivation of the Schrödinger Equation 

from Newtonian Mechanics,” Phys. Rev. 150, 4, 

1966, pp. 1079-1085. 

[11] Nelson, E., Quantum Fluctuations, Princeton 

University Press, Princeton, New Jersey, 1985. 

[12] de la Peña, L., “New Foundation of Stochastic 

Theory of Quantum Mechanics,” J. Math. Phys. 10, 

9, 1969, pp. 1620-1630. 

[13] de la Peña, L., and Cetto, A. M., “Does Quantum 

Mechanics Accept a Stochastic Support?” Found. 

Phys. 12, 10, 1982, pp. 1017-1037. 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 541



 

 

 

[14] Barut, A. O., “Schrödinger’s Interpretation of  

as a Continuous Charge Distribution,” Ann. der 

Phys. 7, 4-5, 1988, pp. 31-36.  

[15] Barut, A. O., and Bracken, A. J., 

“Zitterbewegung and the Internal Geometry of 

the Electron,” Phys. Rev. D 23, 10, 1981, pp. 

2454-2463. 

 [16] Vigier, J. P., “De Broglie Waves on Dirac  

Aether: A Testable Experimental Assumption,” 

Lett. Nuvo Cim. 29, 14, 1980, pp. 467-475; 

Gueret, Ph., and Vigier, J. P., “De Broglie’s 

Wave Particle Duality in the Stochastic 

Interpretation of Quantum Mechanics: A Testable 

Physical Assumption,” Found. Phys. 12, 11, 

1982, pp. 1057-1083; Cufaro Petroni, C., and 

Vigier, J. P., “Dirac’s Aether in Relativistic 

Quantum Mechanics,” Found. Phys. 13, 2, 1983, 

pp. 253-286; Vigier, J. P., “Derivation of Inertia 

Forces from the Einstein-de Broglie-Bohm 

(E.d.B.B) Causal Stochastic Interpretation of 

Quantum Mechanics,” Found. Phys. 25, 10, 

1995, pp. 1461-1494. 

[17] Arecchi, F. T., and Harrison, R. G., Instabilities 

and Chaos in Quantum Optics, Springer-Verlag, 

Berlin, 1987. 

[18] Reynolds, O., “On the Dynamical Theory of 

Incompressible Viscous Fluid and the 

Determination of the Criterion,” Phil. Trans. Roy. 

Soc. A 186, 1, 1895, pp. 23-164. 

[19] Taylor, G. I., “Statistical Theory of Turbulence-

Parts I-IV,” Proc. Roy. Soc. A 151, 873, 1935, 

pp. 421-478. 

[20] Kármán, T. von, and Howarth, L., “On the 

Statistical Theory of Isotropic Turbulence,” Proc. 

Roy. Soc. A 164, 917. 1938, pp. 192-215. 

[21] Robertson, H. P., “The Invariant Theory of 

Isotropic Turbulence,” Proc. Camb. Phil. Soc. 36, 

1940, pp. 209-223. 

[22] Kolmogoroff, A. N., “Local Structure on 

Turbulence in Incompressible Fluid,” C. R. Acad. 

Sci. U. R. S. S. 30, 1941, pp. 301-305; 

“Dissipation of Energy in Locally Isotropic 

Turbulence,” C. R. Acad. Sci. U. R. S. S. 32, 

1942, p. 19-21; “A Refinement of Previous 

Hypothesis Concerning the Local Structure of 

Turbulence in a Viscous Incompressible Fluid at 

High Reynolds Number,” J. Fluid Mech. 13, 

1962, pp. 82-85. 

[23] Obukhov, A. M., “On the Distribution of Energy 

in the Spectrum of Turbulent Flow,” C. R. Acad. 

Sci. U. R. S. S. 32, 1941, pp. 19-22; “Some 

Specific Features of Atmospheric Turbulence,” J. 

Fluid Mech. 13, 1962, pp. 77-81. 

[24] Chandrasekhar, S., “Stochastic Problems in 

Physics and Astronomy,” Rev. Mod. Phys. 15, 1, 

1943, pp. 1-89. 

[25] Chandrasekhar, S., Stochastic, Statistical, and 

Hydrodynamic Problems in Physics and 

Astronomy, Selected Papers, vol.3, University of 

Chicago Press, Chicago, 1989, pp. 199-206. 

[26] Heisenberg, W., “On the Theory of Statistical and 

Isotropic Turbulence,” Proc. Roy. Soc. A 195, 1948, 

pp. 402-406; “Zur Statistischen Theorie der 

Turbulenz,“ Z. Phys. 124, 7-12, 1948, p. 628-657. 

[27] Batchelor, G. K., The Theory of Homogeneous 

Turbulence, Cambridge University Press, 

Cambridge, 1953. 

[28] Landau, L. D., and Lifshitz, E. M., Fluid Dynamics, 

Pergamon Press, New York, 1959. 

[29] Tennekes, H., and Lumley, J. L., A First Course In 

Turbulence, MIT Press, 1972. 

[30] Sohrab, S. H., “Transport Phenomena and 

Conservation Equations in Multicomponent 

Chemically-Reactive Ideal Gas Mixtures,” 

Proceeding of the 31st ASME National Heat 

Transfer Conference, HTD-Vol. 328, 1996, pp. 37-

60. 

[31] Sohrab, S. H., “A Scale Invariant Model of 

Statistical Mechanics and Modified Forms of the 

First and the Second Laws of Thermodynamics,” 

Rev. Gén. Therm. 38, 1999, pp. 845-853. 

[32] Sohrab, S. H., “Derivation of Invariant Forms of 

Conservation Equations from the Invariant 

Boltzmann Equation,”  In: Theoretical and 

Experimental Aspects of Fluid Mechanics, S. H. 

Sohrab, H. C. Catrakis, and F. K. Benra (Eds.), 

WSEAS Press, 2008, ISBN: 978-960-6766-30-5, 

pp. 27-35. 

[33] Sohrab, S. H., “Invariant Planck Energy 

Distribution Law and its Connection to the 

Maxwell-Boltzmann Distribution Function,” 

WSEAS Transactions on Mathematics 6, 2, 2007, 

pp. 254-262. 

[34] Sohrab, S. H.,  “Universality of a Scale Invariant 

model of Turbulence and its Quantum Mechanical 

Foundation,”  In: Recent Advances in Fluid 

Mechanics & Aerodynamics, S. Sohrab, H. Catrakis, 

and. N. Kobasko (Eds.), WSEAS Press, 2009, 

ISBN: 978-960-474-106-9, pp. 134-140. 

[35] Sohrab, S. H., “Quantum Theory of Fields from 

Planck to Cosmic Scales,” WSEAS Transactions on 

Mathematics 9, 8, 2010, pp. 734-756. 

[36] Maxwell, J. C., “On the Dynamic Theory of 

Gases,” Phil. Trans. Roy. Soc. London 157, 1867, 

pp. 49-88.    

[37] Boltzmann, L., “Weitere Studien uber das 

Warmegleichgewicht unter Gasmoleculen,” 

Sitzungsberichte Akad.Wiss., Vienna, Part II, 66, 

1872¸ pp. 275-370. English translation in Ref. 39, 

pp. 88-175. 

[38] Boltzmann, L., Lectures on Gas Theory, Dover, 

New York, 1964. 

[39] Brush, G., S., Kinetic Theory, Vol.1-3, Pergamon 

Press, New York, 1965.  

[40] Garber, W. E., “Clausius and Maxwell’s Kinetic 

Theory of Gas,” Historical Studies in Physical 

Sciences, 2, 1970, pp. 299-319.  

[41] Darrigol, O., “Statistics and Combinatorics in 

Early Quantum Theory,” Historical Studies in the 

Physical and Biological Sciences, 19, 1, 1988, pp. 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 542



 

 

 

17-80; “Statistics and Combinatorics in Early 

Quantum Theory, II: Early Symptoms of 

Indistinguishability and Holism,” 21, 2, 1991, 

pp. 237-298. 

[42] Kox, H. A., “H. A. Lorentz’s Contribution to 

Kinetic Gas Theory,” Annals of Science 47, 6, 

1990, pp. 591-606. 

[43] Enskog, D., “Kinetische Theorie der Vorgange 

in Massig Verdunnten Gasen,” by Almqvist and 

Wiksells Boktryckeri-A.B., Uppsala, 1917. 

English translation in Ref. 39, pp. 125-225. 

[44] Poincaré, H., “Sur le Problème des Trois Corps 

et les Equations de Dynamique,” Acta 

Mathematica 13, 1890, pp. 1-270. English 

translation of exerts in Ref.39, pp. 194-202.   

[45] de Groot, R. S., and Mazur, P., Nonequilibrium 

Thermodynamics, North-Holland, 1962. 

[46] Schlichting, H., Boundary-Layer Theory, 

McGraw Hill, New York, 1968. 

[47] Williams, F. A., Combustion Theory, Addison 

Wesley, New York, 1985. 

[48] Chapman, S., and Cowling, T. G., The 

Mathematical Theory of Non-uniform Gases, 

Cambridge University Press, Cambridge, 1953. 

[49] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 

Molecular Theory of Gases and Liquids, Wiley, 

New York, 1954. 

[50] Sohrab, S. H., “A Modified Scale Invariant 

Statistical Theory of Turbulence,” In: New 

Aspects of Fluid Mechanics and Aerodynamics, 

S. H. Sohrab, H. J. Catrakis, N. Kobasko, N., 

Necasova, and N. Markatos (eds.) WSEAS press, 

2008, ISBN: 978-960-6766-98-5, pp. 165-173. 

[51] Sohrab, S. H., “Some Implications of a Scale 

Invariant Model of Statistical Mechanics to 

Transport Phenomena,”  In: Recent Advances in 

Systems, N. Mastorakis, V. Mladenov, Z. 

Bojkovic, S. Kartalopoulos, A. Varonides, and 

M. Jha (Eds.), WSEAS Press, 2009, ISBN: 978-

960-474-097-0, pp. 557-568. 

[52] Lugt, H. J., Vortex Flow in Nature and 

Technology, Wiley, New York, 1983. 

[53] Bahatia, A. B. , and Singh, R. N., Mechanics of 

Deformable Media, IOP publication, Boston, 

1986, p. 153. 

[54] Darrigol, O., “Between Hydrodynamics and 

Elasticity Theory: The First Five Births of the 

Navier-Stokes Equation,” Arch. Hist. Exact Sci. 

56, 2002, pp. 95-150. 

[55] Carrier, G., “On Slow Viscous Flow,” Nonr-

653-00-1, 1953. 

[56] Olmstead, W. E., “Reciprocal Relationships in 

Viscous Hydrodynamics,” Acta Mechanica 21, 

1975, pp. 289-300. 

[57] Roper, M., and Brenner, M. P., “A 

Nonperturbative Approximation for the 

Moderate Reynolds Number Navier-Stokes 

Equations,” PNAS 106, 9, 2009, pp. 2977-2982. 

[58] Townsend, A. A., “The Measurement of Double 

and Triple Correlation Derivatives in Isotropic 

Turbulence,” Proc. Camb. Phil. Soc. 43, 560, 1947, 

pp. 560-570. 

[59] Gouy, M., “Note Sur le Mouvement Brownien,”  J. 

de Phys. 7, 1888, pp. 561-564;  “Sur le Mouvement 

Brownien,”  C. R. Acad. Sci., Paris, 109,1889, pp. 

102-105; “Le Mouvement Brownien et les 

Mouvement Moléculaires,” Rev. Gén. Sci. 1, 6, 

1895. pp. 1-7. 

[60] Bachelier, L., “Théorie Mathématique du Jeux,” 

Ann. Sci. Ecole Normale Supérieure, 1900, pp. 21-

86. 

[61] Cercignani, C., Ludwig Boltzmann, The Man Who 

Trusted Atoms, Oxford University Press, Oxford, 

1998. 

[62] Sutherland, W. A., “Causes of Osmotic Pressure 

and of the Simplicity of the Laws of Dilute 

Solutions,” Philos. Mag. S.5, 44, 1897, pp. 52-55; 

“Ionization, Ionic Velocities, and Atomic Sizes,” 

Philos. Mag. 4, 1902, pp. 625-645; “A Dynamic 

Theory for Non-Electrolytes and the Molecular 

Mass of Albumin,” Philos. Mag. 9, 1905, pp. 781-

785.  

[63] Smoluchowski, M., Polish Men of Science, R. S. 

Ingarden, (Ed.), Polish Science Publishers, 

Warszawa, 1986. 

[64] Einstein, A., Investigations on the Theory of 

Brownian Movement, R. Fürth (Ed.), Dover 

Publications, New York, 1956. 

[65] Perrin, J. M., Brownian Movement and Molecular 

Reality, Taylor and Francis, London, 1910. 

[66] Uhlenbeck, G. E., and Ornstein, L. S., “On the 

Theory of the Brownian Motion,” Phys. Rev. 36, 

1930, pp. 823-841.  

[67] Wang Ming Chen, and Uhlenbeck, G. E., “On the 

Theory of the Brownian Motion II,” Rev. Mod. 

Phys. 17, 2-3, 1945, pp. 323-342.  

[68] Füchs, N. A., The Mechanics of Aerosols, Dover, 

New York, 1964. 

[69] Nelson, E., Dynamical Theory of Brownian Motion, 

Princeton University Press, Princeton, 1967. 

[70] Poincaré, H., “The Present and the Future of 

Mathematical Physics,” Address delivered before 

the Section of Applied Mathematics of the 

International Congress of Arts and Science, St. 

Louis, September 24, 1904; Bull. Amer. Math. Soc. 

37, 1, 2000, pp. 25-38. 

[71] Duplantier, B., “Brownian Motions, Diverse and 

Undulating,” In: Einstein 1905-2005, Poincaré 

Seminar 2005. Damour, T., Darrigol, O., 

Duplantier, B., and Rivasseau, V., (Eds.), 

Birkhäuser, 2006, pp. 201-293. 

[72] van der Waerden, B. L., “Towards Quantum 

Mechanics,” Sources of Quantum Mechanics, B. L. 

van der Waerden (Ed.), Dover, New York, 1967, 

pp. 1-59. 

[73] Casimir, H. B. G., “On the Attraction between Two 

Perfectly Conducting Plates,” Proc. K. Ned. Akad. 

Wet. 51, 1948, pp. 793-795. 

[74] Planck, M., The Theory of Heat Radiation, Dover, 

New York, 1991.  

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 543



 

 

 

[75] Planck, M., “On the Law of the Energy 

Distribution in the Normal Spectrum,” Ann. der 

Phys. 4, 1901, pp. 553-558. 

[76] Jackson, J. D., Classical Electrodynamics, Wiley, 

New York, 1975. 

[77] Newton, I., Optics, Dover, New York, 1952. 

[78] Broglie, L., Le Mécanique Ondulatoire du 

Photon 1, Paris: Herman et Cie, 1940. 

[79] Bass, L., and Schrödinger, E., “Must the Photon 

Mass be Zero?” Proc. Roy. Soc. A 232, 1-6, 

1955, pp. 654-661. 

[80] Vigier, J. P., “Possible Test of the Reality of 

Superluminal Phase Waves and Particle Phase 

Space Motions in the Einstein-de-Broglie-Bohm 

Causal Stochastic Interpretation of Quantum 

Mechanics,” Found. Phys. 24, 1, 1994, pp. 61-83. 

[81] de Beauregard, O. Costa., “The Great Vail, 

Reality, and Louis de Broglie: Personal 

Memories,” In:  Waves and Particles in Light and 

Matter. A. van der Merwe, and A. Garuccio 

(Eds.), Plenum Press, New York, 1994, pp. 1-7. 

[82] Evans, M. W., “On Longitudinal Free Spacetime 

Electric and Magnetic Fields in the Einstein-de 

Broglie Theory of Light,” In: Waves and 

Particles in Light and Matter. Alwyn van der 

Merwe and Augusto Garuccio (Eds.), Plenum 

Press, New York, 1994, pp. 259-294. 

[83] Sohrab, S. H., ”The Nature of Mass, Dark Matter, 

and Dark Energy in Cosmology and the 

Foundation of Relativistic Thermodynamics,”  In: 

New Aspects of Heat Transfer, Thermal 

Engineering, and Environment, S. H. Sohrab, H. 

J. Catrakis, N. Kobasko, (Eds.), WSEAS Press, 

2008, ISBN: 978-960-6766-97-8, pp. 434-442. 

[84] Sohrab, S. H., “Scale-Invariant Form of the 

Planck Law of Energy Distribution and its 

Connection to the Maxwell-Boltzmann 

Distribution,” Bull. Amer. Phys. Soc. 49, 1, 2004, 

p. 255. 

[85] Chandrasekhar, S., Newton’s Principia for the 

Common Reader, Oxford University Press, New 

York, 1995, pp. 579-593. 

[86] Pauli, W., Pauli Lectures on Physics, Vol.3, MIT 

Press, 1973, p. 14. 

[87] Long, C. A., and Sohrab, S. H., “The Power of 

Two, Speed of Light, Force and Energy and the 

Universal Gas Constant,” In : Recent Advances 

on Applied Mathematics, Long, C. A., Sohrab, S. 

H., Bognar, G., and Perlovsky, L., (Eds.), WSEAS 

Press, 2008, pp. 434-442 

[88] De Pretto, O., “Ipotesi dell’Etere Nella Vita 

dell’Universo,” Reale, Inst. Veneto di Scienze, 

Lettere en Arti  63, 2, 1904, pp. 439-500. 

[89] Poincaré, H., “La Théorie de Lorentz et le Principe 

de Réaction,” Arch. Neerland. 5, 2, 1900, pp.252-

278; http://www.physicsinsights.org/poincare-

1900.pdf . 

[90] Hasenöhrl, F., “Zur Theorie der Strahlung in 

bewegten Körpern,” Ann. der Physik 15, 1904, pp. 

344-370; “Zur Theorie der Strahlung in bewegten 

Körpern,” Ann. der Phys. 16, 1905, pp. 589-592. 

[91] Einstein, A., “Ist die Trägheit eines Körpers von 

seinem Energieinhalt abhängig?” Ann. der Phys. 

(Leipzig) 18, 1905, pp. 639-641. 

[92] Sonntag, R. E., Van Wylen, G. E., Fundamentals of 

Statistical Thermodynamics, Wiley, New York, 

1966. 

[93] Yourgrau, W., van der Merwe, A., and Raw, G., 

Treatise on Irreversible and Statistical 

Thermodynamics, Dover, New York, 1982.  

[94] Baierlein, R., Thermal Physics, Cambridge 

University press, 1999.  

[95] Laloë, F., and Freed, J. H., “The Effects of Spin in 

Gases,” Sci. American 258, 4, 1988, pp. 94-101. 

[96] Rayleigh, Lord, “The Law of Partition of Kinetic 

Energy,” Phil. Mag. 49, 1900, pp. 98-118. 

[97] Einstein, A., “Zur Elecrodynamik bewegter 

Körper,”Ann. der Phys. (Leipzig) 17, 132, 1905, pp. 

891-921. 

[98] Van Atta, C. W., and Chen, W. Y., “Measurements 

of Spectral Energy Transfer in Grid Turbulence,” J. 

Fluid Mech. 38, 1969, pp. 743-763. 

[99] Landahl, M. T., and Mollo-Christensen, E., 

Turbulence and Random Processes in Fluid 

Mechanics, Cambridge University Press, 

Cambridge, 1992, p. 62.  

[100] McComb, W. D., and Shanmugasundaram, V., 

“Numerical Calculation of Decaying Isotropic 

Turbulence Using the LET Theory,” J. Fluid 

Mech. 143, 1984, pp. 95-123. 

[101] Saddoughi, G. S., and Veeravalli, V. S., “Local 

Isotropy in Turbulent Boundary Layers at High 

Reynolds Number,” J. Fluid Mech. 268, 1994, pp. 

333-372. 

[102] Marusic, I., Mathis, R., and Hutchins, N., 

“Predictive Model for Wall-Bounded Turbulent 

Flow” Science 329, July 2010, pp. 193-196. 

 [103] Lin, C. C., Turbulent Flows and Heat Transfer, 

Princeton University Press, Princeton, 1959. 

 [104] Ling, S. C., and Huang, T. T., “Decay of Weak 

Turbulence,” J. Phys. Fluids. 13, 12, 1970, pp. 

2912-2924. 

 [105] Lumley, L. J., Berkooz, G., Elezgaray, J., Holmes, 

P., Poje, A., and Volte, C., “Fundamental Aspects 

of Incompressible and Compressible Turbulent 

Flows,” In: Simulation and Modeling of Turbulent 

Flows. Gatski, B. T., Hussaini, M. Y., Lumley, L. 

J. (Eds.), Oxford University Press 1996, pp. 5-78. 

 [106] Novoa, D. Michinel, H., and Tommasini, D., 

“Fermionic Light in Common Optical Media” 

Phys. Rev. Lett. 105, 203904 , 2010, pp. 1-4. 

 [107] Recami, E., “Classical Tachyons and Possible 

Applications,” Riv. Nuovo Cim. 9, 6, 1986, pp. 1-

178; Tachyons, Monopoles and Related Topics, 

North-Holland, Amsterdam, 1978. 

 [108] Broglie, L. de, Matter and Light-The New Physics, 

Dover, New York, 1937. 

 [109] Lochak, G., “The Evolution of the Ideas od Louis 

de Broglie on the Interpretation of Wave 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 544

http://www.physicsinsights.org/poincare-1900.pdf
http://www.physicsinsights.org/poincare-1900.pdf


 

 

 

Mechanics,” In: Quantum, Space and Time-The 

Quest Continues, Asim O. Barut, Alwyn van der 

Merwe, and Jean-Pierre Vigier (Eds.), 

Cambridge University Press, 1984, pp. 11-33. 

[110] Dirac, P. A. M., “Is There an Aether?” Nature 

168, 24, 1951, pp. 906-907. 

[111] Planck, M. Die Entstehung und bisherige 

Entwicklung der Quantentheorie, Nobel-Vortrag, 

Stockholm, 1920. 

[112] Renn J., and Schulmann, R., Albert Einstein 

Mileva Maric, The Love Letters, Princeton 

University Press, Princeton, 1992, p.32, p. 47. 

[113] Renn, J., “Einstein’s Controversy with Drude and 

the Origin of Statistical Mechanics: A New 

Glimpse from the “Love Letters“,” In: Einstein, 

The Formative Years, 1879-1909, Don Howard 

and John Stachel (Eds.), Birkhäuser, 2000, pp. 

107-157. 

[114] Lorentz, H. A., The Theory of Electrons, 2
nd

 Ed. 

Dover, 1915, p. 11. 

[115] Gershtein, S. S., Logunov, A. A., and 

Mestvirishvili, M. A., “Upper Limit on the 

Graviton Mass” arXiv:hep-th/9711147 v1 19 Nov 

1997, pp. 1-6. 

[116] Lorentz, H. A., “Electromagnetic Phenomena in a 

System Moving with any Velocity Less than that 

of Light,” Proc. Acad. Sci. Amst. 6, 1904, pp. 

809-831. 

[117] Poincaré, H., “Sur la Dynamique de l’Electron,” 

C. R. Acad. Sci. Paris  140, 1905, pp. 1504-1508. 

[118] Poincaré, H., “Sur la Dynamique de l’Electron,” 

Rend. Circ. Mat. Palermo 21, 12, 1906, pp. 9-175. 

[119] Logunov, A. A., On the Articles by Henri 

Poincaré, “On the Dynamics of the Electron”, 

Dubna: JINR, 2001. 

[110] Higgs, W., P., “Broken Symmetry and the20asses 

of Gauge Bosons,” Phys. Rev. Lett. 13,16, 1964, 

pp. 508-509. 

[121] Einstein, A., “Do Gravitational Fields Play an 

Essential Part in the Structure of the Elementary 

Particles of Matter,” In: The Principles of 

Relativity, Dover, 1952, pp. 191-198. 

[122] Sohrab, S. H., “Implications of a Scale Invariant 

Model of Statistical Mechanics to Nonstandard 

Analysis and the Wave Equation,” WSEAS 

Transactions on Mathematics 5, 3, 2008, pp. 95-

103. 

[123] Sohrab, S. H., “Normalized Spacings between 

Zeros of Riemann Zeta Function Given by 

Normalized Maxwell-Boltzmann Distribution,” 

In: Recent Advances in Applied Mathematics, 

Stephen Lagakos, Leonid Perlovsky, Manoj Jha, 

Brindusa Covaci, Azami Zaharim, and Nikos 

Mastorakis, (Eds.), WSEAS Press, 2010, ISBN: 

978-960-474-150-2, pp. 255-265. 

 [124] Montgomery, H. L., “The Pair Correlation of 

Zeros of the Zeta Function,” Analytic Number 

Theory, Proceedings of the Symposium on Pure 

Mathematics, (Am. Math. Soc., Providence, RI). 

24, 1973, pp. 181-193. 

[125] Odlyzko, A. M., “On the Distribution of Spacings 

between Zeros of the Zeta Function,” Math. Comp. 

48, 1987, pp. 273-308; “Dynamical, Spectral, and 

Arithmetic Zeta Functions,“ M. van 

Frankenhuysen and M. L. Lapidus, (Eds.), Amer. 

Math. Soc., Contemporary Mathematics Series, no. 

290, 2001, pp. 139-144. 

[126] Derbyshire, J., Prime Obsession, Joseph Henry 

press, Washington D. C., 2003. 

[127] Marcus du S.,  The Music of Primes, Harper 

Collins, New York, 2003. 

[128] Mehra, M. L., Random Matrices 3
rd

 ed., Elsevier, 

Amsterdam, 2004.  

[129] Berry, M. V., “Quantum Chaology,” Proc. Roy. 

Soc. London 413, 1990, pp. 183-198. 

[130] Wilson, K., G., “Renormalization Group and 

Critical Phenomena. I. Renormalization Group and 

the Kadanoff Scaling Picture,” Phys. Rev B 4, 9, 

1971, pp. 3174-3183; “Renormalization Group and 

Critical Phenomena. II. Phase-Space Cell Analysis 

of Critical Behavior,” Phys. Rev B 4, 9, 1971, pp. 

3184-3205. 

[131]  ‘t Hooft, G., “A Confrontation with Infinity,” Rev. 

Mod. Phys. 72, 2, 1999, pp. 359-370. 

[132] Connes, A., “Geometry from the Spectral Point of 

View,” Lett. Math. Phys. 34, 3, 1995, pp. 203-238; 

“Trace Formula in Noncommutative Geometry and 

Zeros of the Riemann Zeta Function,” Vienna, 

Preprint ESI 620, 1998, pp. 1-88 

[133] Sommerfeld, H., Die Bedeutung der 

Röntgenstrahlen für die heutige Physik, Munich, 

1925, p. 11.  Cited in Weyl, H. Philosophy of 

Mathematics and Natural Science, Princeton, 1949. 

[134] Weyl, H., “Gravitation and Electricity,” In: The 

Principles of Relativity, Dover, New York, 1956, 

pp. 201-216. 

[135] Heisenberg, W., The Physical Principles of 

Quantum Theory, Dover, New York, 1949. 

[136] Bell, L. J., The Continuous and the Infinitesimal in 

Mathematics and Philosophy, Polimetrica, Milano, 

Italy, 2006. 

[137] Darrigol, O., Worlds of Flow, Oxford University 

Press, New York, 2005, p. 297. 

[138]  ‘t Hooft, G., “Quantum Gravity as a Dissipative 

Deterministic System,” Class. Quantum Grav. 16, 

1999, pp. 3263-3279. 

[139] Sohrab, S. H., “Some Thermodynamic 

Considerations on the Physical and Quantum Nature 

of Space and Time,” WSEAS Transactions on 

Mathematics 3, 4, 2004, pp. 764-772. 

[140] Lorentz, H. A., “Aether Theories and Aether 

Models,” In: Selected Works of L.H. Lorentz, vol.5, 

Nersessian, N. J., and Cohen, H. F., (Eds.), Palm 

Publications, Nieuwerkerk, 1987, pp. 7-12.   

[141] Kox, A. J., “Hendrik Antoon Lorentz, the Ether, 

and the General Theory of Relativity” In: Einstein 

and the History of General Relativity, Howard, D., 

and Stachel, J. (Eds.), Birkhäuser, Boston, 1989, pp. 

201-212. 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 545



 

 

 

[142] Zermelo, E., “On a Theorem of Dynamics and 

the Mechanical Theory of Heat,” Ann. der Phys. 

59, 1896, pp. 793-801. English translation in 

Ref. 39, pp. 208-217.     

[143] Boltzmann, L., “Reply to Zermelo’s Remarks on 

the Theory of Heat,” Ann. der Phys. 57, 1896, 

pp. 773-784. English translation in Ref. 39, pp. 

218-228.     

[144] DeWitt, S. B., “Quantum Theory of Gravity. I. 

The Canonical Theory,” Phys. Rev. 160, 5, 1967, 

pp. 1113-1148. 

[145] Guth, H. A., and Tye, S.-H. H., “Phase 

Transitions and Magnetic Monopole Production 

in the Very Early Universe,” Phys. Rev. Lett. 44, 

10, 1980, pp. 631-634. 

[146] Guth, H. A., “Inflationary Universe: A Possible 

Solution to the Horizon and Flatness Problems,” 

Phys. Rev. D 23, 2, 1981, pp. 347-356. 

[147] Albrecht, A., and Steinhardt, J. P., “Cosmology 

for Grand Unified Theories with Radiatively 

Induced Symmetry Breaking,” Phys. Rev. Lett. 

48, 17, 1982, pp. 1220-1223.  

[148] Linde, A. D., E., “A New Inflationary Universe 

Scenario: A Possible Solution of the Horizon, 

Flatness, Homogeneity, Isotropy and Primordial 

Monopole Problems,” Phys. Lett. B 108, 6, 1982, 

pp. 389-393.  

[149] Sohrab, S. H., “Modified van der Waals Equation 

of State,” WSEAS Transactions on Biology and 

Biomedicine 1, 4, 2004, pp. 422-424. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[150] Nelson, E., “Internal Set Theory: A New Approach 

to Nonstandard Analysis,” Bull. Amer. Math. Soc. 

83, 6, 1977, pp. 1165-1197. 

[151] Darrigol, O., “Continuities and Discontinuities in 

Planck’s Akt der Verzweiflung,” Ann. Phys. 

(Leipzig) 9, 11-12, 2000, pp. 951-960. 

[152] Stachel, J., “Einstein’s Light-Quantum Hypothesis, 

or Why Didn’t Einstein Propose a Quantum Gas a 

Decade-and-a-Half Earlier?,” In: Einstein, The 

Formative Years, 1879-1909, Don Howard and 

John Stachel (Eds.) Birkhäuser, 2000, pp. 231-251. 

[153] Sohrab, S. H., “Physical Foundation of a Grand 

Unified Statistical Theory of Fields and the Scale-

Invariant Schrödinger Equation,” Bull. Amer. Phys. 

Soc. 43, 1, 1998, p. 781. 

[154] Schrödinger, E., “Quantization as a Problem of 

Proper values, Part I,” Ann. der Phys. 79, 4, 1926, 

pp. 361-376, “Quantization as a Problem of Proper 

values, Part II,” Ann. der Phys. 79, 4, 1926, pp. 489-

527; “Quantisierung als Eigenwertproblem, Part 

III,” Ann. der Phys.  81, 1926, pp. 109-139. 
[155] Sohrab, S. H., “The Physical Foundation of a Grand 

Unified Statistical Theory of Fields and the 

Invariant Schrödinger Equation,” WSEAS 

Transactions on Circuits and Systems 3, 4, 2004, 

pp. 1017-1025. 

[156] Dirac, A. M. P., Directions in Physics, Wiley, New 

York, 1978. 

[157] Takayasu, H., Fractals in Physical Science, Wiley, 

New York, 1990. 

 

 

 

 

 

 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 546




