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Abstract: - Multiple instances and diffusion mechanisms in biological and economic modeling involve partial 

differential equations (PDEs). Functional PDEs (with time delays) may be even more adequate to real world 

problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of 

populations with migrations, and the adopters’ dynamics of new products in innovation models. In biology, 

these events are then related to the variations in the environment, the population densities and overcrowding, 

the migrations and spreading of humans, animals, plants and other cells and organisms. In economics and 

management science, the diffusion processes of technological innovations in the marketplace (e.g. the mobile 

phone) is a major subject. Moreover, these innovation diffusion models refer mainly to epidemic models. This 

contribution introduces to this modeling process with PDEs and reviews the essential features of the dynamics 

in biological, ecological and economic modeling. The computations are carried out by using the software 

WolframMATHEMATICA® 7. 
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1 Introduction 
This introductive paper is dedicated to diffusion 

processes as they occur in population dynamics 

studies of biological and ecological domains
1
 and in 

adopter’s dynamics of new products in the 

marketing area
2
. The importance of this subject is 

reflected in the vast literature since the seminal 

article of (Skellam, 1951) on the random population 

dispersal in linear and two-dimensional habitat. 

2 Diffusion Process Modeling 

2.1 Partial Differential EquationsModels 
Migrations in population dynamics and 

innovation diffusion of new products can be 

modeled by using the same partial differential 

equation (PDE): the diffusion equation. PDEs allow 

for modeling state variables which variations 

depend on more than one independent variable such 

as time and space. The advection and the diffusion 

                                                 
1
A brief history of mathematical diffusion in ecology is 

presented by (Okubo, 1980). 

2
(Michalakelis & Sphicopoulos, 2012)introduce to the 

basic deterministic and stochastic innovation diffusion 

models. 

are two different PDE based transport mechanisms
3
. 

The advection equation describes the bulk 

movement of particles in a transporting environment 

(e.g. a swarm of insects in the air or pollutants in a 

river).  

The one dimension advection equation
4
 takes the 

form  
t x
a c a= −  and describes the advection of a 

scalar field ( ),a x t carried along by a flow of 

constant speed
5c . The solution is 

( ) ( ),a x t f x ct= − , where f  is deduced from 

the initial condition ( ) ( ),0a x f x= . The 

                                                 
3
A convection combines these two kinds of transport. 

4
This equation is closely related to the hyperbolic wave 

equation 
2

tt xx
u c u= , where u is the displacement and 

c the wave speed. Such a PDE is derived from a 
fundamental conservation law. 
5
This equation may be rewritten as 

/ , 0
t x x

a a c a= − ≠  so that the level curves ( ),a x t

are straight lines of slope c and so that the general 
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diffusion equation is a parabolic PDE
6
 for 

describing the random motion of particles. A. 

physical propagation problem (diffusion) is an 

initial value problem (IVP). The IVP may be a 

parabolic PDEof the form
7 ( ) ,  0,

t xx
u u x Lα= ∈

with the initial condition ( ) ( ) 1
, 0 , u x f x f C= ∈

. 

2.2 Reaction-Diffusion Equations 
PDEs that model population growth with a simple 

random diffusion are reaction-diffusion (RD) 

equations. The vector form of RD equations is 

( ) 2

t
f= + ∇u u uD D D D  

where ( ),x t=u u are the dependent variables, 

( )f u  and DDDD  the diffusion matrix (Britton, 

1986). 

Let ( ),N x t be the density of population at time 

[ )0,t∈ ∞  and position x∈Ω . A simple RD 

is
8
(Allen L. J., 2007, pp. 309-316) 

( ) ,
t xx

N f N N= +D  

where ( )f N denotes the reaction rate and 
xxND

the diffusion rate. For one species population 

                                                                               

solution takes the form ( )ct xϕ − for an arbitrary 
1

C

function ϕ . 
6
Recall that a parabolic PDE is one instance (besides 

‘hyperbolic’ and ‘elliptic’ PDEs) of a discriminant-based 

classification for PDEs in two independent variables. For 

more independent variables, the same instances proceed 

from an eigenvalue based classification. 
7
Additional boundary conditions (BCs) such as 

( ) ( )0, , 0,  0u t u L t t= = >  transform the model 

into an initial boundary value problem (IBVP). This 

physical problem represents the heat conduction in a rod 

for which the ends are at a zero temperature while the 

initial temperature at any other point is given by ( )f x

(Kythe, Puri, & Schäferkotter, 2003, p. 127). 
8
An extension to the local population density 

( ), ,N x y t  with spreading in a two-dimensional 

uniform space is of the form

( ) ( )
t xx yy

N f N N N= + +D . 

growth
9
, we may have an exponential growth with 

( )f N rN= (Malthusian populations), a logistic 

growth
10
with ( ) ( )1 /f N rN N K= − , the 

negative logistic for population decay by Skellam

( ) ( )2
1 /f N g N N K= − − or the asymmetric 

Gompertz ( ) ( )ln /rN K NNf =  

Suppose the RD equation with exponential growth 

( ), ,0
t xx

N rN N x L= + ∈D , 

with the initial condition ( ) ( ),0N x xϕ=  

[ ],0x L∈ and the boundary conditions 

( ) ( )0, , 0N t N L t= = . The change of variable 

( ) ( ), ,
rt

P x t N x t e
−=  leads to the following 

IBVP: 
t xxP P=D  with the conditions 

( ) ( ) [ ],0 ,  ,0P x x x Lϕ= ∈ and 

( ) ( )0, , 0P t P L t= = . The solution to ( ),N x t

is the solution to ( ),P x t multiplied by 
rte . Hence, 

we have 

( )

( )
0

0

2

1

2
                          sin

, sin  ,

L

n

t

n

n

n
r

L

n x
B N x dx

L L

n x
N x t B e

L

π

π

π∞

=

   
  

   
−

=

=  
 
 

∫

∑
D

 (1) 

In this model the additional growth term increases 

the density locally and fasters the spatial spread in 

the population.

 

2.3 Delay Reaction-Diffusion Equation 
Delay partial differential equations (DPDEs) may 

better fit to the realworld modeling of the population 

dynamics
11
. The parabolic DPDE is 

                                                 
9
Other specifications of the population growth rate and 

two-species population are given by (Allen L. J., 2007, 

pp. 310-311). 

10
Biological applications for the deterministic and 

stochastic logistic growth are in (Allen L. J., 2011, pp. 

421-424) 
11
The dynamics and control of time-delay differential 

systems are studied in (Keller, 2010) with applications to 
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( ) ( ) ( ),
t xx
u a t u q t u x t τ= − −  

whereτ denotes a constant positive delay. The 
temporal Wazewska-Czyzeska & Lasota equation 

describes the survival of red blood cells in animals. 

This equation may be extended by incorporating a 

spatial component as in (Zhang & Zhou, 2007, p. 

VII). The spatio-temporal delay RD equation 

becomes 

( ) ( ),
 ,

ap x t

t xx
p d p p x t qe

τδ − −= − +  

whereΩ ⊂ R is a bounded domain and 

( ) ( ), 0,x t ∈Ω× ∞ . The state variable ( ),p x t

denotes the number of red blood cells located at x
attime t . Theconstant time-delay 0τ >  denotes 

the time needed to produce blood cells. The 

parameter δ is the death rate of red blood cells. The 
parameters q  and a are related to the generation of 
red blood. 

3 Population DispersalModel 
An RD equation such as Fisher-KPP equation 

12
 

for population models, admits two main properties: 

firstly, the solution is traveling through the spatial 

domain at a finite rate of speed and secondly 

conditions on the spatial domain are determined for 

a population persistence. These two problems are 

known as ‘the traveling wave solutions’ and ‘the 

critical patch size’.  

3.1 Fisher-KPP Equation 
The Fisher-KPP equation is the parabolic PDE

13
 

( )1 , 
t xx

N rN N N x= − + ∈Ω ⊂ RD  (2) 

where ( ),N x t is for the population density at spatial 

position x  at time t>0 with ( ) ( ), 0N x N x= . The 

reaction term is the logistic term ( )1rN N− and 

the diffusion rate or random motion is
xx

ND . 

                                                                               
economics. Time lags in biological models are notably 

presented in (MacDonald, 1978). 
12
The Fisher’s equation was simultaneously introduced 

by (Fisher, 1937) and (Kolmogorov, Petrovskii, & 

Piscounov, 1991) for phase transition problems in 

combustion,physiology, ecology, etc. 

13
The generalization of the Fisher’s equation by 

(Kaliappan, 1984)is 
k

t xx
u u u u= + −D , for which an 

exact analytical solution is proposed for traveling waves. 

3.2 Traveling Wave Solutions 
DefinitionA traveling wave solution of (2) is a 

solution that can be expressed in terms of the scalar 

z x vt= −  where the constant v is the wave speed. 

We may write ( ) ( )N z N x vt= −  

Let /dN dz P= − , we obtain the system of first-

order ordinary differential equations (ODEs) 

 

( )1

dN
P

dz

dP v
P N

dz

r
N

= −

= − + −





 D D

 (3) 

We also impose the following restrictions to the 

solution ( )N z : ( ) [ ]0,1N z ∈ , ( ) 1N z →  as 

z → −∞  and ( ) 0N z →  as z →∞ . The 
phase plane dynamics

14
 is illustrated in Figure 

1, for 1r v= = =D .The equilibrium point 

( )0,0E is locally asymptotically stable
15
. 

 
Figure 1. Phase plane dynamics of system (3) of 

ODEs with parameter values 1r v= = =D . 

                                                 
14
 For more cases and details, see (Allen L. J., 2007, pp. 

321-324). 

15
Figure 1 has been produced by using the Mathematica 

graphical interface ‘EquationTrekker for specifying initial 

conditions and plotting the resulting numerical solution to 

the system of ODEs. 
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3.3 Critical patch size 
What is the minimal size of the spatial domain 

needed for a population survival? This problem has 

been studied by (Kierstead & Slobodkin, 1953) for 

an RD equation with exponential growth
16
. The 

IBVP is ( ), 0,
t xx

N rN N x L= + ∈D  with the 

homogeneous Dirichlet BCs: 

( ) ( )0, , 0N t N L t= = and ( ) ( )0
,0N x N x= . 

The conditions on the spatial domain so that the 

solutions (1) approaches zero is 

2

r
L

π
<  

 
 

D  

(Allen L. J., 2007, pp. 319-321). The reversed 

inequality then defines the minimal patch size for 

the population to survive. Solving the equality for 

L yields the critical patch size 
c

L
r

π=
D

. Thus, 

the population size increases if 
c

L L> and 

decreases to zero if 
c

L L< . 

4 Innovation Diffusion Model 
Innovation diffusion models describe the process 

by which innovation products (or idea or practice) 

are communicated over time through certain 

channels and expand through a population of 

adopters. The typical time path of the cumulative 

adopter distribution (e.g. for mobile phone) is a 

sigmoidal S-shaped time curve: few adopters at the 

beginning (mainly professionals), then more and 

more  adopters and finally diffusion to public at 

large. The market is saturated at the upper limit. 

Modeling the innovations has an extensive literature 

in marketing. Analogies are with models of 

epidemics. 

4.1 BasicInnovationDiffusion Model 

A general diffusion model of new product 

acceptance is composed of ( )M t participants to the 

market, of ( )N t adopters of the new product and 

m the maximum of potential customers (Mahajan & 

Muller, 1979). There are three distinct segments of 

                                                 
16
The application of this study is the growth of 

phytoplankton (the bottom of the marine food chain). The 

conditions for population persistence and extinction have 

also been for a diffusive logistic equation and different 

types of domains. 

the market: the current market ( )N t , the potential 

market ( )N tm −  and the untapped market 

( )M t m− . The typical diffusion model is

 ( ) ( )( )dN
g t m N t

dt
= −  (4) 

where ( )N t  is the cumulative numbers of prior 

adopters, ( )m N t−  the potential adopters and 

( )g t  the diffusion coefficient or probability 

ofadoption
17
. The marketing problem is: how many 

of the potential adopters will buy the new product at 

time t ? 

4.2 Stochastic Innovation Diffusion 
The innovation diffusion process may be disturbed 

by random impacts from the environment (e.g. 

socioeconomic factors) as well from the system 

itself.Uncertainties are inherent in the marketing 

approach due to changing consumer tastes, 

technology conditions, etc. These uncertainties can 

be modeled by using normally distributed 

parameters (Eliashberg, Tapiero, & Wind, 1983)or 

by formulating an adapted Itô’s stochastic 

differential equation (SDE)
18
. The stochastic Bass’ 

innovation model by (Skiadas & Giovanis, 1997)is 

reformulated as
19
 

( ) ( )( )q p N
dN p m N m N N dt c dW

m q m
= − + − + +

 
 
 

whereW is a Wiener process and c the noise 
parameter. The mean value (first moment) of 

the solution is
20
 

                                                 
17
 In that case, the rate of diffusion at time t equals the 
expected number of adopters. 
18
Population biology models with time-delay in a noisy 

environment are studied in (Keller, 2011). The 

population dependent diffusion model by (Michalakelis 

& Sphicopoulos, 2012) incorporates a stochastic 

component. 

19
 Different notations are used in (Skiadas & Giovanis, 

1997). 

20
The model is solved by reducing the nonlinear SDE to a 

linear form (Skiadas & Giovanis, 1997). The same 

method is used by (Giovanis & Skiadas, 1999) to solve a 

stochastic logistic innovation diffusion model for Greece 

and USA. 
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[ ]
( )

( )( )
0

 

1
1

p q t

p q t

m e mp
E N

q q
e

p N p q

q m

+

+

= −

+ −
+

+

 

4.3 Spatial Innovation Diffusion 
How innovations are diffusing in different 

geographical spaces ? (Mahajan & Peterson, 

1979)integrate the space and time dimensions in the 

diffusion process. The Bass’ model becomes the 

PDE 

( ) ( )( ) ( )( )t
N p x q x N m x N= + − , 

where ( ),N x t denotes the cumulative number of 

adopters in domain x  at time t . The innovation 
dynamics shows a characteristic wavelike set of S-

shaped curves. 

Recently, the spatial dimension of innovation 

diffusion is introduced into the classical imitation-

innovation Bass’ dynamicsby (Hashemi, Hongler, & 

Gallay, 2012). The resulting multi-agent imitation 

model generates spatio-temporal patterns. The 

imitation interactions of agents (agent’ observations 

of their neighbors) can explain the existence of 

swarms
21
 of bacteria, insect swarms, fish schools, 

etc. 

5 Conclusion 
This presentation concerned with the dynamics of 

population dispersal in biology and the spatial 

diffusion of new products in marketing. The 

importance of reaction-diffusion equations has been 

shown with a variety of population growth 

specifications. Basic one-dimensional diffusion 

model have been considered. The dynamics of such 

models have been mainly on traveling wave 

solutions and on the critical patch size. Appendices 

allow to specify some technical aspects of the 

modeling process: the random move based diffusion 

equation, the basic physical diffusion equation, the 

characteristic method for solving PDEs, and the 

reference Bass’ model. 

Further developments and applications  may 

extend this introductive presentation. The models 

can be generalized to multi-agent models, to 

multiple species. The space dimension may be 

extended. Other specifications of the population 

growth may be chosen as an alternative, such as a 

                                                 
21
The dynamics of animal grouping is notably presented 

in (Okubo, 1980, pp. 110-131) 

predator-prey specification for multiple species, 

such as with the diffusional Lotka-Volterra system 

(Britton, 1986, pp. 21-23). Other domains of the 

population biology, ecologyand of economics. 

Constant and variable time-delays may be more 

systematically introduced. 

Appendix A.Random Move-Based 

Diffusion Equation 
A collection of particles moves randomly on the 

real lineR , with steps x∆ every time unit τ
(Edelstein-Keshet, 1988, pp. 404-406). The time 

domain [ )0,∞ is divided into intervals of length 

t∆ . The probabilities of moving to the left or to the 

right are respectively 
lλ and 

rλ . The problem is to 

determine the equation that describes the change in 

the number of particles at position x . The number 

of particles ( ),N x t τ+ at time t τ+ is 

determined by ( ),N x t at the previous time, plus 

the expected arrivals from the left and from the 

right, minus the expected departures to the left and 

to the right. We obtain  

( ) ( ) ( )
( ) ( )

, 1 ,

       , ,

l r

l r

N x t N x t

N x x t N x x t

τ λ λ

λ λ

+ = − −

+ + ∆ + + ∆
 

Using Taylor-series expansion for these terms, 

supposing that 1 / 2
l r

λ λ= =  and dividing the 

expression by τ yields 
2

2 2
1

2 2 2
t tt xx xxxx

x x
N N N Nτ

τ τ

∆ ∆
+ + = + +

 
 
 

⋯ ⋯

Taking 
( )2

2

x

τ

∆
=D , a limiting form of the 

equation for 0, 0xτ → ∆ → yields the diffusion 

equation
22

t xx
N N=D , where D denotes a 

constant diffusion coefficient. 

Appendix B. Basic Physical Diffusion 

Equation 
Let the Cauchy problem (Allen L. J., 2007, pp. 

312-313): 

 ( ),  0,
t xx

N N t= ∈ ∞D  (5) 

                                                 
22
Also the parabolic heat conduction equation. 
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for which the initial condition is

( ) ( )0, 0 , N x N x x= ∈R A Fourier transform of 

( ),N x t in x  is defined by 

[ ] ( ) ( )
1

, ,  
2

isx
s t N x t e dxN

π

∞

−∞
=≡ ∫F N . 

Applying Fourier transforms to (5) yields
23
 

( ) ( )2
,  , , 

t
s t s s t s= − ∈N N RD  

for which the transformed Dirichlet initial condition 

is ( )0
sN . The inverse Fourier transform 

( )[ ]1
,s t

−F N and the convolution theorem of 

Fourier
24
 yield the solution 

( ) ( )
( )2

4

0

1
,

2

x v

tN x t N v e dv
tπ

−
−∞

−∞
= ∫ D

D
. 

Appendix C. Integrating PDEs by 

Using the Characteristic Method 
Let the general PDE 

( )0 1 0, , , , , , , 0,
n nF x x x u p p =… …  

where , 0, ,
ii x

p u i n= = … . If we consider that the 

ix ’s and ip ’s are functions of the parameter s , the 

characteristic system
25
of ODEs takes the form 

0

, ,
i i j

n

i i

p x i u j p

j

dx dp du
F F p F p F

ds ds ds =

= = − =
 
 
 

∑ , 

for 0,1, ,i n= … . Along the characteristic curves, 

the solutions of the ODEs are also solutions of the 

PDE (Zwillinger, 1998, pp. 325-330). 

                                                 
23
The Fourier transform is obtained by using the 

properties [ ] ( )/ ,N x is s t∂ ∂ = −F N and 

( )2 2 2
/ ,N x s s t∂ ∂ = −  F N , assuming that 

0N →  and 0xN → as x → ±∞ . 
24
The convolution theorem of Fourier states that 

( ) ( )[ ] ( ) ( )1 1

2
s s X v Y x v dv

π

∞−

−∞
= −∫F X Y

 
25
The characteristics consist  in general equations which 

are represented by the curves of intersection of two 

families of integral surfaces defined by 0
t

x ce− =  and 
2
/2

1

t
u c e

−= .  

Example.Let the following IVP in which the PDE is 

linear with variable coefficients 

( ) ( ), ,0 cos
x t

xu u tu u x x+ = − = . 

The solution by using the method of characteristics 

(Allen L. J., 2007, pp. 305-306) is 

( ) ( ) 2
/2

, cos
t t

u x t xe e
− −=  

This solution is depicted for [ ]20,20x∈ −  and 

[ ]0,2t∈ in Figure 2,by using MATHEMATICA 

for which the primitive NDSolve allows to find 

numerical solutions to PDEs
26
. 

 
Figure 2. 3D plot of the two-dimensional 

resulting interpolating function 

Appendix D. Bass’ Innovation 

DiffusionModel 
The deterministic Bass’ model (Bass, 1969) is 

based on an aggregate differential diffusion model 

of new product acceptance. The nonlinear dynamics 

of this model is governed by the ratio of two control 

parameters p and q , respectively the innovation 

and the imitation rates. The evolution of the 

adopters may be the differential equation(4). 

Suppose that ( )g t  takes the linear specification27

                                                 
26
The Mathematica® primitive yields 

 
27
(Mahajan & Peterson, 1985, pp. 12-26)analyse 

separately the dynamics of the external (innovation) and 

internal (imitation) effects. The generalized von 

Bertalanffy’s model is also shown to have flexible 
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( ) ( )N t
g t p q

m
= +  and define 

( ) ( ) /X t N t m= , the Bass’ model is the logistic 

equation 

 ( )( ) ( )( )1
dX

p qX t X t
dt

= + −  (6) 

Integrating (6) by parts, the time path is 

( )
( )

( ) ( )
1

1 /

p q t

p q t

e
X t

q p e

− +

− +

−
=

+
 

The maximum diffusion rate is obtained for 
2 2
/ 0d X dt = (at the inflexion point of the time 

path), where 
1ˆ
2 2

p
X

q
= − . To find the time t̂ , 

when ( )ˆX t is a maximum penetration rate, we 

solve ( ) ˆX t X= in time t  and obtain 

( )ln /
ˆ

p q
t

p q
= −

+
. 
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