Fluidity of Polymer Influenced by the Amount of Filler

MICHAL STANEK, DAVID MANAS, MIROSLAV MANAS, KAMIL KYAS, VOJTECH SENKERIK, ADAM SKROBAK, JAN NAVRATIL

Tomas Bata University in Zlin
nam. T.G. Masaryka 5555, 76001 Zlin
CZECH REPUBLIC
stanek@ft.utb.cz http://www.utb.cz

Abstract: - Delivery of polymer melts into the mold cavity is the most important stage of the injection molding process. This paper shows the influence of cavity surface roughness and technological parameters on the flow length of polymers into mold cavity. Application of the measurement results may have significant influence on the production of shaping parts of the injection molds especially in changing the so far used processes and substituting them by less costly production processes which might increase the competitiveness of the tool producers and shorten the time between product plan and its implementation.

Key-Words: - Injection molding, mold, surface, roughness, fluidity, polymer

1 Introduction

Injection molding is one of the most extended polymer processing technologies. It enables the manufacture of final products, which do not require any further operations. The tools used for their production – the injection molds – are very complicated assemblies that are made using several technologies and materials. Working of shaping cavities is the major problem involving not only the cavity of the mold itself, giving the shape and dimensions of the future product, but also the flow pathway (runners) leading the polymer melt to the separate cavities. The runner may be very complex and in most cases takes up to 40% volume of the product itself (cavity). In practice, high quality of runner surface is still very often required. Hence surface polishing for perfect conditions for melt flow is demanded. The stated finishing operations are very time and money consuming leading to high costs of the tool production.

The fluidity of polymers is affected by many parameters (mold design, melt temperature, injection rate and pressures) and by the flow properties of polymers. Results of the experiments carried out with polypropylene contained different amount of filler proved a minimal influence of surface roughness of the runners on the polymer melt flow. This considers excluding (if the conditions allow it) the very complex and expensive finishing operations from the technological process as the influence of the surface roughness on the flow characteristics does not seem to play as important role as was previously thought. A plastic nucleus is formed by this way of laminar flow, which enables the compression of the melt in the mold and consecutive creeping. A constant flowing rate given by the axial movement of the screw is chosen for most of the flows. During filling the mold cavity the plastic material does not slide along the mold surface but it is rolled over. This type of laminar flow is usually described as a “fountain flow” (Fig.1). [4, 6]

2 Injection molding

The injection mold for was designed for the easiest possible manipulation both with the mold itself and during injection molding while changing the testing plates, size of the mold gate, pressure and temperature sensors etc. The injection mold is inserted into a universal frame (Fig. 2) which was designed for use with many different injection molds that fit the size of the frame. This makes the change of the separate injection molds easier, because the frame remains clamped to the injection molding machine and only the shaping and ejection parts of the molds are changed. Attaching right and left sides of the frame to fixed and moving plates of
the injection molding machine is done using four adjustable clamps on each side. [16, 17]

Fig. 2 Assembly of injection mold
1 – frame, 2 – injection mold, 3 – ejection system

The shaping part of the injection mold is composed of right and left side. The most important parts of the injection mold concerning the measurements are: testing plate, cavity plate and a special sprue puller insert.

The cavity (Fig. 3) of injection mold for is in a shape of a spiral (Fig. 4) with the maximum length of 2000 mm and dimensions of channel cross-section: 6x1 mm. The cavity is created when the injection mold is closed, i.e. when shaping plate seals the testing plate. [2]

Fig. 4 Testing sample – spiral

Injection mold can operate with 5 exchangeable testing plates (Fig. 5) with different surface roughness.

Fig. 5 Cavity plate – testing plate

The surface of the plates was machined by four different technologies, which are most commonly used to work down the cavities of molds and runners in industrial production. These technologies are polishing, grinding, milling and two types of electrospark erosion – fine and rough design (Table 1). The testing plates are made from tool steel whose are used for simple and fast changing the surface of the mold cavity. [7]

Fig. 3 Cavity plate – shaping plate
Table 1 Surfaces of testing plates

<table>
<thead>
<tr>
<th>Plate surface</th>
<th>Surface photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished plate ((R_a = 0.102 \mu m))</td>
<td></td>
</tr>
<tr>
<td>Grinded plate ((R_a = 0.172 \mu m))</td>
<td></td>
</tr>
<tr>
<td>Electro–spark machined plate with a fine design ((R_a = 4.055 \mu m))</td>
<td></td>
</tr>
<tr>
<td>Milled plate ((R_a = 4.499 \mu m))</td>
<td></td>
</tr>
<tr>
<td>Electro–spark machined plate with a rough design ((R_a = 9.566 \mu m))</td>
<td></td>
</tr>
</tbody>
</table>

3 Tested polymers
Natural polypropylene (Moplen) and polypropylene (Hostacom) with different amount of filler – glass fibers \((5\%, 10\%, 15\%, 20\%, 25\%, 30\%, 35\%, 40\%\) of short glass fibers) has been used for the experiment.

4 Results
The aim of the measurements was to find out the influence of separate parameters, especially the quality of the injection mold cavity surface and filler amount, on the flow length. The main results of the measurement and testing are given on the following pictures.

4.1 Influence of material fluidity on surface roughness
Influence of the flow length on surface quality is shown on the next three pictures. The surface quality was changed by the testing plates with different surface roughness (Table 1). The amount of glass fibers filler was for the demonstration selected only with \(0\%, 20\%\) and \(40\%\). The other results were similar – the best fluidity had rough design plate and the worse fluidity had polished plate.

4.2 Influence of material fluidity on filler amount
Influence of the testing samples length on glass fibers filler amount \((0, 5, 10, 15, 20, 25, 30, 40\%)\) is shown on the next pictures. The results are displayed separately for each testing plate because of better comparison.
The fluidity was better in all ways with smaller amount of glass fibers. In case of glass fibers used as filler in polymer materials there is significant influence on worse flow material properties. On the other hand the final product form the filled material has better mechanical properties and of course lower percentage of shrinkage.

Fig. 8 Influence of the flow length on filler amount (Polished plate)

Fig. 9 Influence of the flow length on filler amount (Grinded plate)

Fig. 10 Influence of the flow length on filler amount (Fine design plate)

Fig. 11 Influence of the flow length on filler amount (Milled plate)

Fig. 12 Influence of the flow length on filler amount (Rough design plate)

For the better imagination all results was shown in only one graph (Fig. 13). On the X axis are testing plates, on the Y axis is flow length and finally on Z axis are concentrations of glass fibers.

Fig. 13 Dependence of the flow length on surface quality and filler amount
4 Conclusion
This research looked into the influence of technological parameters on filling of the injection mold cavity and the flow length respectively. The differences in flow lengths at the testing cavity plates with different surface roughness were very small, rather higher in case of rougher surfaces. But there is demonstrable difference of worse flow properties on each testing plate with increasing percentage of filler (GF – glass fibers). The measurement shows that surface roughness of the injection mold cavity or runners have no substantial influence on the length of flow. This can be directly put into practice. It also suggests that final working and machining (e.g. grinding and polishing) of some parts of the mold, especially the flowing pathways, are not necessary.

Acknowledgement
This paper is supported by the internal grant of TBU in Zlin No. IGA/FT/2012/041 funded from the resources of specific university research and by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

References: