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Abstract: There are several processes, frequently appearing in a system’s operation, involving. 

vagueness and/or uncertainty. In the present paper we develop a general fuzzy model for 

representing such kind of processes. More explicitly, the main stages of these processes are 

represented as fuzzy subsets of a set of linguistic labels characterizing the degree of the system’s 

success at the respective stage and the probabilities and possibilities of all possible profiles of the 

subjects involved are calculated. Examples are also presented from the areas of Education and 

Management illustrating the use of our model in practice. 

 

Keywords: Fuzzy Sets and Logic, Fuzzy Probabilities and Possibilities, Systems’ Theory, Learning, 
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1. Introduction: Systems and Fuzzy 

Logic  
 
The word system (from Latin systema, in turn 

of the Greek σύστηµα) in its meaning here has 

a long history which can be traced back to 

Plato (Phillebus), Aristotle (Politics) and 

Euclid (Elements). It had meant “total”, 

“crowd” or “union” in even more ancient 

times, as it derives from the verb sunistemi: 

uniting, putting together. Nowadays, in the 

most general sense, system means a 

configuration of parts connected and joined 

together by a web of relationships.  

The first to develop the concept of a system in 

the natural sciences was the French physicist 

Carnot (1824) who studied thermodynamics. 

In 1850 the German physicist Clausius 

generalized Carnot’s picture to include the 

concept of the surroundings and began to use 

the term “working body” when referring to 

the system. One of the pioneers of the general 

systems’ theory was the biologist Bertalanffy 

[2], while significant development to the 

concept of the system was done by Wienner 

and Ashby, who pioneered the use of 

mathematics to study systems [10]. 

Contemporary ideas from systems’ theory 

have grown with diversified areas, 

exemplified by the works of Banathy [1], 

Hammond [3], Odum [6] and others.  

 Currently, applications of the system concept 

include information and computer science, 

engineering and physics, social and cognitive 

sciences, management and economics, 

strategic thinking, fuzziness and uncertainty, 

etc. Systems’ theory thus serves as a bridge 

for interdisciplinary dialogue between 

autonomous areas of study, as well as within 

the area of systems’ science itself. 

Most systems share common characteristics 

including structure, behavior, 

interconnectivity (the various parts of a 

system have functional and structural 

relations to each other), sets of functions, etc. 

Systems’ theory views the world as a complex 

system of interconnected parts. We scope a 

system by defining its boundary; this means 

choosing which entities are inside the system 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 213



and which are outside - part of the 

environment. We then take simplified 

representations (models) of the system in 

order to understand it and to predict or impact 

its future behavior. 

Systems’ modelling is generally a basic 

principle in engineering and in social 

sciences. The model is the representation of 

the system’s entities under concern. Hence 

inclusion to or exclusion from system’s 

context is dependent of the intention of the 

modeler. Thus, no model of a real system 

could include all features and/or all entities 

belonging to it.     

 They appear often processes in a system’s 

operation characterized by a degree of 

vagueness and/or uncertainty. In education, 

for example, during the processes of learning, 

of problem-solving, of modelling, etc, 

students’ cognition utilizes in general 

concepts that are inherently graded and 

therefore fuzzy. On the other hand, from the 

teacher’s point of view there usually exists an 

uncertainty about the degree of students’ 

success in each of the stages of the 

corresponding didactic situation.  

There used to be a tradition in science and 

engineering of turning to probability theory 

when one is faced with a problem in which 

uncertainty plays a significant role. This 

transition was justified when there were no 

alternative tools for dealing with the 

uncertainty. Today this is no longer the case. 

Fuzzy systems, including fuzzy logic and 

fuzzy set theory provide a rich and 

meaningful addition to standard logic. The 

mathematics generated by these theories is 

consistent and fuzzy logic is a generalization 

of classic logic. The applications which may 

be generated from or adapted to fuzzy logic 

are wide-ranging and provide the opportunity 

for modelling under conditions which are 

inherently imprecisely defined, despite the 

concerns of classical logicians. Many systems 

may be modelled, simulated and even 

replicated with the help of fuzzy systems, not 

the least of which is human reasoning itself. 

The history shows some traces of 

foundational ideas of fuzzy logic in the 

philosophical thoughts put forth by Buddha, 

who lived in India during 500 BC. His 

philosophy was based on the thought that 

almost everything contains some of its 

opposite, or in other words that things can be 

X and not X at the same time. However, it 

was Plato (427-347 BC) who laid the 

foundation for what would become fuzzy 

logic, including that there was a third region 

(beyond True and False), where these 

opposites “tumbled about”. Other, more 

modern philosophers echoed his sentiments, 

notably Hegel, Marx and Engels. But it was 

Lukasiewicz [5] who first proposed a 

systematic alternative to the bi-valued logic of 

Aristotle. In the early 1900’s he described the 

3-valued logic by adding the term “Possible” 

and he assigned it a numeric value between 

‘True” and “False”. Later he explored 4 and 

5-valued logics and then declared that in 

principle there was nothing to prevent the 

derivation of an infinite-valued logic. 

Nevertheless, it was not until relatively 

recently that the notion of an infinite-valued 

logic took hold. In 1965 Zadeh published his 

seminal work “Fuzzy Sets” [11] which 

described the mathematics of fuzzy set theory 

and by extension fuzzy logic. This theory 

proposed making the membership function to 

operate over the range of real numbers [0, 1]. 

New operations for the calculus of logic were 

proposed and showed to be in principle at 

least a generalization of classic logic ([11], 

[12]). 

Despite the fact that both operate over the 

same numeric range [0, 1], fuzzy set theory is 

distinct from probability theory. For example, 

the probabilistic approach yields the natural 

language statement “there is an 85% chance 

that Mary is tall”, while the fuzzy terminology 

corresponds to “Mary’s degree of 

membership within the set of tall people is 

0,85”. The semantic difference is significant: 

The first view supposes that Mary is or is not 

tall (still caught in the law of the Excluded 

Middle); it is just that we only have a 85% 

chance of knowing in which set she is in.  By 

contrast, fuzzy terminology supposes that 

Mary is “more or less” tall, or some other 

term corresponding to the value of 0,85.  

Another immediately apparent difference is 

that the summation of probabilities of the 

single subsets of a universal set must equal 1, 
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while there is no such requirement for 

membership degrees. The methods of 

choosing the suitable membership function 

for each case are usually empiric, based on 

experiments made on samples of the 

population that we study. Further distinctions 

between probability and fuzziness arising 

from the operations also exist.          

A real test of the effectiveness of an approach 

to uncertainty is the capability to solve 

problems which involve different facets of 

uncertainty. Fuzzy logic has a much higher 

problem-solving capability than standard 

probability theory. Most importantly, it opens 

the door to construction of mathematical 

solutions of computational problems which 

are stated in a natural language.  In contrast, 

standard probability theory does not have this 

capability, a fact which is one of its principal 

limitations.     

All the above gave us the impulsion to 

introduce principles of fuzzy logic to describe 

in a more effective way a system’s operation 

in situations characterized by a degree of 

vagueness and/or uncertainty   Therefore our 

target in this paper is to construct a general 

(fuzzy) model that could be adapted in each 

particular case in order to represent the 

corresponding process. 

 For general facts on fuzzy sets and logic we 

refer freely to the book of Klir and Folger [4]. 
 

2. The general fuzzy model 
 

Assume that we want to study the behavior of 

a system’s n entities, n≥2, during a process 
involving vagueness and/or uncertainty.  

Denote by Si , i=1,2,3 the main stages of this 

process and by a, b, c, d, and e the linguistic 

labels of negligible, low, intermediate, high 

and complete success respectively of a 

system’s entity in each of the Si’s.  Set  

U = {a, b, c, d, e}. 

We are going to attach to each stage Si a fuzzy 

subset, Ai of U. For this, if nia, nib, nic, nid and 

nie denote the number of entities that faced 

negligible, low, intermediate,  high and 

complete success at stage Si respectively, 

i=1,2,3, we define the membership function 

mAi  for each x in U, as follows:  

1,      if    
5

4n < nix≤ n 

0,75 ,   if    
5

3n < nix≤
5

4n  

)(xm
iA =    0,5 ,   if     

5

2n < nix≤
5

3n  

                0,25 ,    if     
5

n < nix≤
5

2n  

                   0,       if      0 ≤nix≤
5

n  

Then the fuzzy subset Ai of U corresponding 

to Si has the form: 

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 

In order to represent all possible profiles 

(overall states) of the system’s entities during 

the corresponding process we consider a fuzzy 

relation, say R, in U
3
 of the form 

R= {(s, mR(s)): s=(x, y, z) ∈U
3
}. 

We make the hypothesis that the stages of the 

process that we study are depended to each 

other. This means that the degree of system’s 

success in a certain stage depends upon the 

degree of its success in the previous stages, as 

it usually happens in practice. Under this 

hypothesis and in order to determine properly 

the membership function mR we give the 

following definition:   

Definition 2.1: A profile  s=(x, y, z), with x, y, 

z in U, is said to be well ordered if x 

corresponds to a degree of success equal or 

greater than y and y corresponds to a degree 

of success equal or greater than z.  

For example, (c, c, a) is a well ordered 

profile, while (b, a, c) is not.  

We define now the membership degree of a 

profile s to be 

mR(s) = m
1A (x)m

2A (y)m
3A (z) 

if s is well ordered, and 0 otherwise.  

In fact, if for example profile (b, a, c) 

possessed a nonzero membership degree, how 

it could be possible for an object that has 

failed during the middle stage, to perform 

satisfactorily at the next stage?  

Next, for reasons of brevity, we shall write ms 

instead of mR(s). Then the probability ps of the 

profile s is defined in a way analogous to 

crisp data, i.e.  by 

Ps =  

3

s

s

s U

m

m
∈

∑
   . 

Recent Researches in Circuits and Systems

ISBN: 978-1-61804-108-1 215



We define also the possibility rs of s by   

rs=
}max{ s

s

m

m , 

where max{ms} denotes the maximal value of 

ms , for all s in U
3
. In other words the 

possibility of s expresses the “relative 

membership degree” of s with respect to 

max{ms}. 

Assume finally that one wants to study the 

combined results of behavior of k different 

groups of the system’s entities, k≥2, during 

the same process. For this we introduce the 

fuzzy variables A1(t), A2(t) and A3(t) with t=1, 

2,…, k. The values of these variables represent 

fuzzy subsets of U corresponding to the stages 

of the process for each of the k groups; e.g. 

A1(2) represents the fuzzy subset of U 

corresponding to the first stage of the process 

for the second group (t=2). It becomes 

evident that, in order to measure the degree of 

evidence of combined results of the k groups, 

it is necessary to define the probability p(s) 

and the possibility r(s) of each profile s with 

respect to the membership degrees of s for all 

groups. For this reason we introduce the 

pseudo-frequencies  

f(s) =∑
=

k

t

s tm
1

)(  

and we define  

p(s) = 

3

( )

( )
s U

f s

f s
∈

∑
 

and 

r(s) =
)}(max{

)(

sf

sf , 

where max{f(s)} denotes the maximal pseudo-

frequency.  

Obviously the same method could be applied 

when one wants to study the combined results 

of behaviour of a group during k different 

situations.  

 

3 Applications of the fuzzy model                                             
 

In earlier papers we have applied the above 

model (or similar ones) for a more effective 

description of several situations involving 

fuzziness and uncertainty, mainly in the areas 

of Mathematics Education and of Artificial 

Intelligence (e.g. see [9] and its references). In 

this section we shall sketch one of these 

applications for the process of learning and 

we shall present another example from the 

area of Management                                                                                                                

3.1 The process of learning 

The concept of learning is fundamental to the 

study of human cognitive action and very 

many theories and models were developed by 

researchers and educators describing its 

nature and process.  

Voss [9] argues that learning basically 

consists of successive problem–solving 

activities, in which the input information is 

represented of existing knowledge, with the 

solution occurring when the input is 

appropriately interpreted. The whole process 

involves the following stages: Representation 

of the input data, interpretation of these data 

in order to produce the new knowledge, 

generalization of the new knowledge to a 

variety of situations and categorization of the 

generalized knowledge. 

In developing our fuzzy model for the process 

of learning we considered a group of n 

students, n≥2, during the learning process of 

a subject matter in classroom and we denoted 

by Si, i=1, 2, 3, the stages of 

representation/interpretation (as a joined 

stage), generalization and categorization of 

the Voss’s model. To each of the Si‘s we 

attached a fuzzy subset Ai of U  defining the 

membership function mAi  in terms of the 

frequencies, i.e. by  

mAi(x)=
n

nix
 

 for each x in U.  Thus we can write  

Ai = {(x, 
n

nix
) :  x∈U}. 

The development of the fuzzy model for 

learning follows then the general lines 

presented in the previous section. For more 

details and classroom applications of the 

model see [8]. 

3.2 An application to Management 

An enterprise is willing to evaluate the data of 

a market's research about the consumers' 

correspondence for its negotiable products. 

The level of this correspondence is 

characterized by the fuzzy linguistic labels of 
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a=negligible, b=low, c=moderate, d=high and 

e=very high respectively.  

The research has been made separately for 

men and women and for 3 different categories 

of age, namely 18-30, 31-50 and over 50 

years old. 

The consumers' correspondence for each of 

the above categories of age can be represented 

by a fuzzy subset   

A i = {(x , m
iA (x)), x∈U}, i=1,2,3 

of   U = {a ,b, c, d, .e}.  

In order to cover separately men and women, 

we introduce the fuzzy variables A i (t),  t=1,2  

Let us assume further that according to the 

fuzzy data of the market's research we have: 

 
The fuzzy sets in the above table are written 

in their symbolic form as a sum, where the 

elements of U possessing membership degree  

0 are omitted.   

Observe that the fuzzy data in the above table 

are normalized, i.e. we have that   

3

( )
iA

s U

m x
∈

∑ =1, i = 1,2, 3     (1) 

The overall states (profiles) of the fuzzy 

system that we study are in 1-1 

correspondence with the elements of U
3
, e.g.  

the element (c, c, a)  corresponds to the state 

where the consumer's correspondence for the 

products of the enterprise is moderate for the 

ages 18-30 and 31-50 and negligible for the 

ages over the 50 years etc. 

In calculating frequencies of the profiles 

for fuzzy data the membership degrees 

pertaining to states of individual variables 

must be properly aggregated into 

membership degrees of the profiles. For 

this consider the fuzzy relation  
R = {(s,mR(s)) : s=(x,ψ,z)∈U

3
} 

with membership function   

mR(s) = 
1 2 3
( ) ( ) ( )A A Am x m m zψ  

 

for each s in U
3
. The above definition of mR is 

suitable in our case, since the stages of the 

corresponding process are independent to 

each other. Using (1) we get that 

3

( )R

s U

m s
∈

∑ = 1   (2). 

In order to simplify our notation we shall 

write next ms instead of ( )
R

m s .  

 

Table 1: Profiles with non zero pseudo-

frequencies 

 

 
 

The pseudo-frequency f(s) of the appearance 

of the profile s(t) is given by the sum  

f(s)=ms(1)+ms(2) 

and the probability p(s) is given by 

p(s) = 

3

( )

( )
s U

f s

f s
∈

∑
. 

 From (2) we get that
3

( )
s U

f s
∈

∑ (s) = 2, 

therefore we finally have that p(s) = 
( )

2

f s
. 

Finally the possibility r(s) of the appearance 

of s(t) is given by  
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r(s) = 
( )

max{ ( )}

f s

f s
 

In Table 1 we calculate the probabilities and 

possibilities of the profiles having nonzero 

pseudo-frequencies. For example, for the 

profile s=(c, c, a) we have that  

ms(1)=m Α
1

(c)m A
2

(c)m A
3

(α)= 

=0,486.0,4.0,343=0,067, and  

ms(2)= 0,5.0,533.0,4 = 0,107 Therefore 

f(s)=0,174. It turns out that the above profile 

has the greatest probability of appearance 

p(s)=0,174/2= 0,087 or 8,7%, while its 

possibility is 1. 

 

5. Conclusions and remarks 

In this paper we developed a general fuzzy 

model for representing several processes in a 

system’s operation involving fuzziness and/or 

uncertainty. An application of the above 

model for the process of learning a subject 

matter by students in the classroom, presented 

in detail in an earlier paper, was sketched and 

also another example was presented from the 

area of Management.  

Our fuzzy model, apart from quantitative 

information, also gives a realistic qualitative 

view of the corresponding process through the 

study of all possible profiles of the subjects 

involved. Another of its advantages is that it 

gives the opportunity for a combined study of 

results of two or more groups (or systems) 

during the same situation, or alternatively for 

a combined study of results of the same group 

(or system) during two or more different 

situations. 

We must finally underline the importance of 

use of stochastic methods (Markov chain 

models) as an alternative approach for the 

same purposes (for example see [9] and its 

references. Nevertheless Markov models, 

although easier sometimes to be applied in 

practice by a non expert (e.g. the teacher), 

apart from the quantitative information that 

they provide - e.g. measures for the problem-

solving or model-building abilities of student 

groups, short and long-run forecasts 

(probabilities) for the evolution of various 

phenomena, etc- they are self restricted in 

describing only the ideal behaviour of the 

subjects involved in the process that they 

represent. Therefore one could claim that the 

fuzzy model presented in this paper could be 

more useful for a deeper study of the 

corresponding real process, because, apart 

from the quantitative information, it provides 

also the possibility of a realistic qualitative 

analysis of the problems involved.  
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