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Abstract: -Based on learning in input-output signal domain and controlling noise amplification by varying
sampling rate, a pragmatic approach is developed for designing FIR deconvolution filters with the desired noise
gains producing accurate as possible output time-domain waveforms for filter support intervals defined by a
user. As an example, FIR linear phase digital differentiator is designed by the developed methodology for so-
called logarithmic derivative technique and its performance is compared with that of the appropriate equiripple
minimax and maximally linear differentiators.
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1 Introduction whereh(t) is the inverse kernel, which according to
Frequent tasks in different fields of science and(3) has frequency-domain description equal to the
leading to finding a function, which is interrelated to H(jo)=1K(jo).
some other function by a convolution type transform
. In the case of absolute integrable kerkg), it
Kt= ¢x* K= _[ ¥ U k(t— u)du, (1) follows from the Riemann-Lebesgue lemma [2] that
S K (jw)| is a decreasing function

where symbol * denotdble convolutionx(t) is some lim K (jo) =0
given or recorded function (furtherirput functior), ol J '
y(t) is some unknown function that we wish to

recover (further -eutput functio, andk(t) is kernel. ~ Consequently|H (j)| is an increasing function
The mentioned above problem is known as .
deconvolution [1]. In this study, we consider solving NIM [H (jo)=, )

(1) in the case of aperiodic functions.

In the frequency domain, Eq. (1) takes the form  and inverse kerndi(t) cannot be integrable function,

. . : and often exists in the class of the generalized
X(Ja}) ZY(J CO)K(JCO) ) (2) functions.

Numerical solution of (4) requires that continuous

where X(o), Y(o) and K(jo) are the Fourier time convolution is replaced by discrete one

transforms of functions x(t), y(t) and Kk(t),
respectively. Representation (2) allows obtaining B

output functiorny(t) by the inverse Fourier transform (¢ mYy=> kmT- nT)HnT), (6)

Y (jw)=X (jo)/K (jw). 3) = |
i i ; ~ whereT is sampling period.
The time-domain —equivalent of Eq. (3) s Since finite impulse response (FIR) filters [3]

convolution transform realize the discrete convolution operation, they are a
. natural choice for carrying out transform (4).

§)l= &)x* m:j X U H(t- Wdu However, implementation of this idea in practice,
S where we are dealing with noisy, finite length,

© ’ (4) discretely sampled datasets, often gives

=_[ Xt g h(uydu disappointing results manifesting as noisy solutions
- of relatively low accuracy.

The objective of the present paper is developing

an approach to designing stable FIR deconvolution
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filters producing accurate output time-domain deconvolution cannot be implemented in reallty.

waveforms under user’s defined conditions. samples occupy support interval
d=T(N-1). 9)
2 FactorsAffect_lng the Performance The larger support interval, promisespotentially
of Deconvolution Filters the higher accuracy of output waveform, however,
2.1 Performance Measures for aperiodic signals, the larger support shortens
Traditionally, the accuracy of a FIR filter is defined usable output sequendd] due to so-called end-
in terms of thedesired magnitude respong8]. effect of FIR filter. FIR filter computes an output

However, the criteria based on the desired magnitudgample correctly only if alN input samples without

response do not characterize directly the accuracy oteros are involved in computing. Since the first and
output waveforms. For that reason, in this study, thethe last N-1 samples of an input sequence are
accuracy of the filters will be estimated through error calculated from incomplete information containing

in the form of sum of squared differences zeros, the length of usable output sequence is by
y N -1 samples shorter than that of the input

ESD yml - Yuo(mT)P2 sequence. Thus, if an input sequence includes
L samples, the usable output sequence will contain

_ M — N +1 samples.
between the filtered output sequengmT) and the

sequence of the exact output functigp(mT).
Due to ill-posedness of deconvolution [1], 2.3 Design Methods

deconvolution algorithms are, as a rule, sensitive toTh traditional desi hil hv of diaital filt 5
noise or ill-conditioned. Following the suggestion in . € traditional design phtiosopny of digital T ers [2]
s based on designindrequency-selectivdilters,

[4-6], we will estimate the degree of ill-posedness of' h | band hiah i
the deconvolution problem and the degree of ill- such as lowpass, bandpass, highpass filters, etc.,

conditioness of the algorithm developed for its which objective is to remove unwanted parts or to

solving quantitatively in terms of noise gains extract useful parts of a signal. So, the design

howina h . : £ input si i problem of a FIR filter traditionally is defined as
showing how noise variance of input signaf is finding a finite support impulse response satisfying

transmitted to noise variance of output sigaal the design specification defined mostly through the
desired magnitude response, which usually is
S=o.lo;. detailed into pass- , stop- and transition bands.

Deconvolution filters are not frequency-selective

So, the degree of ill-posedness of the filters in the above defined sense and their objective
deconvolution problem will be quantified here by is to invert convolution type transform (1) to produce
theoretical noise gain determined by the Parseval'saccurate as possible waveform of output function

relation [2,3] y(t). A fundamental difficulty comes from the fact
. that, it is not known, how the magnitude response of

S, =T /(27) _[|H(ja))|2dco, ) a digital filter to be designed shall deviate from
T infinite ideal one to produce accurate output

_ N waveforms for the given input datasets.
whereas the degree of ill-conditioness of a FIR

deconvolution filter will be measured by experimental

noise gain 2.4 Correct Sampling Rate

_ 2 The question in previous Sub-section about the
Sap = Zn:h (nT). (8) deviation of the magnitude response of digital filter
from ideal one includes a subpoint about a portion of
ideal infinitely increasing magnitude response (5) to
2.2 Finite Support Impulse Responses be approximated by periodic magnitude response of
the digital filter. This is the question of choice of

To implement inversion of (1) by a FIR filter, the i i e iod of tud
approximating sum (6) needs to be truncated. Due g 2mpling  rate specifying a period of magnitude

this, output samples are calculated from a finite response of the digital filter
number of input samplell leading that the exact Q=[-7IT,zIT]. (10)
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Despite that a general recommendation [3] (limitation) of magnitude responses at high
suggests to choose sampling rate according to théequencies, while the latter — due to allowing some
sampling theorem, the answer to the question how taliasing.
choose the correct sampling rate for a deconvolution Contrary to traditional design methods, design
problem is not as obvious as it seems at first sight. Ifspecification for the filter to be designed is not
the correct sampling rate according to the samplingspecified by attributes of the magnitude response, but
theorem is defined for input signa(t), this means by two user-relevant parameters: (i) support interval
only thatx(t) can be perfectly reconstructed from the d, and (ii) desired or allowable noise g&Rsireq
discrete samples. However, the correct sampling rate
for x(t) does not guarantee the correct sampling rate N =N +2
for deconvolution result [7] because the spectrum of T, =d (N, ~1)
output signal that we wish to recover as one, from
which the effect of primary convolution (1) is
removed, by definition, shall be broader than that of \
the m_put signal. ' _ N NoN.e2

If increase of sampling rate in general has as | T, =d. (N, 1)
favourable result on the accuracy due to eliminationg \ .
of aliasing effects, it unfavourably affects the noise S \Q N,=3or4
gain. As it follows from the Parseval's relation (7), - T,=d, /(N,-1)
square integrating over period (10) extending when \O~~~_____X v
decreases, results th&, ., —»>» whenT—» Ofor | ¢  TTTTTe—— o

eor

filters with increasing magnitude responses (5). Teses

|
/

Noise

Sampling period, T

Fig. 1. Iterative process for searching an optimal
2.5 Regularization combination ofl andN.

Due to the ill-posedness of deconvolution problems, 144 proposed design procedure finds impulse
special regularization measures [1] are used to

S o ; ) responsen(nT) for a combination of filter lengtiN
minimize the sensitivity to noise. Despite large ynq sampling period ensuring the desired noise gain
variety of the proposed methods, they allpire way Sesrea for User's defined support interval, The
or another, affect oincreasing magnitude responses, optimal combination oN and T is searched by the
usually at high frequenciesp decreasdhe areas

_ _ _iterative procedure [4-6] based on typical increase of
under them, which according to the Parseval's relatior, ;ice gain when sampling period decreases
(7) reduces the noise gains. In the filtering light, such Fig. 1). For the givenl, trial filters are designed by

regularization measures represent forced distortionle‘,iming for the combinations afandN allowed by
of the frequency responses, which naturally Eq. (9) starting at some explicitly largs (e.g.
decreases the accuracy. corresponding toN = 3or} yielding small noise

gain §,, < Syq.q DY iterative increase of number of
3 Proposed Design Approach coefficients N_,=N,+2 and the appropriate
The philosophy of the proposed approach is simple -decrease  T,=d /(N ,-1). Once noise

to design a digital filter producing maximum ampiification coefficient Siesiea is reached, the
accurate output waveforms for user's available datajterative process is interrupted and the final values of
with acceptably low noise amplification. T, N andd, are specified for the final algorithm. If

Accurate output waveforms s attained by g g cannot be achieved in the first iteration,
designing the filter in thaput-output signal domain

by learning [5,6], while low noise amplification is the sampling periodl, must be increased, which
achieved by choosing the sampling rate providing€duires extension of filter support interdgl

period (10), which ensures the needed area under the

magnitude response and so — the needed noise gain.

The .diff_erence between  most trgditional 4 |llustrative Example

regularizations and the proposed method is that the

first ones minimize the sensitivity to noise at the  Ones of the most important types of digital filters
expanse of decrease of accuracy due to distortiorare digital differentiators, which are widely used to
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calculate the change rate of recorder data. In Such vast variety of the methods demonstrates
literature, differentiators usually are not treated asthat there no unique solution for a “universal” digital
deconvolution filters, however, differentiation is differentiator (and a deconvolution filter in general)
deconvolution operation averting integration. So, anand designing deconvolution filters is problem-
ideal differentiator has imaginary frequency responsedependent task requiring that the optimal method and
H(jw)=jw resulting in linearly increasing design criteria are searched.

magnitude response, which, in its turn, causes that As an example, consider design of a linear phase
impu|se responses of d|g|ta| differentiators are differentiator for so-called Iogarithmic derivative

inversely proportional to sampling period and are technique [16] in material science [4], where the

usually standardized to sampling rate 1.0 logarithmic derivative of the real part of the
frequency-domain complex compliance
= HnT)T. (11)  (permittivity) function J’ ¢ )
100} olnw
5 E Severely ill-posed .
2 shall be calculated. By denoting(w) = J; (@) and
N L ~— Mildly ill-posed , . . o
S 10k X(w) =J'(w) and introducing substitution=Inw,
Tt Well-posed Eq. (13) may be written as:
o F
0 I a)<et)
o 1F e)=—"22. 14
< F Smoothing ){( ) ot ( )
0 1' . 1 1 . Suppose that a user wants to obtain a
"0 1 2 3 4 5 differentiator with the desired noise gain

Sampling period, T S,...,<10 (15)
Fig. 2. Theoretical noise gain as a function of

sampling period. Shaded zones show the intervals ofor support intervald, = 1producing accurate as
sampling periods corresponding to different degrees ohossible waveforms of logarithmic derivative (13).

ill-posedness. To attain maximum accuracy, it is recommended
. . _ to use type IV differentiator [3]. So, to choose a
According to the Parseval's relation (7) minimum number of coefficientdN = 4from Eq.

differentiator has theoretical noise gain (Fig. 2)

72,2

Sheor = E ) (12)

(9) it follows
T=d /N- D= 0333.

Design of the differentiator by learning, using the

Depending on the sampling rate, differentiation canfollowing training functions:

be conditionally qualified aseverely ill-posed with
Sieor > 10 for sampling periods < 057asmildly

ill-posed with5< S, <10 for 057<T < 081, and
as weltposed with §,.,, <5 for T > 081. Finally,
for T>181, differentiators become smoothing
filters with S,.., < 1, which decrease input noise.

o
@A+t2)?’

1
1+t%’

x(t) = y() =
has given the normalized coefficients listed in Table
1. According to Eq. (8), they provide the noise gain
S, = 2322 exceeding the desired value (15). In

exp

FIR digital differentiators have been the subject |ine with the proposed procedure, support intedal
of numerous investigations [8]. A variety of methods ghoy|d be increased and a new trial filter should be
with different design criteria, such as the Remezdesigned at the increased sampling pefipd
exchange algorithm [9], the window method [3], the
weighted least squares method [10,11], Taylor seriedable 1. Coefficients of the differentiator designed

here by learning

[12,13], maximal linearity constraints [14], hybrid
optimization method [15], etc. have been develope(

1.h1/2)=-h@/2) | 1.1349626

This is by no means the exhaustive list.

h€3/2)=-h(3/2) | -0.045064591
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However, due to inversely proportional . 1
rela_tionship (11)_, the sfampling period ensuring the x(e):m
desired noise gain for differentiators can be found by
simple mathematical manipulations of Eqgs. (8) andrepresenting the worst case in signal processing
(11) sense with maximum wide spectrum. Function (16)

has the derivative:

(16)

S
Tdesired:T = =03 2—322 = 051. t 2t262t
Sdesired 10 yexact(e ) = m * (17)
Thus, the designed 4-point differentiator ensures 0.1
Siesea =10 at T, .o= 051 and requires support @) e s T=0.7
interval d = 153 Due to non-ideal fitting of the 0,01¢ R
magnitude responségesieqdiffers from the sampling SR
period coming from theoretical noise gain (12) f_ E
o
1 50,0001k
Tieosa0 =7 = 057.
Siesired 0,00001 F
The designed differentiator was compared with 1E-6
4-point linear phase differentiators designed by the
Remez exchange algorithm [9] and by using 0,01k
maximally linearity constraints [13,14]. The filters
coefficients are given In Table 2, while the > 0%7F
normalized magnitude responses are shown in Fig. 3. 5 0,0001f
Table 2. Coefficients of the equiriple minimax and W 600001k
maximally linear differentiators
Equiriple Maximally 1E6f
minimax linear Bl
hE1/2)=-h@/2) | 1.3091930 1.1249996 4 4 2 _0 2 °t 6
h3/2)=-h(3/2) |-0.13106367 | -0.04166693p Time, 1

Fig. 4. Error curves for output waveform (17)

o 1.0 produced by 4-point differentiators: 1 — designed by
g - 24 learning, 2 — equiriple minimax differentiator, 3 —
§ 0,81 T maximally linear differentiator.
2 //«’3 Table 3. Performance parameters
2 01 P T 0.5 0.7
& ’ Sheor 13.16 6.71
E 04r Differentiator designed by learning
8 E 0.254 10° 0.00429
g o S 10.32 5.37
3 00 . . . Equiriple minimax differentiator
0 /2 i E 0.0337 0.0256
Normalized frequency S 13.9 7,29
Fig. 3. Magnitude responses of 4-point digita Maximally linear 4d|fferent|ator
differentiators designed by learning (curve 1), the E 0.459 10 0.00495
Remez exchange algorithm (curve 2) and using Sexp 10.14 5.28

maximal linearity constraints (curve 3). In Fig. 4, error curves of y= &) — yexact(et)

The designed differentiators have been tested forare shown for the three differentiatorsTat ard
compliance function)’ ¢ Yorresponding to a single T = 0.7, whereas the performance parameters are
Debye relaxation [4] summarized in Table 3.
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As it is seen, the differentiator designed by [5] V. Shtrauss, Decomposition of Multi-
learning has the highest accuracy, however, its Exponential and Related Signals — Functional

performance is very close to that of the maximally Filtering Approach, WSEAS Trans. Signal
linear differentiator. Contrary, the equiriple minimax ProcessingVol. 4, Issue. 2, 2008, pp. 44-52.
differentiator  produces noticeably inaccurate [6] V. Shtrauss, Sampling and Algorithm Design for
waveforms and is not obviously suitable for the Relaxation Data ConversionWSEAS Trans.
logarithmic derivative. Signal Processingvol. 2, Issue 7, 2006, pp. 984-
990.

[7] P. Magain, F. Courbin, S. Sohy, Deconvolution

5 Conclusions with Correct SamplingAstrophysical Journal
For deconvolution filters, (i) it is not known, how No. 1, 1998, pp. 472-477.

the magnitude response of a filter to be designed8] S.C. Dutta  Roy, B. Kumar, = Digital
shall deviate from ideal one to produce accurate Differentiators. In:Handbook of StatisticsVol.
output waveforms, (ii) it is problematic to choose the 10, Eds. N.K. Bose, C.R. Rao, Elsevier, 1993,
correct sampling rate because the output signal to be  PP- 159-205.

recovered in deconvolution has broader spectrum® T-W. Parks, J.H.  McClellan, Chebyshev
than the input signal, (iii) due to ill-posedness, the Approximation for Nonrecursive Digital Filters

accuracy of the deconvolution filter shall be with Linear PhaselEEE Trans. Circuit Theory
sacrificed for minimizing sensitivity to noise. Vol. 19, 1972, pp. 189-194. _
Based on learning in input-output signal domain [10] S. Sunder, W.S. Lu, A. Antoniou, Y. Su, Design
and controlling noise amplification by varying of Digital Differentiators Satisfying Prescribed
sampling rate, a user-oriented approach is developed ~ SPecifications Using Optimization Techniques,

for designing FIR deconvolution filters with the IEE Proc, Vol. 138 G, 1991, pp. 315-320.
desired noise gains producing accurate as possiblell] S. Sunder, V. Ramachandran, Design of
output waveforms for user's defined support Eqump'ple Nonrecursive Dlglta_l Dlﬁerentlgtors
intervals. As an example, design of linear phase  @nd Hilbert Transformers Using a Weighted
digital differentiator is demonstrated by the Least-squares Techniqué&zEE Trans. Signal
developed approach and its performance is compared _ Process.Vol. 42, No. 9, 1994, pp. 2504-2509.

with that of the appropriate equiripple minimax and [12] . R. Khan, R. Ohba, Two-dimensional
maximally linear differentiators. Maximally-linear Digital Differentiators Based

on Taylor Series, http://www.wseas.us/e-
library/conferences/crete2001/papers/427.pdf
[13] I.R. Khan, R. Ohba, New Design of Full Band

¢h(.:knovl\</|edgementts d by the E Regional Differentiators Based on Taylor Seri¢SE
DeISe\II(\QOI;n(;IIY\?S Euggor eERD%l: € ndlg:)pe?gecfgﬁga Proc. — Vis. Image Signal Procesgql. 146,
velop und - (ERDF) u proj © No.4, 1999, pp. 185-189.

2010/0213/2DP/2.1.1.1.0/10/APIA/VIAA/017. [14] .R. Khan, M. Okuda, R. Ohba, Design of FIR

Digital Differentiators Using Maximal Linearity
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