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Abstract: - Based on learning in input-output signal domain and controlling noise amplification by varying 
sampling rate, a pragmatic approach is developed for designing FIR deconvolution filters with the desired noise 
gains producing accurate as possible output time-domain waveforms for filter support intervals defined by a 
user. As an example, FIR linear phase digital differentiator is designed by the developed methodology for so-
called logarithmic derivative technique and its performance is compared with that of the appropriate equiripple 
minimax and maximally linear differentiators.   

Key-Words: - FIR Deconvolution Filters, Design by Learning, Regularization by Choosing Sampling Rate 
 

1 Introduction 
Frequent tasks in different fields of science and 
technology are solving problems mathematically 
leading to finding a function, which is interrelated to 
some other function by a convolution type transform 
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where symbol * denotes the convolution, x(t) is some 
given or recorded function (further – input function), 
y(t) is some unknown function that we wish to 
recover (further – output function), and k(t) is kernel. 
The mentioned above problem is known as 
deconvolution [1]. In this study, we consider solving 
(1) in the case of aperiodic functions.    

In the frequency domain, Eq. (1) takes the form 

)()()( ωωω jKjYjX = ,  (2) 

where X(jω), Y(jω) and K(jω) are the Fourier 
transforms of functions x(t), y(t) and k(t), 
respectively. Representation (2) allows obtaining 
output function y(t) by the inverse Fourier transform 
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The time-domain equivalent of Eq. (3) is 
convolution transform 
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where h(t) is the inverse kernel, which according to 
(3) has frequency-domain description equal to the 
reciprocal of Fourier transform of the direct kernel 

)(/1)( ωω jKjH = .   

In the case of absolute integrable kernel k(t), it 
follows from the Riemann-Lebesgue lemma [2] that 
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Consequently, )( ωjH  is an increasing function  
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and inverse kernel h(t) cannot be integrable function, 
and often exists in the class of the generalized 
functions.  

Numerical solution of (4) requires that continuous 
time convolution is replaced by discrete one 
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where T is sampling period. 
Since finite impulse response (FIR) filters [3] 

realize the discrete convolution operation, they are a 
natural choice for carrying out transform (4). 
However, implementation of this idea in practice, 
where we are dealing with noisy, finite length, 
discretely sampled datasets, often gives 
disappointing results manifesting as noisy solutions 
of relatively low accuracy.  

The objective of the present paper is developing 
an approach to designing stable FIR deconvolution 
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filters producing accurate output time-domain 
waveforms under user’s defined conditions. 
 
 

2 Factors Affecting the Performance 
of Deconvolution Filters 

2.1 Performance Measures 
Traditionally, the accuracy of a FIR filter is defined 
in terms of the desired magnitude response [3]. 
However, the criteria based on the desired magnitude 
response do not characterize directly the accuracy of 
output waveforms. For that reason, in this study, the 
accuracy of the filters will be estimated through error 
in the form of sum of squared differences 
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between the filtered output sequence y(mT) and the 
sequence of the exact output function yexact(mT). 

Due to ill-posedness of deconvolution [1], 
deconvolution algorithms are, as a rule, sensitive to 
noise or ill-conditioned. Following the suggestion in 
[4-6], we will estimate the degree of ill-posedness of 
the deconvolution problem and the degree of ill-
conditioness of the algorithm developed for its 
solving quantitatively in terms of noise gains 
showing how noise variance of input signal 2

xσ  is 

transmitted to noise variance of output signal 2
yσ  

22 / xyS σσ= .   

So, the degree of ill-posedness of the 
deconvolution problem will be quantified here by 
theoretical noise gain determined by the Parseval's 
relation [2,3] 
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whereas the degree of ill-conditioness of a FIR 
deconvolution filter will be measured by experimental 
noise gain 

∑
n
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2.2 Finite Support Impulse Responses 

To implement inversion of (1) by a FIR filter, the 
approximating sum (6) needs to be truncated. Due to 
this, output samples are calculated from a finite 
number of input samples N leading that the exact 

deconvolution cannot be implemented in reality. N 
samples occupy support interval 

)1( −= NTdx .  (9) 

The larger support interval dx promises potentially 
the higher accuracy of output waveform, however, 
for aperiodic signals, the larger support shortens 
usable output sequence [4] due to so-called end-
effect of FIR filter. FIR filter computes an output 
sample correctly only if all N input samples without 
zeros are involved in computing. Since the first and 
the last 1−N  samples of an input sequence are 
calculated from incomplete information containing 
zeros, the length of usable output sequence is by 

1−N  samples shorter than that of the input 
sequence. Thus, if an input sequence includes M 
samples, the usable output sequence will contain 

1+− NM  samples. 
 
 
2.3 Design Methods 
The traditional design philosophy of digital filters [2] 
is based on designing frequency-selective filters, 
such as lowpass, bandpass, highpass filters, etc., 
which objective is to remove unwanted parts or to 
extract useful parts of a signal. So, the design 
problem of a FIR filter traditionally is defined as 
finding a finite support impulse response satisfying 
the design specification defined mostly through the 
desired magnitude response, which usually is 
detailed into pass- , stop- and transition bands. 

Deconvolution filters are not frequency-selective 
filters in the above defined sense and their objective 
is to invert convolution type transform (1) to produce 
accurate as possible waveform of output function 
y(t). A fundamental difficulty comes from the fact 
that, it is not known, how the magnitude response of 
a digital filter to be designed shall deviate from 
infinite ideal one to produce accurate output 
waveforms for the given input datasets. 

 
 

2.4 Correct Sampling Rate 
The question in previous Sub-section about the 
deviation of the magnitude response of digital filter 
from ideal one includes a subpoint about a portion of 
ideal infinitely increasing magnitude response (5) to 
be approximated by periodic magnitude response of 
the digital filter. This is the question of choice of 
sampling rate specifying a period of magnitude 
response of the digital filter 

]/,/[ TT ππΩ −= .    (10) 
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Despite that a general recommendation [3] 
suggests to choose sampling rate according to the 
sampling theorem, the answer to the question how to 
choose the correct sampling rate for a deconvolution 
problem is not as obvious as it seems at first sight. If 
the correct sampling rate according to the sampling 
theorem is defined for input signal x(t), this means 
only that x(t) can be perfectly reconstructed from the 
discrete samples. However, the correct sampling rate 
for x(t) does not guarantee the correct sampling rate 
for deconvolution result [7] because the spectrum of 
output signal that we wish to recover as one, from 
which the effect of primary convolution (1) is 
removed, by definition, shall be broader than that of 
the input signal. 

If increase of sampling rate in general has a 
favourable result on the accuracy due to elimination 
of aliasing effects, it unfavourably affects the noise 
gain. As it follows from the Parseval's relation (7), 
square integrating over period (10) extending when T 
decreases, results that ∞→theorS  when 0→T  for 
filters with increasing magnitude responses (5). 

 
  

2.5 Regularization 
Due to the ill-posedness of deconvolution problems, 
special regularization measures [1] are used to 
minimize the sensitivity to noise. Despite large 
variety of the proposed methods, they all, in one way 
or another, affect on increasing magnitude responses, 
usually at high frequencies, to decrease the areas 
under them, which according to the Parseval's relation 
(7) reduces the noise gains. In the filtering light, such 
regularization measures represent forced distortion 
of the frequency responses, which naturally 
decreases the accuracy.  
 

 

3 Proposed Design Approach 
The philosophy of the proposed approach is simple –
to design a digital filter producing maximum 
accurate output waveforms for user’s available data 
with acceptably low noise amplification. 

Accurate output waveforms is attained by 
designing the filter in the input-output signal domain 
by learning [5,6], while low noise amplification is 
achieved by choosing the sampling rate providing 
period (10), which ensures the needed area under the 
magnitude response and so – the needed noise gain. 
The difference between most traditional 
regularizations and the proposed method is that the 
first ones minimize the sensitivity to noise  at the 
expanse of decrease of accuracy due to distortion 

(limitation) of magnitude responses at high 
frequencies, while the latter – due to allowing some 
aliasing. 

Contrary to traditional design methods, design 
specification for the filter to be designed is not 
specified by attributes of the magnitude response, but 
by two user-relevant parameters: (i) support interval 
dx and (ii) desired or allowable noise gain Sdesired. 
 

 
Fig. 1. Iterative process for searching an optimal 
combination of T and N.  

The proposed design procedure finds impulse 
response h(nT) for a combination of filter length N 
and sampling period T ensuring the desired noise gain 
Sdesired for user’s defined support interval dx. The 
optimal combination of N and T is searched by the 
iterative procedure [4-6] based on typical increase of 
noise gain when sampling period T decreases  
(Fig. 1). For the given dx, trial filters are designed by 
learning for the combinations of T and N allowed by 
Eq. (9) starting at some explicitly large T1 (e.g. 
corresponding to 43 or=N ) yielding small noise 

gain desiredSS <exp  by iterative increase of number of 

coefficients 21 +=+ ii NN  and the appropriate 

decrease )1/( 11 −= ++ ixi NdT . Once noise 
amplification coefficient Sdesired is reached, the 
iterative process is interrupted and the final values of 
T, N and dx are specified for the final algorithm. If 

desiredSS <exp  cannot be achieved in the first iteration, 

the sampling period T1 must be increased, which 
requires extension of filter support interval dx. 

 

 

4 Illustrative Example 

Ones of the most important types of digital filters 
are digital differentiators, which are widely used to 
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calculate the change rate of recorder data. In 
literature, differentiators usually are not treated as 
deconvolution filters, however, differentiation is 
deconvolution operation averting integration. So, an 
ideal differentiator has imaginary frequency response 

ωω jjH =)(  resulting in linearly increasing 
magnitude response, which, in its turn, causes that 
impulse responses of digital differentiators are 
inversely proportional to sampling period and are 
usually standardized to sampling rate 1.0 

TnThnh )()( = .  (11) 

 

Fig. 2. Theoretical noise gain as a function of 
sampling period. Shaded zones show the intervals of 
sampling periods corresponding to different degrees of 
ill-posedness. 
 

According to the Parseval's relation (7) 
differentiator has theoretical noise gain (Fig. 2) 

T
Stheor 3

2π
= .  (12) 

Depending on the sampling rate, differentiation can 
be conditionally qualified as severely ill-posed with 

10>theorS  for sampling periods 57.0<T , as mildly 

ill-posed with 105 ≤≤ theorS  for 81.057.0 <≤T , and 

as well-posed with 5<theorS  for 81.0≥T . Finally, 
for 81.1≥T , differentiators become smoothing 
filters with 1<theorS , which decrease input noise. 

FIR digital differentiators have been the subject 
of numerous investigations [8]. A variety of methods 
with different design criteria, such as the Remez 
exchange algorithm [9], the window method [3], the 
weighted least squares method [10,11], Taylor series 
[12,13], maximal linearity constraints [14], hybrid 
optimization method [15], etc. have been developed. 
This is by no means the exhaustive list.  

Such vast variety of the methods demonstrates 
that there no unique solution for a “universal” digital 
differentiator (and a deconvolution filter in general) 
and designing deconvolution filters is problem-
dependent task requiring that the optimal method and 
design criteria are searched. 

As an example, consider design of a linear phase 
differentiator for so-called logarithmic derivative 
technique [16] in material science [4], where the 
logarithmic derivative of the real part of the 
frequency-domain complex compliance 
(permittivity) function )(ωJ′  
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shall be calculated. By denoting )()( ωω DJy ′′=  and 

)()( ωω Jx ′=  and introducing substitution ωln=t , 
Eq. (13) may be written as: 
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Suppose that a user wants to obtain a 
differentiator with the desired noise gain  

10≤desiredS   (15) 

for support interval 1=xd  producing accurate as 
possible waveforms of logarithmic derivative (13). 

To attain maximum accuracy, it is recommended 
to use type IV differentiator [3]. So, to choose a 
minimum number of coefficients 4=N , from Eq. 
(9) it follows 

333.0)1/(1 =−= NdT x . 

Design of the differentiator by learning, using the 
following training functions:  
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has given the normalized coefficients listed in Table 
1. According to Eq. (8), they provide the noise gain 

22.23exp =S  exceeding the desired value (15). In 

line with the proposed procedure, support interval dx 
should be increased and a new trial filter should be 
designed at the increased sampling period T1. 

Table 1. Coefficients of the differentiator designed 
here by learning 

)2/1()2/1( hh −=−   1.1349626 

)2/3()2/3( hh −=−  -0.045064591 
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However, due to inversely proportional 
relationship (11), the sampling period ensuring the 
desired noise gain for differentiators can be found by 
simple mathematical manipulations of Eqs. (8) and 
(11) 

51.0
10

22.23
33.0exp ===

desired

desired S

S
TT . 

Thus, the designed 4-point differentiator ensures 
10=desiredS  at 51.0=desiredT  and requires support 

interval 53.1=xd . Due to non-ideal fitting of the 
magnitude response, Tdesired differs from the sampling 
period coming from theoretical noise gain (12) 

57.0
3

1
10 ===

desired

Stheor S
T π . 

The designed differentiator was compared with  
4-point linear phase differentiators designed by the 
Remez exchange algorithm [9] and by using 
maximally linearity constraints [13,14]. The filters 
coefficients are given In Table 2, while the 
normalized magnitude responses are shown in Fig. 3.  

Table 2. Coefficients of the equiriple minimax and 
maximally linear differentiators 

 Equiriple 
minimax 

Maximally 
linear 

)2/1()2/1( hh −=−   1.3091930  1.1249996 

)2/3()2/3( hh −=−  -0.13106367 -0.041666936 

 

 

Fig. 3. Magnitude responses of 4-point digital 
differentiators designed by learning (curve 1), the 
Remez exchange algorithm (curve 2) and using 
maximal linearity constraints (curve 3). 

The designed differentiators have been tested for 
compliance function )(ωJ′  corresponding to a single 
Debye relaxation [4]   

t

t

e
ex
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representing the worst case in signal processing 
sense with maximum wide spectrum. Function (16) 
has the derivative:  

22
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Fig. 4. Error curves for output waveform (17) 
produced by 4-point differentiators: 1 – designed by 
learning, 2 – equiriple minimax differentiator, 3 – 
maximally linear differentiator. 

Table 3. Performance parameters 
T 0.5 0.7 

Stheor 13.16 6.71 
Differentiator designed by learning 

E 0.254⋅ 10-4 0.00429 
Sexp 10.32 5.37 

Equiriple minimax differentiator 
E 0.0337 0.0256 

Sexp 13.9 7,29 
Maximally linear differentiator 

E 0.459⋅ 10-4 0.00495 
Sexp 10.14 5.28 

In Fig. 4, error curves of )()( t
exact

t eyeyy −=∆  

are shown for the three differentiators at 5.0=T  and 
7.0=T , whereas the performance parameters are 

summarized in Table 3. 

Advances in Systems Theory, Signal Processing and Computational Science

ISBN: 978-1-61804-115-9 134



As it is seen, the differentiator designed by 
learning has the highest accuracy, however, its 
performance is very close to that of the maximally 
linear differentiator. Contrary, the equiriple minimax 
differentiator produces noticeably inaccurate 
waveforms and is not obviously suitable for the 
logarithmic derivative. 

 
 

5 Conclusions 
For deconvolution filters, (i) it is not known, how 

the magnitude response of a filter to be designed 
shall deviate from ideal one to produce accurate 
output waveforms, (ii) it is problematic to choose the 
correct sampling rate because the output signal to be 
recovered in deconvolution has broader spectrum 
than the input signal, (iii) due to ill-posedness, the 
accuracy of the deconvolution filter shall be 
sacrificed for minimizing sensitivity to noise. 

Based on learning in input-output signal domain 
and controlling noise amplification by varying 
sampling rate, a user-oriented approach is developed 
for designing FIR deconvolution filters with the 
desired noise gains producing accurate as possible 
output waveforms for user’s defined support 
intervals. As an example, design of linear phase 
digital differentiator is demonstrated by the 
developed approach and its performance is compared 
with that of the appropriate equiripple minimax and 
maximally linear differentiators. 
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