
Artificial Fish Swarm Algorithm

for Unconstrained Optimization Problems

Nebojsa BACANIN, Milan TUBA, Nadezda STANAREVIC

Faculty of Computer Science

University Megatrend Belgrade

Bulevar umetnosti 29

SERBIA
 nbacanin@megatrend.edu.rs, tuba@ieee.org, srna@stanarevic.com

Abstract: This paper presents an object-oriented software system that implements a modified artificial fish

swarm (AFS) algorithm based on a particular intelligent behavior of schools of fish. We outline our

implementation of the algorithm for unconstrained optimization problems. The application was implemented in

C# with flexible GUI (Graphical User Interface) and it was successfully tested on four standard unconstrained

benchmark problems.

Key-Words: - Artificial fish swarm, Swarm intelligence, Metaheuristic optimization, Nature inspired

algorithms, Unconstrained optimization

1 Introduction
1Optimization is as a process of finding the extreme

value of a function in a domain of definition, subject

to various constraints on the variable values.

Different mathematical programming algorithms

offer a set of techniques to solve different type of

optimization problems like numerical, discrete or

combinatorial optimization problems, but these

methods do not always produce satisfactory results.

The development of methods for solving wild range

of optimization problems has been conditioned by

the size and complexity of the problems. The

efficiency of suitable solutions is measured by their

ability to find acceptable results within a reasonable

amount of time [1]. The use of nature-inspired

heuristics designed to solve optimization problems

has become very popular. These algorithms are

focused on insect behavior and mimic insect's

problem solution abilities. Collective intelligent

behavior of insects or animal groups such as flocks

of birds, schools of fish, colonies of ants or bees are

typical examples of a swarm system [2], [3]. Their

advantage lies in the fact that they provide many

near-optimal solutions in each iteration in the

algorithm and choose the best solution according to

given criteria.

Nature-inspired heuristics techniques should

fulfill several requirements [3]:

This research is supported by Ministry of Science, Republic

of Serbia, Project No. 44006

 Ability to handle different type of problems.

 Ease of use with few control variables.

 Good convergence mechanism to the global

minimum in consecutive independent trials.

The optimization algorithms which are inspired

by intelligent behavior of school of fishes (Artificial

fish swarm - AFS) are among the most recently

introduced techniques. Several approaches have

been proposed to model the specific intelligent

behaviors of fishes and since its invention AFS

algorithm has been successfully applied to many

kinds of problems [4], [5], [6], [7], [8], [9].

According to the various applications mentioned

above, AFS algorithm confirmed its good

performance.

 In this paper, we will present our implementation

of modified AFS algorithm [8]. In order to test its

robustness and performances, we developed

software named mAFSs, for solving unconstrained

optimization problems in C# programming

language. This software will be in detail presented

in this paper as well as testing results on standard

benchmark functions for unconstrained problems.

 The organization of the remaining of the paper is

as follows. Section 2 details the original AFS

paradigm. In Section 3 exhaustive discussion of

modified AFS algorithm is represented. Section 4

shows in detail our software implementation of

modified AFS algorithm. In Section 5 we present

the test results obtained by mAFSs application on

four standard unconstrained benchmarks.

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 405

Conclusions and future work are contained in the

final Section 6.

2 Basics of the AFS algorithm
Mathematical models imitate the fish swarm series

of behavior in nature which can be defined as [8]:

1. Random behavior

2. Searching behavior

3. Swarming behavior

4. Chasing behavior

5. Leaping behavior
The next behavior of artificial fish depends on

its current state and environmental state. Random

behavior can be presented as the initialization phase

of the algorithm. The crucial step in the AFS

algorithms is a “visual scope”. A basic biological

behavior of any animal is to discover a region with

more food, by vision or sense. Depending on the

current position of the individual in the population,

marked as x
i
 ∈ R

n
, three possible situations may

occur [8]:

1. When the “visual scope” is empty, and

there are no other individuals in its

neighborhood to follow, x
i
 individual moves

randomly searching for a better region

2. When the “visual scope” is crowded, the x
i

individual has difficulty to follow any

particular individual, and searches for a

better region choosing randomly another

location from the “visual scope”.

3. When the “visual scope” is not crowded, the

x
i
 individual can choose between two

option: to swarm moving towards the

central or to chase moving towards the best

location.

The condition that determines the crowd issue of x
i

individual in the ‘visual scope’ is given in

Equatation 1:



m

np i

 θ (1)

where θ ∈ (0, 1] is the crowd parameter, m is the

number of individuals in the population and np
i
 is

the number of individuals in the “visual scope”. In

the searching behavior phase, an individual is

randomly chosen in the “visual scope” of x
i
 and a

movement towards it is carried out if it improves

current x
i
 location. Otherwise, the x

i
 individual

moves randomly. The swarming behavior is

characterized by a movement towards the central

point in the “visual scope” of x
i
. The swarming

behavior is progressive stage that is activated only if

the central point has a better function value than the

current x
i
. Otherwise, the point x

i
 follows the

searching behavior. The chasing behavior presents a

movement towards the point that has the last

function value, x
min

. The swarm and chase behavior

can be considered as local search. Leaping behavior

solves the problem when the best objective function

value in the population does not change for a certain

number of iterations. In this case the algorithm

selects random individual from the population. This

process empowers algorithm for obtaining better

results in solving numerous problems.

3 Outline of modified AFS algorithm
In this Section we present modified AFS algorithm

which was introduced in [8]. We briefly delineate

algorithm`s outline, as well as eight main

implemented methods. This background is

necessary for understanding inner working of our

software implementation described in the next

Section.

 Algorithm proposed in [8] has been forged for

solving bound constrained optimization problems in

aspect that feasibility is always satisfied during the

algorithm`s run. Pseudo code of algorithm is given

below [8]:

Start

 t = 0

 x
i (t) (i = 1, . . .,m) ← Initialize

 While (stopping criteria are not met) do

 For (each x
i (t))

 If (“visual scope” is empty)

 y
i (t)← Random(x

i (t))

 else If (“visual scope” is crowded)

 y
i (t)← Search(x

i (t))

 else

 y
i (t)← best of Swarm(x

i (t)) and Chase(x
i (t))

 End for

 x
i (t + 1)(i = 1, . . .,m) ← Select(x

i (t), y
i (t) (i = 1,….,m))

 If (“stagnation” occurs)

 x
rand

(t + 1) ← Leap(x
rand

 (t + 1))

 x
best

 (t + 1) ← Local(x
best

 (t + 1))

 t = t + 1

 End while

End

In presented algorithm, t represents counter of

iterations, while x
rand

is used to denote a randomly

selected point from the population of candidate

solutions.

As we can see, the algorithm employs eight

main methods: Initialize, Random, Search, Swarm,

Chase, Select, Leap and Local. All mentioned

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 406

methods and also other implementation details will

be briefly described in the next few paragraphs.

 Initialize method generates random initial

population of candidate solutions (m points in the

set of Ω). Each vector x
i
 is calculated using

Equitation 2:

 x
i
k = lk + α(uk – lk), for k=1,2…,n (2)

where uk and lk represent the upper and lower

bounds of parameters respectively, and α is

uniformly distributed random number in the range

[0,1] (α ~ U[0,1]).

 In the body of Initialize function, candidate

solution`s best and worst function values found in

the population are also computed. For this

computation, Expression 3 is used:

fbest = min (f(x
i
), i = 1, . . .,m) and fworst = max (f(x

i
), i = 1,

. . . ,m) (3)

 Visual scope as a fixed “visual” value for all the

population is defined as:

v = δ max (uk – lk), for k=1,2…,n (4)

 In Eq.4, δ is positive visual parameter which is in

initial AFS algorithm maintained fixed during

iterative process. According to conducted

experiments, slow reduction of δ hastens the

convergence to the optimal solution [10]. Thus, this

algorithm`s implementation uses the following

modification every s iterations [8]:

δ= max{δmin, πδ} (5)

where πδ is in the range (0,1) and δmin is sufficiently

small positive constant.

 Random method is triggered when visual scope is

empty as well as in Search method when condition

that x
rand

 is worse than x
i
 is met. Details are shown

below [8]:

For (each component xk)

 α1 ~ U[0,1]; α2 ~ U[0,1]

 If (α1 > 0.5)

 If ((uk – xk) > v)

 yk = xk + α2 v

 else

 yk = xk + α2 (uk − xk)

 else

 If ((xk – lk) > v)

 yk = xk − α2 v

 else

 yk = xk − α2 (xk − lk)

End for

 Search method is activated when the “visual

scope” is crowded. A point inside “visual scope”

(x
rand

) is selected in a random manner, and the point

x
i

is moved towards x
rand

if condition that

f(x
rand

)<f(x
i
) is satisfied. If not, the point x

i
 is moved

randomly (see Random method above). x
i

is

dislocated towards x
rand

using direction d
i
 = x

rand
 - x

i

[8]. In the algorithm shown below, simple

movement along a direction d is depicted.

α ~ U[0,1]

For (each component xk)

 If (dk > 0)

 yk = xk + α

 (uk − xk)

 else

 yk xk + α

 (xk − lk)

End for

 When the “visual scope” of a point x
i
 is not

crowded Swarm and Chase methods are invoked. In

this scenario, the point may have two behaviors. The

first one is correlated with movement towards the

central point of “visual scope” (c). This is denoted

as swarming behavior. Direction of the movement is

defined in Swarm method as d
i
 = c – x

i
. x

i
 is moved

according to the algorithm shown in Search method

if f(c)<f(x
i
). Chase method is related with a

movement towards the point with the least function

value xmin and it defines direction di=xmin- xi.. xi is

moved according to the algorithm shown in Search

method if xmin uplifts xi. Otherwise, the method

Search is triggered.

 Code inside Select method is used to determine

whether or not the foregoing selected trial point y
i
(t)

should proceed as new ith point position using form

of greedy selection:

 (t + 1) = {
 () ((()) (())

 ()
 (6)

 If the algorithm stagnates for a certain number of

iterations, it is possible that it has fallen into a local

minimum. In this scenario, Leap method is used to

help algorithm leap out the local and try to converge

to the optimal solution (global minimum). This

function is invoked every z iterations when the

following expression holds:

|fbest(t) − fbest(t − z)| ≤ η (7)

where η is a small positive tolerance and z defines

the periodicity for testing the criterion [8].

 Local method is used for gathering the local

information around the best current solution in

population. In fact, this is primitive random line

search employed component by component to x
best

.

This straightforward local search is used to improve

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 407

accuracy with reduced computational cost although

more sophisticated procedure could be used like in

[11].

 The algorithm is terminated when one of the

following conditions is verified:

nfe > nfemax or |fworst − fbest| < ε (8)

where nfe represents the counter for the number of

objective function evaluations, nfemax is the

maximum number of function evaluations allowed,

and ε is a small positive tolerance. The values fworst

and fbest were previously defined in Eq. 3.

4 mAFSs implementation
We have developed and tested our software

implementation for modified AFS algorithm which

we called mAFSs (modified AFS software). We

coded software in object-oriented fashion and used

multiple threads in its execution. With object-

oriented design, software scalability is improved,

and so, implementation of new programming logic

for different optimization problems would take less

time. Each algorithm`s run executes within a

different thread, so it runs much faster. Similar

software was proposed for Artificial bee colony

(ABC) algorithm in [12].

 We developed software in C# using the newest

.NET Framework 4.0. We chose C# as

programming language because of its obvious

advantages over C, C++ and JAVA.

 We used many classes which are tightly

connected. We wanted to make the adaptation

process of our algorithm to new optimization

problems easy, so we created abstract class

MAFSAbastract which is later inherited by problem

specific classes like in [12]. MAFSHAbastract has

all above mentioned main methods (see Section 3).

We also use Boolean methods called

CheckVisualScope and CheckStagnation which

check whether “visual scope” is empty or crowded

and if stagnation occurs respectively.

CheckVisualScope returns 0 if “visual scope” is

empty and otherwise returns 1. Analogically is done

in CheckStagnation function. The most important

method in our algorithm is Run which encapsulates

all other methods and enables multi-threaded

functionality. Pseudo-code for Run method is given

below (for simplicity reasons, details about multi-

threaded functionality are omitted):

Initialize

Repeat

 For ((each x
i
(t))

 If((CheckVisualScope=0))

 y
i (t) = Random(x

i (t))

 else if ((CheckVisualScope==1))

 y
i (t) = Search(x

i (t))

 else

 y
i (t) = best of Swarm(x

i (t)) and Chase(x
i (t))

 End for

 x
i (t + 1)(i = 1, . . .,m) = Select(x

i (t), y
i (t) (i = 1, . . .,m))

 If ((CheckStagnation==1))

 x
rand

(t + 1) = Leap(x
rand

 (t + 1))

 x
best

 (t + 1) = Local(x
best

 (t + 1))

Until stopping criteria is met

 Screenshot of basic Graphical user interface

(GUI) of mAFSs can be seen in Figure 1. From

Fig.1 we can see that user can adjust multiple

parameters of modified AFS algorithm. Other

parameters are hard coded into the software and

cannot be changed by the user. For simplicity,

parameters are divided into two groups: mAFSs

control and problem specific parameters.

Fig 1: Screenshot of mAFSs GUI

Control parameters are:

 Visual Parameter (δ) is positive visual

parameter (δ >0).

 Crowded Parameter (θ) is fraction of the fish

that defines crowded situation.

 Reduction Factor (πδ) if factor by which δ is

reduced as iteration proceed.

 Runtime defines number of algorithm`s runs.

Problem specific parameters are:

 No. of parameters (n) is the number of

parameters of the problem to be optimized.

 Lower Bound (l) is lower bound of problem

parameters.

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 408

 Upper Bound (u) is upper bound of problem

parameters.

5 Optimization experiments and

bencmark results
All tests have been run on Intel Core2Duo T8300

mobile processor with 4GB of RAM on Windows 7

Ultimate x64 Operating System in Visual Studio

2010 and .NET Framework 4.0 environment. Only

operating system and Visual Studio core processes

and mAFSs process have been executing during the

tests.

 The unconstrained optimization problems in this

paper follow the form:

 minimize f(x) subject to x (9)

where x is a continuous variable vector with domain

 R
n
, and f(x) :  R is a continuous real-valued

function. The domain  is defined within upper and

lower limits of each dimension [13].

 For testing purposes, we used standard four

unconstrained benchmark functions:

 Sphere

 Rosenbrock

 Griewank

 Rastrigin

 We ran two sets of test for each benchmark

problem, first with 10 runs, and second with 30

runs, each starting from a random population with a

different number seed. We wanted to see how

runtime effects algorithm`s performance.

 Values for parameters which are not adjustable

by the user (hard coded parameters) are set like in

[10]. The number of fish (m) in the population

depends on n (number of problem parameters),

where m=10n. We used fixed values for nfemax =

250000, ε = 10
-4

and η=10
-8

.

 Values for parameters which can be controlled

through software`s GUI (see Fig.1) are shown in

Table 1 and Table 2. As a remark we cite that for all

four benchmarks we used the same values for

problem specific parameters.

 Parameter Value

Visual Parameter (δ) 1

Crowded Parameter (θ) 0.8

Reduction Factor (πδ) 0.9

Runtime 10/30

Table 1: Control parameter values

Parameter Value

No. of parameters (n) 100

Lower Bound (l) -100

Upper Bound (u) 100

Table 2: Problem specific parameter values

 For each benchmark, we show best, mean and

standard deviation results. Results for 10 and 30

runs are shown in Tables 3 and 4 respectively.

Function Results

Sphere

Best
Mean
Stdev.

2.15E-5

0.23E-3

7.08E-4

Rosebrock

Best
Mean
Stdev.

3.40E-2
0.029
0.097

Griewank

Best
Mean
Stdev.

5.13E-8
4.02E-6
3.49E-6

Rastrigin

Best
Mean
Stdev.

9.95E-4
8.31E-3
2.64E-3

Table 3: Optimization results for 10 runs

 As we can see from Table 3 and Table 4, mAFSs

obtains satisfying results for all presented

benchmarks and can be compared with other

algorithms and software systems like [12].

 All runs in conducted experiments were stopped

with nfemax = 250000 as mentioned before.

Comparative analysis of results with 10 and 30 runs

(Table 3 vs. Table 4) lead to conclusion that the

performance of the algorithm is not affected by the

number of runs. All results are similar with very

small digression which can be neglected.

Function Results

Sphere

Best
Mean
Stdev.

6.99E-5

1.15E-3

5.02E-4

Rosebrock

Best
Mean
Stdev.

1.02E-2
0.015
0.085

Griewank

Best
Mean
Stdev.

2.67E-8
2.82E-6
2.01E-6

Rastrigin

Best
Mean
Stdev.

7.62E-4
5.29E-3
1.04E-3

Table 4: Optimization results for 30 runs

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 409

6 Conclusions
We present our implementation of AFS algorithm

for solving unconstrained optimization problems.

Object-oriented design and appropriate GUI allow

for easy modifications and applications to different

optimization problems. The performance of the

modified AFS algorithm was tested on several well-

known benchmark functions. The algorithm has

shown its potential to handle various unimodal and

multimodal test functions. As a part of our future

work, we are interested in exploring other

benchmark and real life problems [14].

References:

[1] Chiong R., Nature-Inspired Algorithms for

Optimisation, Springer, 2009, ISBN 978-3-

642-00266-3, p. 536.

[2] Bonabeau E., Dorigo M., Theraulaz G., Swarm

Intelligence: From Natural to Artificial

Systems, Oxford University Press Inc., 1999.,

NY, p. 233.

[3] Storn R., Price K., Differential evolution - a

simple and efficient heuristic for global

optimization over continuous spaces, Journal of

Global Optimization, Vol. 11, Issue 4 ,1997,

pp. 341–359.

[4] Farzi S., Efficient Job Scheduling in Grid

Computing with Modified Artificial Fish

Swarm Algorithm, International Journal of

Computer Theory and Engineering, Vol. 1, No.

1, 2009, pp. 13-18.

[5] Rocha A. C., Fernandes E., Mutation-Based

Artificial Fish Swarm Algorithm for Bound

Constrained Global Optimization, Numerical

Analysis and Applied Mathematics ICNAM

2011Vol. 1389, Article in Press, 2011,

doi:10.1063/1.3636841, pp.751-754.
[6] Bing D., Wen D., Scheduling Arrival Aircrafts

on Multi-runway Based on an Improved

Artificial Fish Swarm Algorithm, ICCIS,

Article in Press, 2010, doi:

10.1109/ICCIS.2010.338 pp. 499 – 502.

[7] Jiang M., Mastorakis N., Lagunas D., M. A.,

Multi-threshold Image Segmentation with

Improved Artificial Fish Swarm Algorithm

Block-coding and Antenna Selection, in Proc.

of ECC, Article in Press, 2007, doi:

10.1007/978-0-387-85437-3, pp. 123-129.

[8] Rocha A.M.A.C., Fernandes E.M.G.P, Martins

T.F.M.C, Novel Fish Swarm Heuristics for

Bound Constrained Global Optimization

Problems, Comp. Science and its App. -

ICCSA 2011, Lecture Notes in Computer

Science, Volume 6784, 2011, doi:

10.1007/978-3-642-21931-3_16, pp. 185-199.

 [9] Dong Z., Xiao W., Zhang X., Artificial Fish

Swarm Algorithm-Assisted and Receive-

Diversity Aided Multi-user Detection for MC-

CDMA Systems, Computer and Information

Science, Vol. 2, No. 4, 2009, pp. 75-80.

[10]Fernandes E.M.G.P., Martins, T.F.M.C., Rocha,

A.M.A.C, Fish swarm intelligent algorithm for

bound constrained global optimization,

CMMSE 2009, ISBN: 978-84-612-9727-6, pp.

461–472

[11] Rocha A.M.A.C., Fernandes E.M.G.P.,

Hybridizing the electromagnetism like

algorithm with descent search for solving

engineering design problems. International

Journal of Computer Mathematics, 2009, pp.

1932–1946.

[12] Bacanin N., Tuba M., Brajevic I., An Object-

Oriented Software Implementation of a

Modified Artificial Bee Colony (ABC)

Algorithm, Proc. of the 11th WSEAS int.

conference on neural networks and 11th

WSEAS int. conference on e.c. computing and

11th WSEAS int. conference on Fuzzy

systems, 2010, ISBN: 978-960-474-195-3, pp.

179-184.

[13] Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.:

A numerical evaluation of several stochastic

algorithms on selected continuous global

optimization test problems, Journal of Global

Optimization, Vol. 31, 2005, pp. 635–672,

2005

[14] Mahmood M. Nesheli, Othman C., Arash

Moradkhani R., Optimization of Traffic Signal

Coordination System on Congestion: A Case

Study, WSEAS Transactions on Advances in

Engineering Education, Vol. 6, Issue 7, 2009,

pp. 203-212.

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 410

http://dx.doi.org/10.1007/978-0-387-85437-3

