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Abstract: This paper presents an object-oriented software system that implements a modified artificial fish 

swarm (AFS) algorithm based on a particular intelligent behavior of schools of fish. We outline our 

implementation of the algorithm for unconstrained optimization problems. The application was implemented in 

C# with flexible GUI (Graphical User Interface) and it was successfully tested on four standard unconstrained 

benchmark problems.  
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1 Introduction 
1Optimization is as a process of finding the extreme 

value of a function in a domain of definition, subject 

to various constraints on the variable values. 

Different mathematical programming algorithms 

offer a set of techniques to solve different type of 

optimization problems like numerical, discrete or 

combinatorial optimization problems, but these 

methods do not always produce satisfactory results. 

The development of methods for solving wild range 

of optimization problems has been conditioned by 

the size and complexity of the problems. The 

efficiency of suitable solutions is measured by their 

ability to find acceptable results within a reasonable 

amount of time [1]. The use of nature-inspired 

heuristics designed to solve optimization problems 

has become very popular. These algorithms are 

focused on insect behavior and mimic insect's 

problem solution abilities. Collective intelligent 

behavior of insects or animal groups such as flocks 

of birds, schools of fish, colonies of ants or bees are 

typical examples of a swarm system [2], [3]. Their 

advantage lies in the fact that they provide many 

near-optimal solutions in each iteration in the 

algorithm and choose the best solution according to 

given criteria. 

Nature-inspired heuristics techniques should 

fulfill several requirements [3]: 
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 Ability to handle different type of problems. 

 Ease of use with few control variables.  

 Good convergence mechanism to the global 

minimum in consecutive independent trials. 
 

The optimization algorithms which are inspired 

by intelligent behavior of school of fishes (Artificial 

fish swarm - AFS) are among the most recently 

introduced techniques. Several approaches have 

been proposed to model the specific intelligent 

behaviors of fishes and since its invention AFS 

algorithm has been successfully applied to many 

kinds of problems [4], [5], [6], [7], [8], [9]. 

According to the various applications mentioned 

above, AFS algorithm confirmed its good 

performance.  

 In this paper, we will present our implementation 

of modified AFS algorithm [8]. In order to test its 

robustness and performances, we developed 

software named mAFSs, for solving unconstrained 

optimization problems in C# programming 

language. This software will be in detail presented 

in this paper as well as testing results on standard 

benchmark functions for unconstrained problems.  

 The organization of the remaining of the paper is 

as follows. Section 2 details the original AFS 

paradigm. In Section 3 exhaustive discussion of 

modified AFS algorithm is represented.  Section 4 

shows in detail our software implementation of 

modified AFS algorithm. In Section 5 we present 

the test results obtained by mAFSs application on 

four standard unconstrained benchmarks. 
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Conclusions and future work are contained in the 

final Section 6. 

 

 

2 Basics of the AFS algorithm 
Mathematical models imitate the fish swarm series 

of behavior in nature which can be defined as [8]: 

1. Random behavior  

2. Searching behavior  

3. Swarming behavior  

4. Chasing behavior 

5. Leaping behavior  
The next behavior of artificial fish depends on 

its current state and environmental state. Random 

behavior can be presented as the initialization phase 

of the algorithm. The crucial step in the AFS 

algorithms is a “visual scope”. A basic biological 

behavior of any animal is to discover a region with 

more food, by vision or sense. Depending on the 

current position of the individual in the population, 

marked as x
i
 ∈ R

n
, three possible situations may 

occur [8]: 
 

1. When  the “visual scope” is empty, and 

there are no other individuals  in its 

neighborhood to follow, x
i
 individual moves 

randomly searching for a better region 

2. When the “visual scope” is crowded, the x
i
 

individual has difficulty to follow any 

particular individual, and searches for a 

better region choosing randomly another 

location from the “visual scope”. 

3. When the “visual scope” is not crowded, the 

x
i
 individual can choose between two 

option: to swarm moving towards the 

central or to chase moving towards the best 

location. 
 

The condition that determines the crowd issue of x
i
 

individual in the ‘visual scope’ is given in 

Equatation 1: 

                             


m

np i

 θ                          (1) 

 

where θ ∈ (0, 1] is the crowd parameter, m is the 

number of individuals in the population and np
i
 is  

the number of individuals in the  “visual scope”. In 

the searching behavior phase, an individual is 

randomly chosen in the “visual scope” of x
i
 and a 

movement towards it is carried out if it improves 

current x
i
 location. Otherwise, the x

i
 individual 

moves randomly. The swarming behavior is 

characterized by a movement towards the central 

point in the “visual scope” of x
i
. The swarming 

behavior is progressive stage that is activated only if 

the central point has a better function value than the 

current x
i
. Otherwise, the point x

i
 follows the 

searching behavior. The chasing behavior presents a 

movement towards the point that has the last 

function value, x
min

. The swarm and chase behavior 

can be considered as local search. Leaping behavior 

solves the problem when the best objective function 

value in the population does not change for a certain 

number of iterations. In this case the algorithm 

selects random individual from the population. This 

process empowers algorithm for obtaining better 

results in solving numerous problems.  

 

 

3 Outline of modified AFS algorithm  
In this Section we present modified AFS algorithm 

which was introduced in [8]. We briefly delineate 

algorithm`s outline, as well as eight main 

implemented methods. This background is 

necessary for understanding inner working of our 

software implementation described in the next 

Section.  

 Algorithm proposed in [8] has been forged for 

solving bound constrained optimization problems in 

aspect that feasibility is always satisfied during the 

algorithm`s run. Pseudo code of algorithm is given 

below [8]: 

Start 

     t = 0 

     x
i (t) (i = 1, . . .,m) ← Initialize 

    While (stopping criteria are not met) do 

        For (each x
i (t)) 

            If (“visual scope” is empty)  

                y
i (t)← Random(x

i (t)) 

            else If (“visual scope” is crowded) 

                y
i (t)← Search(x

i (t)) 

            else 

               y
i (t)← best of Swarm(x

i (t)) and Chase(x
i (t)) 

         End for 

         x
i (t + 1)(i = 1, . . .,m) ← Select(x

i (t), y
i (t) (i = 1,….,m)) 

         If (“stagnation” occurs) 

            x
rand

(t + 1) ← Leap(x
rand

 (t + 1)) 

         x
best

 (t + 1) ← Local(x
best

 (t + 1)) 

        t = t + 1 

    End while 

End 
 

In presented algorithm, t represents counter of 

iterations, while x
rand 

is used to denote a randomly 

selected point from the population of candidate 

solutions.  

As we can see, the algorithm employs eight 

main methods: Initialize, Random, Search, Swarm, 

Chase, Select, Leap and Local. All mentioned 
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methods and also other implementation details will 

be briefly described in the next few paragraphs.  

     Initialize method generates random initial 

population of candidate solutions (m points in the 

set of Ω). Each vector x
i
 is calculated using 

Equitation 2: 

 x
i
k = lk + α(uk – lk), for k=1,2…,n                                  (2) 

 

where uk and lk represent the upper and lower 

bounds of parameters respectively, and α is 

uniformly distributed random number in the range 

[0,1] (α ~ U[0,1]). 

     In the body of Initialize function, candidate 

solution`s best and worst function values found in 

the population are also computed. For this 

computation, Expression 3 is used: 

fbest = min (f(x
i
), i = 1, . . .,m) and  fworst = max (f(x

i
), i = 1, 

. . . ,m)                                                                             (3) 
 

     Visual scope as a fixed “visual” value for all the 

population is defined as: 

v = δ max (uk – lk), for k=1,2…,n                                  (4)  

     In Eq.4, δ is positive visual parameter which is in 

initial AFS algorithm maintained fixed during 

iterative process. According to conducted 

experiments, slow reduction of δ hastens the 

convergence to the optimal solution [10]. Thus, this 

algorithm`s implementation uses the following 

modification every s iterations [8]: 

δ= max{δmin, πδ}                                                          (5) 

where πδ is in the range (0,1) and δmin is sufficiently 

small positive constant. 

     Random method is triggered when visual scope is 

empty as well as in Search method when condition 

that x
rand

 is worse than x
i
 is met. Details are shown 

below [8]: 

For (each component xk) 

   α1 ~ U[0,1]; α2 ~ U[0,1]     

   If (α1 > 0.5)  

      If ((uk – xk) > v)  

         yk = xk + α2 v 

      else 

         yk = xk + α2 (uk − xk) 

   else 

      If ((xk – lk) > v)  

         yk = xk − α2 v 

      else 

         yk = xk − α2 (xk − lk) 

End for 

     Search method is activated when the “visual 

scope” is crowded. A point inside “visual scope” 

(x
rand

) is selected in a random manner, and the point 

x
i 

is moved towards x
rand 

if condition that 

f(x
rand

)<f(x
i
) is satisfied. If not, the point x

i
 is moved 

randomly (see Random method above). x
i 

is 

dislocated towards x
rand 

using direction d
i
 = x

rand
 - x

i 
 

[8]. In the algorithm shown below, simple 

movement along a direction d is depicted. 

α ~ U[0,1] 

For (each component xk) 

   If (dk > 0)  

      yk =  xk + α
   

     
 (uk − xk) 

   else 

      yk  xk + α 
   

     
 (xk − lk) 

End for 

     When the “visual scope” of a point x
i
 is not 

crowded Swarm and Chase methods are invoked. In 

this scenario, the point may have two behaviors. The 

first one is correlated with movement towards the 

central point of “visual scope” (c). This is denoted 

as swarming behavior. Direction of the movement is 

defined in Swarm method as d
i
 = c – x

i
.  x

i
 is moved 

according to the algorithm shown in Search method 

if f(c)<f(x
i
). Chase method is related with a 

movement towards the point with the least function 

value xmin and it defines direction di=xmin- xi.. xi is 

moved according to the algorithm shown in Search 

method if xmin uplifts xi. Otherwise, the method 

Search is triggered.  

     Code inside Select method is used to determine 

whether or not the foregoing selected trial point y
i 
(t) 

should proceed as new ith point position using form 

of greedy selection: 

   (t + 1) =  {
  ( )     ( (  ( ))     (  ( )) 

  ( )          
           (6) 

     If the algorithm stagnates for a certain number of 

iterations, it is possible that it has fallen into a local 

minimum. In this scenario, Leap method is used to 

help algorithm leap out the local and try to converge 

to the optimal solution (global minimum). This 

function is invoked every z iterations when the 

following expression holds:  

|fbest(t) − fbest(t − z)| ≤ η                                              (7) 

where η is a small positive tolerance and z defines 

the periodicity for testing the criterion [8].  

     Local method is used for gathering the local 

information around the best current solution in 

population. In fact, this is primitive random line 

search employed component by component to x
best

. 

This straightforward local search is used to improve 
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accuracy with reduced computational cost although 

more sophisticated procedure could be used like in 

[11].   

     The algorithm is terminated when one of the 

following conditions is verified: 

nfe > nfemax or |fworst − fbest| < ε                                      (8) 

where nfe represents the counter for the number of 

objective function evaluations, nfemax is the 

maximum number of function evaluations allowed, 

and ε is a small positive tolerance. The values fworst 

and fbest were previously defined in Eq. 3. 

 

 

4 mAFSs implementation 
We have developed and tested our software 

implementation for modified AFS algorithm which 

we called mAFSs (modified AFS software). We 

coded software in object-oriented fashion and used 

multiple threads in its execution. With object-

oriented design, software scalability is improved, 

and so, implementation of new programming logic 

for different optimization problems would take less 

time. Each algorithm`s run executes within a 

different thread, so it runs much faster. Similar 

software was proposed for Artificial bee colony 

(ABC) algorithm in [12]. 

 We developed software in C# using the newest 

.NET Framework 4.0. We chose C# as 

programming language because of its obvious 

advantages over C, C++ and JAVA.  

 We used many classes which are tightly 

connected. We wanted to make the adaptation 

process of our algorithm to new optimization 

problems easy, so we created abstract class 

MAFSAbastract which is later inherited by problem 

specific classes like in [12]. MAFSHAbastract has 

all above mentioned main methods (see Section 3). 

We also use Boolean methods called 

CheckVisualScope and CheckStagnation which 

check whether “visual scope” is empty or crowded 

and if stagnation occurs respectively.  

CheckVisualScope returns 0 if “visual scope” is 

empty and otherwise returns 1. Analogically is done 

in CheckStagnation function. The most important 

method in our algorithm is Run which encapsulates 

all other methods and enables multi-threaded 

functionality. Pseudo-code for Run method is given 

below (for simplicity reasons, details about multi-

threaded functionality are omitted):  

Initialize 

Repeat 

   For ((each x
i 
(t)) 

      If((CheckVisualScope=0)) 

          y
i (t) = Random(x

i (t)) 

       else if ((CheckVisualScope==1)) 

          y
i (t) = Search(x

i (t)) 

       else  

         y
i (t) = best of Swarm(x

i (t)) and Chase(x
i (t)) 

     End for 

     x
i (t + 1)(i = 1, . . .,m) = Select(x

i (t), y
i (t) (i = 1, . . .,m)) 

     If ((CheckStagnation==1)) 

       x
rand

(t + 1) = Leap(x
rand

 (t + 1)) 

     x
best

 (t + 1) = Local(x
best

 (t + 1)) 

Until stopping criteria is met 

      Screenshot of basic Graphical user interface 

(GUI) of mAFSs can be seen in Figure 1. From 

Fig.1 we can see that user can adjust multiple 

parameters of modified AFS algorithm. Other 

parameters are hard coded into the software and 

cannot be changed by the user.  For simplicity, 

parameters are divided into two groups: mAFSs 

control and problem specific parameters.  

 

Fig 1: Screenshot of mAFSs GUI 

   

Control parameters are: 
 

 Visual Parameter (δ) is positive visual 

parameter (δ >0). 

 Crowded Parameter ( θ ) is fraction of the fish 

that defines crowded situation. 

 Reduction Factor ( πδ ) if factor by which δ is 

reduced as iteration proceed.  

 Runtime defines number of algorithm`s runs.  

 

Problem specific parameters are: 
 

 No. of parameters (n) is the number of 

parameters of the problem to be optimized. 

 Lower Bound (l) is lower bound of problem 

parameters. 
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 Upper Bound (u) is upper bound of problem 

parameters. 

 

 

5 Optimization experiments and 

bencmark results 
All tests have been run on Intel Core2Duo T8300 

mobile processor with 4GB of RAM on Windows 7 

Ultimate x64 Operating System in Visual Studio 

2010 and .NET Framework 4.0 environment. Only 

operating system and Visual Studio core processes 

and mAFSs process have been executing during the 

tests.  

 The unconstrained optimization problems in this 

paper follow the form: 
 

 minimize f(x) subject to x                 (9) 
 

where x is a continuous variable vector with domain 

 R
n
, and f(x) :  R is a continuous real-valued 

function. The domain  is defined within upper and 

lower limits of each dimension [13].  

 For testing purposes, we used standard four 

unconstrained benchmark functions: 
 

 Sphere  

 Rosenbrock  

 Griewank  

 Rastrigin  
 

     We ran two sets of test for each benchmark 

problem, first with 10 runs, and second with 30 

runs, each starting from a random population with a 

different number seed. We wanted to see how 

runtime effects algorithm`s performance.  

     Values for parameters which are not adjustable 

by the user (hard coded parameters) are set like in 

[10]. The number of fish (m) in the population 

depends on n (number of problem parameters), 

where m=10n. We used fixed values for nfemax = 

250000, ε = 10
-4 

and η=10
-8

.  

     Values for parameters which can be controlled 

through software`s GUI (see Fig.1) are shown in 

Table 1 and Table 2. As a remark we cite that for all 

four benchmarks we used the same values for 

problem specific parameters. 

 

 Parameter Value 

Visual Parameter ( δ ) 1 

Crowded Parameter ( θ) 0.8 

Reduction Factor ( πδ ) 0.9 

Runtime 10/30 

Table 1: Control parameter values 

 

Parameter Value 

No. of parameters (n) 100 

Lower Bound ( l ) -100 

Upper Bound ( u ) 100 

Table 2: Problem specific parameter values 
 

    For each benchmark, we show best, mean and 

standard deviation results. Results for 10 and 30 

runs are shown in Tables 3 and 4 respectively.  

 

Function  Results 

Sphere 

 

Best 
Mean 
Stdev. 

2.15E-5 

0.23E-3 

7.08E-4 

Rosebrock 

Best 
Mean 
Stdev. 

3.40E-2 
0.029 
0.097 

Griewank 

Best 
Mean 
Stdev. 

5.13E-8 
4.02E-6 
3.49E-6 

Rastrigin 

Best 
Mean 
Stdev. 

9.95E-4 
8.31E-3 
2.64E-3 

Table 3: Optimization results for 10 runs 
 

     As we can see from Table 3 and Table 4, mAFSs 

obtains satisfying results for all presented 

benchmarks and can be compared with other 

algorithms and software systems like [12].  

     All runs in conducted experiments were stopped 

with nfemax = 250000 as mentioned before. 

Comparative analysis of results with 10 and 30 runs 

(Table 3 vs. Table 4) lead to conclusion that the 

performance of the algorithm is not affected by the  

number of runs. All results are similar with very 

small digression which can be neglected.   

 

Function  Results 

Sphere 

 

Best 
Mean 
Stdev. 

6.99E-5 

1.15E-3 

5.02E-4 

Rosebrock 

Best 
Mean 
Stdev. 

1.02E-2 
0.015 
0.085 

Griewank 

Best 
Mean 
Stdev. 

2.67E-8 
2.82E-6 
2.01E-6 

Rastrigin 

Best 
Mean 
Stdev. 

7.62E-4 
5.29E-3 
1.04E-3 

Table 4: Optimization results for 30 runs 
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6 Conclusions 
We present our implementation of AFS algorithm 

for solving unconstrained optimization problems. 

Object-oriented design and appropriate GUI allow 

for easy modifications and applications to different 

optimization problems. The performance of the 

modified AFS algorithm was tested on several well-

known benchmark functions. The algorithm has 

shown its potential to handle various unimodal and 

multimodal test functions. As a part of our future 

work, we are interested in exploring other 

benchmark and real life problems [14]. 
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