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Abstract: - Nature inspired metaheuristic algorithms are recently successfully used to find suboptimal solutions 

to hard optimization problems. These algorithms mimic different nature phenomena in hope that nature’s 

implicit intelligence will help to guide the search in untractable problems. Swarm intelligence algorithms are a 

class of nature inspired algorithms based on collective intelligence of colonies of ants, bees, fish etc. They have 

a number quantitative and qualitative parameters that can be adjusted. Such adjustments are not allowed for 

specific test problems but only for a whole class. When some adjustment works for number of classes it can be 

incorporated into the generic algorithm as a new qualitative parameter (optional modification). In this paper we 

describe how successful application of pheromone correction strategy for the ant colony optimization (ACO) 

algorithm on three different graph problems is incorporated in ACO software framework as a module. 
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1 Introduction 
1Most real-life problems can be represented as some 

kind of optimization problem. Sometimes direct 

minimization or maximization of some numerical 

attribute is required, while in other situations first 

some qualitative property has to be numerically 

estimated and then optimized. Easy optimization 

problems were solved long time ago so nowadays 

only hard problems are of research interest. Many 

discrete (combinatorial) as well as some continuous 

optimization problems are intractable, but of great 

practical interest. Traveling salesman problem 

(TSP) is a classic example that was researched for 

the longest period of time and because of that is 

often used as a benchmark. There are also a number 

of engineering design problems with mixed 

continuous and discrete variable and nonlinear 

objective function and nonlinear constraints that are 

used as benchmarks for optimization algorithms. 

Unconstrained optimization problems can be 

formulated as minimization or maximization of D-

dimensional function: 
 

           Min (or max) f(x), x=(x1,x2,x3,…xD)       (1) 
 

where D is the number of parameters to be 

optimized. 
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General constrained optimization (CO) problem 

is to find x so as to: 
 

minimize f(x), 
n

n Rxxx  ),...,( 1  where SFx   
 

The objective function f  is defined on the search 

space nRS   and the set SF  defines the feasible 

region. The search space S is defined as an n-

dimensional rectangle in nR . The variable domains 

are limited by their lower and upper bounds: 
 

iii uxl  , ni 1  
 

whereas the feasible region SF   is defined by 

a set of m additional constraints ( 0m ): 
 

,0)( xg j  for qj ,...,1  

,0)( xh j  for mqj ,...1  

 

 

2 Hard Optimization Problems 
The main problem with hard optimization problems 

is that there is enormous number of suboptimal 

solutions or local minima and there is no guidance 

how to search for global minimum. Standard down-

hill methods in this situation fail. Typical example 

of such function that is used as a benchmark is 

Rastrigin function that is a sphere modified by small 

cosine waves. 
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The oldest way to deal with such problems is 

Monte-Carlo method. It is equivalent of trying to 

find the deepest point in the oceans by measuring 

many times the depth at random locations and 

hoping that best measurement will be close to the 

global optimum. While Monte-Carlo method is 

usable for some applications, its blind search is not 

sufficient for many others.  

What may improve Monte-Carlo method’s blind 

search is some heuristic that includes some way of 

exploitation of discovered good solutions. In such 

algorithms there is an attempt to implicitly 

understand the nature of the objective function. 

Let us first consider the simplest benchmark 

function, a n-dimensional sphere which is 

continuous, convex and unimodal function. Global 

minimum value for this function is 0 and optimum 

solution is x=(0, 0, . . . , 0). Surface plot is shown in 

Fig. 1.  
 

Definition of Sphere function: 

  f(x)=    (1) 
 

where x is in the interval of [-100, 100] 

 

 
Fig. 1 Sphere function 

 

Even for such a simple function minimum may not 

be approached close enough even after huge number 

of random guesses. If, however, any kind of 

exploitation of found good points is included, the 

search will very quickly converge to global 

minimum. The reason is very simple, even without 

knowledge of any derivatives or gradient, 

abandoning bad points and continuing search in the 

vicinity of good points will implicitly determine the 

down-hill direction. The only problem is to 

adequately define the vicinity: not to go too far to 

leave minimum region, and not to make the vicinity 

too narrow to slow the convergence. 

The next level of complexity may be Rastrigin 

function which is based on Sphere function with the 

addition of cosine modulation to produce many 

local minima. Thus the function is multimodal. The 

global minimum value for this function is 0 and the 

corresponding global optimum solution is x = 

(0,0,…,0) .  
 

Definition of Rastrigin function:  

      f(x) = 10n +        (2) 
 

where x is in the interval of [-5.12, 5.12]. Surface 

plot is shown in Fig. 5. 

 

 
 

Fig. 2 Rastrigin function 
 

Huge number of small waves that form local 

minima will make the previous intelligence fail 

since it will get trapped in local minima. One way to 

avoid it is to increase the vicinity to allow for 

exploration and leave one promising region in hope 

to find better one. The other way may be to consider 

some number of attempts in defined neighborhood 

as a cluster and represent it with the best element. If 

clusters are larger than small waves such group of 

representatives will filter out waves and show the 

structure of underlying sphere where previous 

down-hill intelligence apply. 

Thus, in this case blind exploitation will trap the 

search in local minima and will not be able to leave 

them. If the waves are made larger it will be more 

difficult to leave local minima and more exploration 

will be necessary. 

There are higher and higher levels of complexity 

where more and more elaborate intelligence would 

be necessary to grasp the function behavior. 

Extreme example on the other side of complexity is 

a function that has global minimum hidden in a very 

narrow deep pit that is located at unpromising high 

place. Any search will lead away from that position, 

the pit can be discovered only by random luck. In 

that case any exploitation will lead to failure, the 

best policy is complete exploration. 

We can imagine that more and more complex 

examples can be introduced up to a point where any 

explicit understanding will stop. That is where 

interesting problems are and where we hope that 
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hidden and implicit collective swarm intelligence 

will find a way to handle the situation. 

 

 

3 Swarm Intelligence 
As shown before, many interesting practical 

problems are intractable and no exact algorithm can 

find solution within reasonable time. In this rather 

hopeless situation researchers turned from mathe-

matically exact methods to belief. The nature is 

doing miraculous things. We know the results, but 

we do not understand the mechanism. For hard 

optimization problems we try to mimic some nature 

processes. Older attempts included simulation of 

evolution (through genetic modifications and 

survival of the fittest) [1] and simulated annealing 

[2]. Recently, swarm intelligence become prominent 

using the fact that extremely simple individuals 

exhibit miraculous collective intelligence. Examples 

include ants colonies [3], honey bees colonies [4], 

flocks of birds, schools of fish etc. [5]. 

These nature inspired metaheuristics simulate 

various natural phenomena. We talk about bee 

colony food finding or ant colony path finding, but 

in essence, in all these diverse mimicking we do two 

things. We exploit good found solutions, but also go 

to unknown places in order to avoid being trapped 

in local minima. The successfulness of any such 

algorithm is determined by proper balance between 

exploitation and exploration. This balance is 

maintained by adjusting certain parameters and also 

by applying some rules in certain situations. 

Sometimes these are numerical parameters in 

appropriate range, in other situations they may be 

indicators that switch on and off certain algorithmic 

procedures. In any case, it not allowed to adjust 

parameters for each problem individually since it 

makes algorithm too specialized. Parameters can be 

adjusted for a whole class of problems. However, 

parameters can be changed dynamically, as a part of 

algorithm’s intelligence. By doing such adjustments 

algorithm can become much better for some class of 

problems (off course, according to NFL theorem, it 

cannot become universally good for all problems).  

This paper will demonstrate few successful 

examples of such adjustments. 

 

4 Example: ACO pheromone correc-

tion strategy 
The basic idea of ACO is to imitate the behavior of 

ants in a colony while gathering food. Each ant 

starts from the nest and walks toward food. It moves 

until it reaches an intersection, where it decides 

which path to take. In the beginning it seems as a 

random choice, but after some time the majority of 

ants are using the optimal path. This is possible 

because the colony works as a group and not just as 

individual ants, and the way it is achieved is by 

using pheromone as a collective memory for the 

ants in the colony. Each ant deposits pheromone 

while walking, which marks the route taken. The 

amount of pheromone indicates the usage of a 

certain route. Pheromone trail evaporates as time 

passes. Due to this, a shorter path will have more 

pheromone because it will have less time to 

evaporate before new pheromone is deposited ant 

that path will be chosen more often. 

Presented behavior can be turned into a 

computational system [3] in the following way: 
 

  0

0
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     Equations (1) and (2) describe the probabilistic 

decision method that an artificial ant k, currently at 

node r, after visiting nodes in Mk uses for choosing 

the next node s. 

     The pheromone trail is maintained using two 

types of updates. Global update is used to reward 

good paths, or in other words, more pheromone 

should be deposited on better paths, which is 

obtained by the following formula  
 

(1 ) ,k k

ij ije e ij B         (3) 
 

The local updating is used to avoid creation of a 

very strong edge used by all ants, and it emulates 

pheromone evaporation. Every time an ant chooses 

an edge, it loses some pheromone by the following 

formula where τ0 is a predefined constant. 
 

0(1 )ij ije e      (4) 

 

4.1 Pheromone Correction 
The algorithm described in the previous section 

corresponds to the elitist ant system (EAS) variation 

of the ACO. In this version of the algorithm only the 

global best solution (or in some variations only the 

iteration best solution) deposits pheromone. It 
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increases the efficiency of the basic ACO by 

intensifying the search near the global best solution, 

or in other words, making its search more greedy. 

One of the main problems of this version is the early 

stagnation of the algorithm. This is due to the fact 

that potential parts of the solution that are not near 

the global best solution loose more and more phero-

mone at each iteration because of the pheromone 

evaporation. Eventually it becomes practically 

impossible for these parts to be chosen by ants. 

Min-max ant system (MMAS) [6] is an 

improvement of the EAS that tries to solve this 

problem. The improvement is done by adding an 

extra constraint that all pheromone values are 

bounded, ],[ maxmin  i .  

Another approach to solve the stagnation 

problem is the minimum pheromone threshold 

strategy (MPTS) [7]. The MPTS uses a minimum 

threshold value mt  that is bounded 

min < mt < max . In the beginning of the algorithm 

it is set to some initial value and then adjusted 

during the search, depending on the performance. 

This adjustment is usually performed by dividing 

the mt  by a factor k at a predefined number of 

steps. Thus the MPTS avoids reinitialization of the 

pheromone trail and explores the solution search 

space more systematically. No loss of information 

occurs related to the pheromone trail reset, while the 

good properties of the MMAS are preserved. 

 

 

4.2 Our Improvement 
In this section we present a new hybridization of the 

ACO for avoiding stagnation in the local optima. 

The idea is to use the information about the best-

found solution to perform some corrections on the 

pheromone trail. The concept of this hybridization is 

suspicion that some elements of the global best 

solution are not good. In our hybridization we direct 

to new search areas that are less suspicious which 

means with less undesirable properties. Directing 

the search is done by greatly decreasing the 

pheromone trail values at suspicious points. 

A big drawback of MPTS is that added vertices 

are chosen just for having low values of i  which is 

a relatively random process. As a result, vertices 

that do not belong to good solutions are often 

reintroduced in the search. Once the pheromone 

value for a vertex is increased, it will take a long 

time for it to be removed from the intensively tested 

group. In our hybridization however, we do not add 

vertices to the "popular" group but rather remove 

vertices with suspicious properties, making the 

group smaller. In the following iterations ants will 

first select vertices from the popular set, and when 

none are left, vertices with better properties. This 

way we direct to new search areas that are less 

suspicious which means with less undesirable 

properties. 

 

 

4.3 Application to the MWVCP 
One of the classical graph theory problems is the 

minimum weight vertex cover problem (MWVCP). 

The problem is defined for an undirected graph G = 

(V, E) where V is the set of vertexes, E is the set of 

edges and weights are assigned to each vertex in the 

graph. A vertex cover of graph G is a set of vertexes 

V'V that has the property that for every edge 

e(v1,v2)E at least  one of vertexes v1 or v2 is an 

element of V'. A minimum weight vertex cover is 

the vertex cover with the minimum sum of weights 

of the belonging vertexes. It has been shown that 

this problem is NP-complete even when it is 

restricted to a unit-weighted planar graph with the 

maximum vertex degree of three. A large number of 

real life problems could be converted to this form. 

An example could be the optimal positioning of 

garbage disposal facilities. 

We implemented our concept of suspicious 

elements for the MWVCP [8]. When we observed 

the solutions generated after a small number of 

iterations of the ACO algorithm, we noticed that 

sometimes vertices with no effect were found in the 

solution. ''No effect'' is used here in the sense that if 

these vertices were removed from the solution set, 

the remaining part would still remain a cover set. 

Using this observation, we developed a criterion for 

calculating the suspicion that a vertex should not 

belong to the best solution: 
 

Sus(i, V’) = w(i)*NCE(V’ \ {i})          (5) 
 

The suspicion is formulated in Eq. 5 by function 

Sus. The function NCE gives the number of covered 

edges by a set of vertices for graph G(V,E). An edge 

e is considered covered by the set V' if: 
 

 (aV’)( b)((a, b) = e))                 (6) 
 

As it can be seen from Eq. 6, vertex i with a high 

weight and the set V'\{i} that covers a large number 

of edges is highly suspicious. The next step in our 

hybridization is to select a random number RK of 
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vertices with the highest values of Sus. For each 

such vertex (i) the probability of being selected is: 
 

pi(selected) = 
RK

iRankSusRK )(
        (7) 

 

If these criteria are satisfied, we apply previously 

defined correction algorithm to the pheromone trail.  

 

 

4.4 Application to the TSP 
The Travelling Salesman Problem is the oldest and 

best researched NP-complete problem that is often 

used as a benchmark. We implemented our 

pheromone correction by analysis of the ACO 

algorithm for the TSP when it gets trapped in local 

optima where it indicated which corrections should 

be made, or more precisely what should not appear 

in the shortest path. There are two simple criteria 

that can be used on the edges belonging to the best 

found tour: very long edges and intersecting edges 

are very unlikely to be a part of the optimal path. 

The next step was to find a way to, without major 

corrections to the ACO algorithm, remove 

suspicious elements from the ants search path. The 

solution was to significantly lower the amount of 

pheromone on randomly selected highly suspicious 

edges belonging to the best path and letting the 

colony resume its search. 

  We have divided the correction into two parts: 

one considering the edge lengths, and the other one 

that is related to intersecting edges. All intersecting 

edges are considered highly suspicious and the 

pheromone trail is corrected on them. Edges for 

which pheromone trail correction will be applied 

due to their length is defined in the following way. 

First we define a heuristic for suspicion Sus(rs) = 

length(rs). Using this heuristic we define the 

probability of edge rs being selected for pheromone 

correction 
 

pselected(rs) = 
RK

rsRankSuspRK

*2

)(        (8) 

 

The final step is to lower the pheromone trail for the 

selected edges: 
 

( (rs)Selected)( rs =  rs)          (9) 
 

where  rs is the  amount of pheromone deposited 

on edge rs and   is a fixed  small constant that is 

used to significantly reduce the value of pheromone 

on edge rs. 

This correction algorithm is applied if stagnation 

occurred and the criterion is that there was no 

change to the global best solution in at least n 

iterations. 

 

 

4.5 Application to the MCDSP 
A dominating set for a graph G(V,E) is a subset of 

vertexes DV that has a property that every vertex 

in G either belongs to D or is adjacent to a vertex in 

D. Finding the dominant set with the smallest 

possible cardinality among all dominating sets  for a 

graph is one of the standard NP-complete problems. 

A very important variation of the  minimum 

dominant set problem is its connected version. We 

call a dominant set connected if it has the property 

that any node nD can reach any other node mD 

by a path that stays entirely within D. That is, D 

induces a connected subgraph of G. The minimum 

connected dominant set is the one with the 

minimum number of vertexes. The minimum 

connected dominant set problem (MCDSP) is also 

NP-complete. The MCDS problem has gained 

popularity due to its close connection to the mobile 

ad hoc networks (MANETs) and sensor grids. 

To improve the performance of ACO we imple-

mented a pheromone correction strategy similar to 

the one used for minimum weight vertex cover 

problem (MWVCP) [8]. The idea of this approach is 

to change the pheromone matrix by analyzing some 

of the properties of the best found solution. More 

precisely, when the search for a better solution 

becomes stagnant we update the pheromone matrix. 

We do this by using a simple heuristic function that 

describes the desirability of a vertex in the solution. 

For example, a vertex that is part of the solution and 

does not cover any vertexes solely by itself is not 

very desirable. For an undesirable vertex in the 

solution we greatly decrease the value of the phero-

mone and as a consequence, that vertex is not often 

chosen as a part of the solution in the following 

steps of the algorithm. 

First, let us define  (v,V') as the number of ver-

texes that vertex v which is part of the best found 

solution V' solely covers. 
  

Sus = 
)',(1

1

Vv
                         (10) 

 

In Eq. 10 we have defined Sus as the undesirabi-

lity of a vertex in the solution. The next step is to 

select a random number RK of vertexes which solely 

cover the smallest number of vertexes. For each 

vertex i in the solution the probability of it being 

selected for pheromone correction is: 
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pi(selected) = 
RK

ViRankSusRK )',(       (11) 

 

Finally, we defined a stagnation criteria for 

recognizing if the search has been trapped in a local 

minimum as a situation when there has been no 

improvement in the solution in n iterations of the ant 

colony. We use separate values n1 and n2 for the two 

pheromone correction methods. 

 

 

5  Software Framework Module 
The described pheromone correction for undesirable 

points method is general enough to be included a as 

part of the ACO algorithm. We have developed a 

software framework for ACO [9] that we used for 

our research. A framework is a special kind of 

software library, that is similar to an application 

program interface (API) in the class of packa-

ges, that makes possible faster development of 

applications. However, while an API consists of 

a set of functions that user calls, a framework 

consists of a hierarchy of abstract classes. The 

user only defines suitable derived classes that 

implement the virtual functions of the abstract 

classes. Frameworks are characterized by using 

the inverse control mechanism for the commu-

nication with the user code: the functions of the 

framework call the user-defined functions and 

not the other way round. The framework thus 

provides full control structures for the invariant 

part of the algorithms and the user only supplies 

the problem-specific details. Such environment 

was suitable to implement our new pheromone 

correction strategy as a module that can be called 

from the framework. The framework incorporates 

possibility of hybridization in the directions of 

adding local searches to elevate the quality of paths 

found, or the possibility of pheromone trail 

correction when the algorithm has reached 

stagnation. This second option was used and more 

effective ACO version for the mentioned graph 

problems was defined. 

 

 

6 Conclusion 
We have investigated a new pheromone correction 

strategy based on avoidance of undesirable parts of 

the solution. It proved to be efficient on three 

different NP-complete graph problems:  the 

minimum weight vertex cover problem, the 

travelling salesman problem and the minimum 

connected dominant set problem. As a strategy 

general enough, using possibilities of previous-

ly developed ACO software framework, it was 

successfully incorporated as another qualitative 

parameter. It may be extended to additional 

problems simply by adding modules to the 

framework. 
 

 

References: 

[1] J. Holland, Adaptation in Natural and Artificial 

Systems, MIT Press, Cambridge, MA, 1992 

[2] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 

(1983). Optimization by simulated annealing, 

Science, Vol. 220, No. 4598, 1983, pp. 671–

680 

[3] Dorigo M, Gambardella LM: Ant colonies for 

the traveling salesman problem. BioSystems 

Vol. 43 No.2 ,1997, pp.73-81 

[4] Karaboga, D.: An idea based on honey bee 

swarm for numerical optimization, Technical 

report-tr06, Erciyes University, Engineering 

Faculty, Computer Engineering Department, 

2005 

[5] Kennedy, J., Eberhart, R.C., Particle swarm 

optimization, Proceedings of the 1995 IEEE 

International Conference on Neural Networks, 

Piscataway, NJ: IEEE Service Center, 1995,  

pp. 1942–1948 

[6] T. Stutzle, H. H. Hoos, Max-min ant system, 

Future Gener. Comput. Syst. 16 (9) (2000) 

889–914 

[7] K. Y. Wong, P. C. See, A new minimum 

pheromone threshold strategy (mpts) for 

maxmin ant system, Applied Soft Computing, 9 

(3) (2009) 882–888 

[8] Jovanovic R, Tuba M: An ant colony 

optimization algorithm with improved 

pheromone correction strategy for the 

minimum weight vertex cover problem, 

Applied Soft Computing 11(8), 2011, 5360–

5366 

[9] R. Jovanovic, M. Tuba, D. Simian, An object-

oriented framework with corresponding 

graphical user interface for developing ant 

colony optimization based algorithms, Wseas 

Transactions on Computers 7 (12) (2008) 

1948–1957 

Applied Mathematics in Electrical and Computer Engineering

ISBN: 978-1-61804-064-0 394




