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Abstract: This article investigates numerous integer sequences derived from two special balanced k-ary trees. Main
contributions of this article are two fold. The first one is building a taxonomy of various balanced trees. The other
pertains to discovering new integer sequences and generalizing existing integer sequences to balanced k-ary trees.
The generalized integer sequence formulae for the sum of heights and depths of all nodes in a complete k-ary tree
are given. The explicit integer sequence formula for the sum of heights of all nodes in a size balanced k-ary tree is
also given.
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1 Introduction
Consider a unary (k = 1) tree of size n. The sum of
each node’s height provides an integer sequence gen-
erated by the eqn (1).

U(n) =
n∑

i=1

i =
n(n+ 1)

2
(1)

This integer sequence is the famous triagular num-
ber sequence. The On-Line Encyclopedia of Inte-
ger Sequences [1] contains over 200,000 integer se-
quences. Here numerous new and generalized integer
sequences from balanced k-ary tree are discovered.

A balanced k-ary tree is defined in several differ-
ent ways [2, 3, 4, 5]. Here their relationships and tax-
onomy are studied. Two systematic trees whose nth
tree is determined, are studied, i.e., a complete and
size-balanced k-ary trees.

Adding heights or depths of every node in a com-
plete k-ary tree produces an integer sequence. These
are important sequences in analyzing the popular al-
gorithms involving d-heap data structures. Adding
heights of a size-balanced k-ary trees also produce
new integer sequences. These sequences are very pop-
ular in numerous algorithm analysis involving the fa-
mous divide-and conquer paradigm.

The rest of the paper is organized as follows.
Since the terminologies in Trees, especially the bal-
anced k-ary tree, are still in flux, the section 2 pro-
vides formal definitions. In section 3 gives blah blah.
Finally, the section 4 concludes this work.

2 Formal Definitions
Let n be the number of nodes in a tree, T which is
the size of the tree, n = |T |. In a rooted k-ary tree,
a node, ti is either a leaf if it has no children or an
internal node if it has up to k children nodes. Every
node has a parent node except for one node which is
called a root.

Definition 1 The level of a node is the length of the
path from the node to the root.

Definition 2 The depth of a node is the number of the
levels from the node to the root inclusively. i.e.

depth(ti) = level(ti) + 1 (2)

The exclusive version of the depth of a node is iden-
tical to the level as in most literatures [2, 3, 4, 5] but
here it is defined inclusively. The depths of bottom
level leaves in Figure 1 are 5 not 4.

Definition 3 The height of a node is the number of lev-
els from the the node to the deepest leaf inclusively.

Albeit there is no universally agreed-upon definition
of the height of a rooted tree [4], let h be the height
of a tree which is the inclusive length of the path from
the root to the deepest node in the tree. In other words,
h is the height of the root node. Every node can be
considered to be a root of a sub-k-ary tree and the
height(ti) is the height of the sub-k-ary tree whose
root is ti. Note that the height of a single node tree
is 1 whereas it is 0 in most literatures [2, 3, 4, 5]. Here
the height of an empty tree is 0; height(∅) = 0.

Balanced trees can be defined in various ways.
Rosen defined the balanceness of a tree in terms of
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(a) null balanced binary tree

(b) perfect binary tree

(c) complete binary tree

(d) size-balanced binary tree

(e) Leaf balanced (f) Height balanced

Figure 1: balanced binary tree examples

their leaves as in Definition 4 [3].

Definition 4 A tree is called a leaf balanced k-ary tree
if all leaves are at levels h− 1 or h− 2.

Binary (k = 2) trees in Figures 1 (a∼e) are leaf bal-
anced binary trees whereas one in Figure 1 (f) is not.

A balanced tree is defined in terms of heights of
sub-trees as in Definition 5.

Definition 5 A tree is called a height balanced k-ary
tree if the eqn (3) is satisfied for each node ti and for
every sub-tree pair (Sx, Sy) of ti.

|height(Sx)− height(Sy)| ≤ 1 (3)

All trees in Figures 1 except for (e) are height bal-
anced binary trees. A height balanced binary search
tree is known as the AVL tree [2, 5] and the definition
5 is a generalized version of the balanced binary tree
defined in [2, 5].

A different definition of a balanced k-ary tree is
given and used in this article. It is a slight vicissitude

Table 1: size of perfect k-ary trees.
k\h 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 3 7 15 31 63 127 255
3 1 4 13 40 121 364 1093 3280
4 1 5 21 85 341 1365 5461 21845

(a) k children recursion (b) Non-leaf level recu-

Figure 2: Two recursive relations of Perfect k-ary trees

of Definition 4. In a k-ary tree, every node has exactly
k children if we consider the null node as a child.

Definition 6 A tree is called a null balanced k-ary tree
if all null nodes are at levels h or h− 1.

Fact 1 The height of the null balanced k-ary tree is

h = ⌈logk (n(k − 1) + 1)⌉ (4)

All binary trees in Figure 1 (a∼d) are null balanced
binary trees while both trees in Figure 1 (e,f) are not.

Definition 7 A tree is called a perfect k-ary tree if all
internal nodes have exactly k children and all leaves
lie at the same depth, h.

In case that k = 2 in Figure 1 (b), the perfect binary
trees are possible only for n = 1, 3, 7, 15, · · · , 2h−1.

Let Pi be size of the ith height perfect k-ary tree.
The integer sequences of sizes of some perfect k-ary
trees are given in Table 1. A root node has k number
of sub perfect k-ary trees whose height is h − 1 as
shown in Figure 2 (a). Hence, Ph can be computed
and defined recursively as in the eqn (5).

Ph =

{
1, if h = 0

k × Ph−1 + 1, otherwise
(5)

The tree which excludes the leaf level nodes is also a
perfect k-ary tree as illustrated in Figure 2 (b). Hence,
a non-leaf level recursive relation for P (h) is given in
the eqn (6).

Ph =

{
1, if h = 0

Ph−1 + kh−1, otherwise
(6)

The closed formula for Ph is given as follows.

Ph =
h∑

i=1

ki−1 =
kh − 1

k − 1
(7)
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Figure 3: Venn Diagram of balanced k-ary trees

The null-balanced k-ary tree can be defined in
terms of the perfect k-ary tree.

Definition 8 A null-balanced k-ary tree has a perfect
k-ary tree whose height is h − 1 and the remaining
n− Ph−1 number of nodes are at the depth h.

There are several systematic ways to make a bal-
anced tree for any n. Here a couple of them are con-
sidered. The first one is the complete k-ary tree where
a node is added in the breadth first order as shown in
Figure 1 (c).

Definition 9 A tree is called a complete k-ary tree if it
has a pefect k-ary tree of height h− 1 and the remain-
ing nodes are added from left to right order.

In [2], the term, complete k-ary tree is used to refer a
perfect k-ary tree but here it means the definition 9.

A tree can be balanced by sizes of sub-trees.

Definition 10 A tree is called a size balanced k-ary
tree if the eqns (8) and (9) are satisfied for each node
ti and for every sub-tree pair (Sx, Sy) of ti.

|size(Sx)− size(Sy)| ≤ 1 (8)
size(Sx) ≤ size(Sy) if x < y ≤ k (9)

Only trees in Figures 1 (a,b,d) are size balanced bi-
nary trees. The sizes of k-sub trees follow the integer
partition into k balanced parts defined in the eqn (10).

BIP(m, k) =
( k︷ ︸︸ ︷⌈m

k

⌉
, . . . ,

⌈m
k

⌉
︸ ︷︷ ︸

k̃=m%k

,
⌊m
k

⌋
, . . . ,

⌊m
k

⌋)
(10)

For examples, BIP(23, 4) = (6, 6, 6, 5) and
BIP(41, 5) = (9, 8, 8, 8, 8).

Figure 3 gives the venn diagram of balanced k-ary
trees defined in this section.

3 Integer Sequences
Consider the first 11 and 10 sequences of complete
binary and ternary trees in Figure 4 (a) and (b), re-
spectively. Let C(n) be the sum of all nodes’ heights

(a) binary trees

(b) ternary trees

Figure 4: complete k-ary tree Integer Sequences

(a) binary trees

(b) ternary trees

Figure 5: recursive relation illustration of C(n)

in a complete k-ary tree which can be computed re-
cursively as defined in the eqn (11) as depicted in Fig-
ure 5,

C(n) =

{
n, if n ≤ 1

C(⌈n−1
k ⌉) + n, otherwise

(11)

C ′(n) = C(n)− n (12)

Note that the sum of exclusive heights is also defined
in the eqn (12). Both C(n) and C ′(n) integer se-
quences for complete binary trees are found in the
OEIS (see [1]). However, only C(n) but not C ′(n)
is found for the complete ternary trees.

Consider the first 14 and 15 sequences of size-
balanced binary and ternary trees in Figure 6 (a) and
(b), respectively. Let Z(n) be the sum of all nodes’
heights in a em size-balanced k-ary tree. While the
eqn (11) is extended from the non-leaf level recursion
defined in the eqn (6), Z(n) can be defined recursively
as in the eqn (13) by slightly modifying the k children
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(a) binary trees

(b) ternary trees

Figure 6: size-balanced k-ary tree Integer Sequences

resursion defined in the eqn (5).

Z(n) =


n, if n ≤ 1

h+ k̃ × Z(
⌈
n−1
k

⌉
)

+(k − k̃)× Z(
⌊
n−1
k

⌋
))

, otherwise

where k̃ = (n− 1) mod k (13)

Since n − 1 may not be divisible by k, then exactly
k̃ = (n − 1) mod k number of children’s size must
be one greater than the the size of other (k−k̃) number
of children.

Z ′(n) = Z(n)− n (14)

Figure 7: size-balanced k-ary tree Integer Sequences

Figure 8: null-balanced Nk(n) tree Integer Sequences

(a) binary trees

(b) ternary trees

Figure 9: Illustration of computing Nk(n)

Note that the sum of exclusive heights can be also de-
fined as in the eqn (14). Neither Z(n) nor Z ′(n) in-
teger sequence for size-balanced k-ary trees appears
in the OEIS (see [1]). However, only C(n) but not
C ′(n) is found for the complete ternary trees.

Finally, other integer sequences can be derived
from aforementioned systematic k-ary trees if we add
the depths instead of heights as exemplified in Fig-
ure 8. The sum of depths in a complete k-ary tree is
the same as that in a size-balanced k-ary tree. In other
words, any null-balanced k-ary tree of size n, N(n)
has the same sum of depths of all nodes as defined in
the eqn (15).

N(n) = h(n− Ph−1) +
h−1∑
i=1

(i× ki−1) (15)

A null-balanced k-ary tree has a perfect k-ary tree
up to h − 1 depth. The second term of the eqn (15)
is adding its depth times the number of nodes in the
respective depth in a perfect k-ary tree. And the re-
maining n−Ph−1 number of nodes has the value h as
depicted in Figure 9.

The sum of the exclusive depth version for the
null-balanced k-ary tree is given in the eqn (16)

N ′(n) = N(n)− n (16)

Both N(n) and N ′(n) for the null-balanced binary
tree appear in the OEIS. However, no integer se-
quences were found when k > 2.
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Table 2: size of perfect k-ary trees.
k Name Integer sequence for n = 1, . . . , 50 n = 1000 OEIS
1 U(n) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253,

276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820,
861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1275, · · ·

500500 A000217

2

N(n) 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104,
109, 114, 119, 124, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207,
213, 219, 225, 231, 237, 243, · · ·

8987 A001855

N ′(n) 0, 1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78,
82, 86, 90, 94, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173,
178, 183, 188, 193, · · ·

7987 A061168

C(n) 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 31, 32, 34, 35, 38, 39, 41, 42, 46, 47, 49,
50, 53, 54, 56, 57, 63, 64, 66, 67, 70, 71, 73, 74, 78, 79, 81, 82, 85, 86, 88, 89, 94, 95, 97, · · ·

1994 A005187

C′(n) 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25,
25, 26, 26, 31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42, 46, 46, 47, · · ·

994 A011371

Z(n) 1, 3, 4, 7, 9, 10, 11, 15, 18, 20, 22, 23, 24, 25, 26, 31, 35, 38, 41, 43, 45, 47, 49, 50, 51, 52,
53, 54, 55, 56, 57, 63, 68, 72, 76, 79, 82, 85, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106,
107, · · ·

2013 -

Z′(n) 0, 1, 1, 3, 4, 4, 4, 7, 9, 10, 11, 11, 11, 11, 11, 15, 18, 20, 22, 23, 24, 25, 26, 26, 26, 26, 26, 26,
26, 26, 26, 31, 35, 38, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 57, 57, · · ·

1013 -

3

N(n) 1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86,
90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 147, 152, 157, 162, 167,
172, 177, 182, 187, 192, · · ·

6457 -

N ′(n) 0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63,
66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 106, 110, 114, 118, 122, 126, 130, 134,
138, 142, · · ·

5457 -

C(n) 1, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 39, 40,
41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57, 58, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, · · ·

1498 A127427

C′(n) 0, 1, 1, 1, 3, 3, 3, 4, 4, 4, 5, 5, 5, 8, 8, 8, 9, 9, 9, 10, 10, 10, 12, 12, 12, 13, 13, 13, 14, 14, 14,
16, 16, 16, 17, 17, 17, 18, 18, 18, 22, 22, 22, 23, 23, 23, 24, 24, 24, 26, · · ·

498 -

Z(n) 1, 3, 4, 5, 8, 10, 12, 13, 14, 15, 16, 17, 18, 22, 25, 28, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 63, 67, 71, 74, 77, 80, 83, 86, 89, 91 · · ·

1543 -

Z′(n) 0, 1, 1, 1, 3, 4, 5, 5, 5, 5, 5, 5, 5, 8, 10, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 22, 25, 28, 30, 32, 34, 36, 38, 40, 41, · · ·

543 -

4 Conclusion

In this paper, several different definitions of a bal-
anced k-ary tree and their relationships were pre-
sented. Two kinds of special null-balanced k-ary trees
where nth tree is determined were also presented. As
shown in Table 2, explicit formulae were given to gen-
erate numerous integer sequences. Some integer se-
quences are already in OEIS but this article provided
a generalized k-ary tree version formulae. The sum
of height or depth integer sequences from complete
ternary trees are not found but only the sum of inclu-
sive height appears. These sequences are very impor-
tant in the famous d-heap data structure.

One of the most notable findings in this paper is
discovering the sum of height integer sequences from
size-balanced k-ary trees. These sequences appear
very often in certain types of the famous divide-and
conquere algorithm analysis.
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