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Abstract: An approach to schedule development in project management is proposed based on models and methods
of idempotent algebra. The approach offers a way to represent various types of precedence relationships among
activities in projects as linear vector equations in terms of an idempotent semiring. As a result, many issues
in project scheduling reduce to solving computational problems in the idempotent algebra setting, like linear
equations and the eigenvalue problem. The solutions to the problems are given in a compact vector form that
provides the basis for the development of efficient computation procedures and related software applications.
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1 Introduction
The problem of scheduling a large-scale set of activi-
ties is a key issue in project management [1, 2]. There
is a variety of project scheduling techniques devel-
oped to handle different aspects of the problem, rang-
ing from the classical Critical Path Method and the
Program Evaluation and Review Technique marked
the beginning of the active research in the area in
1950s, to more recent methods of idempotent algebra
(see, e.g., [3–8] and references therein).

We describe a new computational approach to
project scheduling problems based on implementation
and further development of models and methods of
idempotent algebra in [8–10]. The approach offers
a useful way to represent different types of prece-
dence relationships among activities in a project as
linear vector equations written in terms of an idem-
potent semiring. As a result, many issues in project
scheduling reduce to solving computational problems
in the idempotent algebra setting, like linear equations
and the eigenvalue-eigenvector problem. We give so-
lutions to the problems in a compact vector form that
provides a basis for the development of efficient com-
putation algorithms and related software applications.

The rest of the paper is as follows. We start with a
brief introduction to idempotent algebra, that provides
main definitions and notation, and then outlines basic

results underlying subsequent applications. Further-
more, examples of actual problems in project schedul-
ing are considered. We show how to formulate the
problems in terms of idempotent algebra, and present
related algebraic solutions. To illustrate the applica-
tion of the results, numerical examples are given.

2 Definitions and Notation
We start with a brief introduction to idempotent alge-
bra based on [8–10]. Further details on the topic can
be found in [3, 5–7, 11–13].

2.1 Idempotent Semifield
Consider a set X that is equipped with two operations
⊕ and ⊗ called addition and multiplication, and that
has neutral elements 0 and 1 called zero and iden-
tity. We suppose that 〈X,0,1,⊕,⊗〉 is a commutative
semiring, where addition is idempotent and multipli-
cation is invertible. Since the nonzero elements in X

form a group under multiplication, this semiring is of-
ten referred to as the idempotent semifield.

The idempotent property is expressed by the
equality x ⊕ x = x that is true for all x ∈ X . Let
X+ = X \ {0} . For each x ∈ X+ , there exists its
inverse x−1 such that x⊗ x−1 = 1 .

The power notation is defined in the ordinary way.

Recent Researches in Communications, Electronics, Signal Processing and Automatic Control

ISBN: 978-1-61804-069-5 161



For any x ∈ X+ and integer p > 0 , we have x0 = 1 ,
0
p = 0 , xp = xp−1⊗ x = x⊗ xp−1 , x−p = (x−1)p .

In what follows, the multiplication sign ⊗ is
omitted as is usual in conventional algebra. The power
notation is thought of as defined in terms of idempo-
tent algebra. However, when writing exponents, we
routinely use ordinary arithmetic operations.

Since the addition is idempotent, it induces a par-
tial order ≤ on X according to the rule: x ≤ y if
and only if x⊕ y = y . With this definition, it is easy
to verify that x ≤ x ⊕ y , y ≤ x ⊕ y , and that both
addition and multiplication are isotonic.

The relation symbols are understood below in the
sense of this partial order. Note that according to the
order, we have x ≥ 0 for any x ∈ X .

As an example of the semirings under study, one
can consider the idempotent semifield of real numbers

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉.

The semiring has the neutral elements 0 = −∞
and 1 = 0 . For each x ∈ R , there exists its inverse
x−1 , which is equal to −x in ordinary arithmetics.
For any x, y ∈ R , the power xy is equivalent to the
arithmetic product xy . The partial order coincides
with the natural linear order on R .

We use this semiring as the basis for the devel-
opment of algebraic solutions to project scheduling
problems in subsequent sections.

2.2 Vector and Matrix Algebra
Vector and matrix operations are routinely introduced
on the basis of the scalar operations. Consider a Carte-
sian product Xn with its elements represented as col-
umn vectors. For any two vectors a = (ai) and
b = (bi) from X

n , and a scalar x ∈ X , vector ad-
dition and scalar multiplication follow the rules

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.

A vector with all entries equal to zero is called the
zero vector and denoted by 0 .

A vector is regular if it has no zero elements.
As usual, a vector b ∈ X

n is linearly depen-
dent on vectors a1, . . . ,am ∈ Xn if there are scalars
x1, . . . , xm ∈ X such that b = x1a1 ⊕ · · · ⊕ xmam .
In particular, b is collinear with a when b = xa .

For any regular column vector x = (xi) , we de-
fine a row vector x− = (x−i ) with entries x−i = x−1i .

We define the distance between any two regular
vectors a and b with a metric

ρ(a, b) = b−a⊕ a−b.

When b = a we have ρ(a, b) = 1 , where 1 is
the minimum value the metric ρ can take.

Specifically, in R
n
max,+ , we have 1 = 0 , whereas

the metric takes the form ρ(x,y) = maxi |xi − yi| ,
and thus coincides with the Chebyshev metric.

For conforming matrices A = (aij) , B = (bij) ,
and C = (cij) with entries in X , matrix addition and
multiplication together with multiplication by a scalar
c ∈ X are performed in accordance with the formulas

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{cA}ij = caij .

A matrix with all entries equal to zero is called
the zero matrix and denoted by 0 .

A matrix is regular if it has no zero rows.
Consider the set of square matrices Xn×n . A ma-

trix is diagonal if its off-diagonal entries are zero. The
matrix I = diag(1, . . . ,1) is the identity matrix.

A matrix is reducible if it can be put in a block
triangular form by simultaneous permutations of rows
and columns. Otherwise, the matrix is irreducible.

For any matrix A 6= 0 and integer p > 0 , we
have A0 = I , Ap = Ap−1A = AAp−1 .

The trace of a matrix A = (aij) is defined as

trA = a11 ⊕ · · · ⊕ ann.

2.3 Linear Vector Equations
Suppose A,C ∈ X

m×n and b,d ∈ X
m are given

matrices and vectors. A general linear equation in the
unknown vector x ∈ Xn is written in the form

Ax⊕ b = Cx⊕ d.

Note that due to the lack of additive inverse, one
cannot put the equation in the form where all terms
involving the unknown x are brought to one side of
the equation while those without x go to another side.

Many practical problems reduce to solution of the
following particular cases of the general equation

Ax = d, Ax⊕ b = x.

By analogy with linear integral equations, the
above two equations are respectively referred to as
that of the first kind and that of the second kind. The
second-kind equations Ax = x and Ax ⊕ b = x
are also known in the literature as homogeneous and
nonhomogeneous Bellman equations.

Finally note that along with the equations, one can
consider inequalities of the first and second kind, that
have the form Ax ≤ d and Ax⊕ b ≤ x .
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3 Preliminary Results
Now we outline some basic results from [8–10] that
underlie subsequent applications of idempotent alge-
bra to project scheduling.

3.1 The First-Kind Equation and Inequality
Given a matrix A ∈ Xm×n and a vector d ∈ Xm , the
problem is to find all solutions x ∈ Xn of the equation

Ax = d, (1)

and the inequality

Ax ≤ d. (2)

A solution x1 to equation (1) is called maximum
if x1 ≥ x for all respective solutions x of (1).

We present a solution to equation (1) based on the
analysis of the distance between vectors in X

m . The
solution involves the introduction of a new symbol

∆ = (A(d−A)−)−d

to represent a residual quantity associated with (1).
We start with a result that gives the distance from

the vector d to a set {Ax|x ∈ X
n} that is the linear

span of columns (range) for the matrix A .

Lemma 1. Suppose A ∈ X
m×n and d ∈ X

m are
regular matrix and vector. Then it holds that

min
x∈Xn

ρ(Ax,d) = ∆1/2

with the minimum attained at x = ∆1/2(d−A)− .

As a consequence, we get the following result.

Theorem 1. Suppose A ∈ X
m×n and d ∈ X

m are
regular matrix and vector. Then a solution of equa-
tion (1) exists if and only if ∆ = 1 . If solvable, the
equation has the maximum solution given by

x = (d−A)−.

Suppose that ∆ > 1 . It follows from Lemma 1
that in this case equation (1) has no solution. As an
approximate solution one can get x = ∆1/2(d−A)−

which is the best in the sense of the metric ρ .
Finally, it is not difficult to obtain the next result.

Lemma 2. For any matrix A ∈ X
m×n and vector

d ∈ Xm , the solution to inequality (2) is given by

x ≤ (d−A)−.

3.2 Second-Kind Equations and Inequalities
Suppose a matrix A ∈ X

n×n and a vector b ∈ X
n

are given, whereas x ∈ Xn is an unknown vector. We
examine the equation

Ax⊕ b = x, (3)

and the inequality

Ax⊕ b ≤ x. (4)

To solve equation (3) we propose an approach
based on the use of a function Tr(A) that takes each
square matrix A to a scalar according to the definition

Tr(A) = trA⊕ · · · ⊕ trAn.

The function is exploited to examine whether the
equation has a unique solution, many solutions, or no
solution, and so may play the role of the determinant.

The solution involves evaluation of matrices A∗ ,
A× , and A+ . The matrices A∗ and A× are given by

A∗ = I ⊕A⊕ · · · ⊕An−1, A× = A⊕ · · · ⊕An.

Let a×i be column i in A× , and a×ii be its diag-
onal element, i = 1, . . . , n . To construct the matrix
A+ we take the set of columns a×i such that a×ii = 1 ,
and then reduce it by removing those columns that are
linearly dependent on others. Finally, the columns in
the reduced set are put together to form a matrix A+ .

The general solutions to both equation and in-
equality of the second kind in the case of irreducible
matrices are given by the following results.

Theorem 2. Let x be the solution of equation (3) with
an irreducible matrix A . The next statements hold:

1) if Tr(A) < 1 , then x = A∗b;
2) if Tr(A) = 1 , then x = A∗b ⊕ A+v for any

vector v ;
3) if Tr(A) > 1 , then x = 0 provided that b = 0 ,

and there is no solution otherwise.

Lemma 3. Let x be the solution of inequality (4) with
an irreducible matrix A . The next statements hold:

1) if Tr(A) ≤ 1 , then x = A∗(b ⊕ v) for any
vector v ;

2) if Tr(A) > 1 , then x = 0 provided that b = 0 ,
and there is no solution otherwise.
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3.3 Eigenvalues and Eigenvectors
A scalar λ is an eigenvalue of a matrix A ∈ Xn×n if
there is a nonzero vector x ∈ Xn such that Ax = λx .

Any vector x 6= 0 that satisfies the above equality
is an eigenvector of A , corresponding to λ .

If the matrix A ∈ Xn×n is irreducible, then it has
only one eigenvalue given by

λ = trA⊕ · · · ⊕ tr1/n(An). (5)

The corresponding eigenvectors of A have no
zero entries and take the form

x = A+
λ v,

where Aλ = λ−1A , and v is any nonzero vector.
We conclude with an extremal property of the

eigenvalue and eigenvectors of irreducible matrices.

Lemma 4. Suppose A is an irreducible matrix with
an eigenvector λ . Then it holds that

min
x∈Xn

+

ρ(Ax,x) = λ⊕ λ−1

with the minimum attained at any eigenvector of A .

4 Applications to Project Scheduling
In this section we show how to apply results pre-
sented above to solve scheduling problems under vari-
ous constraints (for further details on the schedule de-
velopment in project management see, e.g., [1, 2]).

As the underlying idempotent semiring, we use
Rmax,+ in all examples under discussion.

4.1 Start-to-Finish Precedence Constraints
Consider a project that involves n activities. Activity
dependencies are assumed the form of Start-to-Finish
relations that do not allow an activity to complete un-
til some predefined time after initiation of other activ-
ities. The scheduling problem of interest consists in
finding the latest initiation time for all activities sub-
ject to given constraints on their completion time.

For each activity i = 1, . . . , n , denote by xi its
initiation time, and by yi its completion time. Let di
be a due date, and aij be a minimum possible time
lag between initiation of activity j = 1, . . . , n and
completion of i .

Given aij and di , the completion time of activity
i must satisfy the relations

yi = di, xj + aij ≤ yi, j = 1, . . . , n.

When aij is not actually given for some j , it is
assumed to be 0 = −∞ .

The relations can be combined into one equation
in the unknown variables x1, . . . , xn ,

max(x1 + ai1, . . . , xn + ain) = di.

By replacing the ordinary operations with those
in Rmax,+ in all equations, we get

ai1x1 ⊕ · · · ⊕ ainxn = di, i = 1, . . . , n.

Now we introduce an n × n matrix A = (aij) ,
and n-vectors d = (di) and x = (xi) .

The scheduling problem under the Start-to-Finish
constraints leads us to the derivation of the solution
for the equation Ax = d .

Consider the residual ∆ = (A(d−A)−)−d and
suppose that ∆ = 1 = 0 . According to Theorem 1,
the equation has a maximum solution x = (d−A)− .

As an example, consider a project with a con-
straint matrix and due date vector

A =


8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12

 , d =


14
11
16
15

 .

First we calculate ∆ = (A(d−A)−)−d = 0 , and
then get the solution

x = (d−A)− = (6, 4, 5, 3)T .

4.2 Start-to-Start Precedence Constraints
Suppose there is a project consisting of n activities
and operating under Start-to-Start precedence con-
straints that determine the minimum allowed time in-
tervals between initiation of activities. The problem is
to find the earliest initiation time for each activity that
does not violate these constraints.

For each activity i = 1, . . . , n , let bi be an
early possible initiation time, and let aij be a mini-
mum possible time lag between initiation of activity
j = 1, . . . , n and initiation of i . The initiation time
xi for activity i is subject to the relations

bi ≤ xi, aij + xj ≤ xi, j = 1, . . . , n,

where at least one must hold as an equality.
We can replace the relations with one equation

max(x1 + ai1, . . . , xn + ain, bi) = xi.
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Representation in terms of Rmax,+ , gives the
scalar equations

ai1x1 ⊕ · · · ⊕ ainxn ⊕ bi = xi, i = 1, . . . , n.

With the notation A = (aij) , b = (b1, . . . , bn)T ,
x = (x1, . . . , xn)T we arrive at a problem that is to
solve the nonhomogeneous equation Ax⊕ b = x .

Assume the matrix A to be irreducible. It follows
from Theorem 2 that if Tr(A) ≤ 1 = 0 then the
equation has a solution given by x = A∗b ⊕ A+v ,
where v is any vector of appropriate size.

Consider a project with Start-to-Start relations
and examine two cases, with and without early ini-
tiation time constraints. Let us define a matrix

A =


0 −2 0 0

0 0 3 −1
−1 0 0 −4

2 0 0 0

 ,

and two vectors

b1 = 0, b2 = (1, 1, 2, 1)T .

Let us first calculate the initiation time of activi-
ties in the project when b = b1 = 0 (that is, without
early initiation time constraints imposed). Under this
assumption, the equation takes the form Ax = x .

The matrix A is irreducible and Tr(A) = 0 .
Therefore, the equation has a solution.

Simple algebra gives

A∗ = A× =


0 −2 1 −3
2 0 3 −1
−1 −3 0 −4

2 0 3 0

 .

Note that all diagonal entries in A× are equal
to 1 = 0 . However, considering that the first three
columns are proportional, we take only one of them to
form the matrix

A+ =


−2 −3

0 −1
−3 −4

0 0

 .

The solution to the equation is given by

x = A+v =


−2 −3

0 −1
−3 −4

0 0

v, v ∈ R2
max,+.

Consider the case when the equation takes the
form Ax⊕ b2 = x . Now we have

A∗b2 = (3, 5, 2, 5)T ,

and then get

x =


3
5
2
5

⊕

−2 −3

0 −1
−3 −4

0 0

v, v ∈ R2
max,+.

4.3 Mixed Precedence Relations
Consider a project that has both Start-to-Finish and
Start-to-Start constraints. Let A1 be a given Start-to-
Finish constraint matrix, d a vector of due dates, and
x an unknown vector of activity latest initiation time.
To meet the constraints, the vector x must satisfy the
inequality

A1x ≤ d.

Furthermore, there are also Start-to-Start con-
straints defined by a constraint matrix A2 . This leads
to the equation

A2x = x.

Suppose the equation has a solution x = A+
2 v .

Substitution into the inequality gives A1A
+
2 v ≤ d .

Since the maximum solution to the last inequality
is v = (d−A1A

+
2 )− , the solution to the whole prob-

lem is written in the form x = A+
2 (d−A1A

+
2 )− .

As an illustration, we evaluate the solution to the
problem under the condition that

A1 =


8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12

 ,

A2 =


0 −2 0 0

0 0 3 −1
−1 0 0 −4

2 0 0 0

 ,

and
d = (13, 11, 15, 15)T .

By using results of previous examples, we succes-
sively get

A1A
+
2 =


10 9
8 8
12 11
12 12

 , (d−A1A
+
2 )− =

(
3
3

)
.

Finally, we have

x = A+
2 (d−A1A

+
2 )− = (1, 3, 0, 3)T .
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4.4 Minimization of Maximum Flow Time
Assume that a project has n activities and operates
under Start-to-Finish constraints. For each activity,
consider the time interval between its initiation and
completion, which is usually referred to as the flow
time, the turnaround time or the processing time. The
problem of interest now is to construct a schedule that
minimizes the maximum flow time over all activities.

Let A be an irreducible constraint matrix, x a
vector of initiation time, and y = Ax a vector of
completion time for the project. The problem can be
formulated as that of finding a vector x that provides

min
x∈Rn

max(|y1 − x1|, . . . , |yn − xn|).

In terms of Rmax,+ the problem takes the form

min
x∈Rn

ρ(Ax,x)

and can be solved by the application of Lemma 4.
Let d be a given vector of activity due dates.

Consider a problem of finding the latest initiation time
for all activities so as to provide both the due date con-
straints in the form

Ax ≤ d

and the condition of minimization of maximum flow
time over all activities in the project.

By Lemma 4, the last condition is satisfied when
x is an eigenvector of A . The eigenvectors take the
form x = A+

λ v , where Aλ = λ−1A , λ is an eigen-
value of A , and v is any vector of appropriate size.

By combining the result with the due date con-
straints, we get the inequality AA+

λ v ≤ d .
With the maximum solution to the inequality

given by v = (d−AA+
λ )− , we arrive at the solution to

the whole problem in the form x = A+
λ (d−AA+

λ )− .
Let us evaluate the solution with the constraint

matrix and due date vector defined as

A =

 2 4 4
2 3 5
3 2 3

 , d =

 9
8
9

 .

First we get λ = 4 with (5), and define the matrix

Aλ =

 −2 0 0
−2 −1 1
−1 −2 −1

 .

Furthermore, we have the matrices

A∗λ = A×λ =

 0 0 1
0 0 1
−1 −1 0

 , A+
λ =

 1
1
0

 .

Finally, we arrive at the solution

x = A+
λ (d−AA+

λ )− = (4, 4, 3)T .
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[13] P. Butkovič, Max-Linear Systems: Theory and
Algorithms, Springer, London, 2010.

Recent Researches in Communications, Electronics, Signal Processing and Automatic Control

ISBN: 978-1-61804-069-5 166




