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Abstract: - This paper presents a combinational quantum-inspired binary gravitational search algorithm 

(QBGSA) for solving the optimal power quality monitor (PQM) placement problem in power systems 

for voltage sag assessment. In this algorithm, the standard binary gravitational search algorithm is 

modified by applying the concept and principles of quantum behaviour as to improve the search 

capability with faster convergence rate. The optimization considers multi objective functions and 

handles observability constraints determined by the concept of the topological monitor reach area. The 

overall objective function consists of three functions which are based on the number of required PQM, 

monitor overlapping index and sag severity index. The proposed QBGSA is applied on the radial 69-

bus distribution system and compared with the conventional binary gravitational search algorithm and 

binary particle swarm optimization and quantum-inspired binary particle swarm optimization 

techniques. 

 

Key-Words: - binary gravitational search algorithm, quantum computing, voltage sag assessment, multi 

objective functions and topological monitor reach area. 
 

 

1 Introduction 
Power quality has been considered as a prominent 

issue which demands utilities to deliver good quality 

of electrical power to end users especially to 

industries having sensitive equipment. Among all 

power disturbances, voltage sags are the most 

frequent type of disturbance which causes severe 

impact on sensitive loads. This type of voltage 

disturbance is defined by IEEE standard 1159-1995 

as a voltage reduction in the RMS voltage to 

between 0.1 and 0.9 p.u. for duration between half 

of a cycle and less than 1 minute [1]. It may cause 

failure or malfunction of sensitive equipment which 

eventually leads to huge economic losses.  
Voltage sags are usually monitored by means of 

the conventional power quality monitoring practice 

in which monitors are installed at all buses in a 

power distribution network. The disadvantage of 

this approach is the widespread installation of 

PQMs. Reducing the number of monitors will 

reduce the total cost of power quality monitoring 

system and also reduces redundancy of data being 

measured by monitors [2]. Thus, some methods are 

required for determining minimum number and the 

strategic location of PQMs to ensure that voltage 

sags are captured by the monitors. In [2]-[6], the 

concept of monitor observability is utilized to find 

optimal placement of PQMs in transmission 

systems. However, this concept is not suitable for 

radial distribution networks [7]. Therefore, there is a 

need to develop a new optimal PQM placement 

method that is applicable for both transmission and 

distribution systems. 

A few optimization techniques have been used to 

solve the optimal PQM placement problem in the 

last few years. In [2], the PQM placement method 

was developed by using the GAMS software as an 

integer linear program. In [4], the branch and bound 

algorithm is applied by dividing the solution space 

into smaller spaces to make it easier to solve. 

However, it may give totally a wrong solution when 

there is a mistake in selecting a branch in earlier 

stages. In [5]-[7], genetic algorithm (GA) is used for 

solving the optimal PQM placement problem. It 

seems that GA is preferred for solving this 

optimization problem but the disadvantage of GA is 

that it is slow in terms of convergence rate. Thus, an 

alternative optimization technique with better 
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performance such as binary particle swarm 

optimization (BPSO) [8] and binary gravitational 

search algorithm (BGSA) [9] are suggested to be 

implemented.  

The main aim of this study is to develop a new 

heuristic optimization technique for solving the 

optimal PQM placement problem in power systems 

by applying the quantum behaviour to enhance the 

conventional BGSA. The merging between quantum 

computing and BGSA used in this work is to avoid 

premature convergence and improve efficiency 

[10]-[12].  The performance of the developed 

quantum-inspired BGSA (QBGSA) is then 

compared to other quantum-inspired computing 

techniques, namely, the quantum-inspired binary 

particle swarm optimization (QBPSO). To show the 

effectiveness of using quantum computing, the 

BGSA and BPSO are also included in this 

comparison.           

The arrangement of this paper is as follows. In 

Section 2, the monitor coverage concept in PQM 

placement method is described. The problem 

formulation for optimal PQM placement is 

discussed in Section 3. In Section 4, the proposed 

QBGSA is described which include overviews of 

adopted concepts from the previous techniques. 

Finally, the test results on the power systems under 

study and optimal solutions are provided and 

discussed in Section 5. 

 

 

2 The Monitor Coverage Concept 
The monitor coverage is the most important entity in 

the determination of PQM placement. It is used to 

evaluate the placement so as to guarantee the 

observability of the whole power network. The 

conventional monitoring coverage concept is called 

the monitor reach area (MRA) [4]. In this study, the 

topological monitor reach area (TMRA) is utilized 

to make it applicable for all systems including 

distribution systems [13]. The TMRA matrix is a 

combination of MRA matrix and topology (T) 

matrix by using operator ‘AND’ as shown in (1). 

The T matrix is used to give more restriction on the 

monitor coverage so as to fulfill the radial topology 

which usually exist in the distribution system. The 

TMRA matrix columns represent bus number and 

its rows are correlated to fault location for all 

different types of fault. 

 

(1) 

 

 

3 PQM Placement Formulation 
There are three common elements required in  

binary optimization technique, namely, decision 

vectors, objective function and optimization 

constraints. Thus, each element is formulated and 

explained in order to obtain the optimal solution for 

the PQM placement. The optimization explores the 

optimal solution as defined in the objective function 

through the bits manipulation of decision vector 

subject to the optimization constraints in each 

generation. The process is iterated for a fixed 

number of times or until a convergence criterion is 

achieved. 

 

3.1 Decision Vector 
To satisfy the solution process in this study, the 

Monitor Placement (MP) vector is introduced to 

represent the binary decision vector (xij) in bits in 

the optimization process. The bits of this vector 

indicate the positions of monitors that are either 

needed or not in power systems. The dimension of 

the vector corresponds to the number of buses in the 

system. A value 0 (zero) in the MP (n) indicates that 

no monitor is needed to be installed at bus n 

whereas a value 1 (one) indicates that a monitor 

should be installed at bus n. Thus, the MP vector is 

described by the following expression; 

 

(2) 

 

 

3.2 Objective Function 
The use of optimization tool is to determine the 

minimum number of PQM with the best placement 

while maintaining the observation capability of any 

fault occurrences which may lead to voltage sag 

events in power system. Thus, the objective function 

is formulated to solve two objectives, namely, 

optimal number of required monitors and optimal 

locations to install the monitors. The number of 

required monitors (NRM) to be minimized can 

easily be obtained and expressed as,  

 

(3) 

 

To determine the best locations to install the 

monitors, additional parameters are required to 

achieve the goals. There are two indices, namely 

monitor overlapping index (MOI) and Sag Severity 

Index (SSI) used for evaluating the suggested PQM 

placement in the optimization process [13]. The 

MOI indicates the level of overlapping in the PQMs 

coverage which is given by the suggested 
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placement. Therefore, the MOI value should be 

minimized to find the best PQM placement. The 

MOI value can be calculated using the following 

expression;  

 

(4) 

 

where, NFLT  is the total number of fault locations 

considering all types of faults. 

Meanwhile, the SSI index indicates a severity 

level of a specific bus towards voltage sag, where 

any fault occurrence causes a large drop in voltage 

magnitudes for most of the buses in the system.  

Therefore, the highest SSI value among the same 

NRM should also be obtained to find the best PQM 

placement. In order to calculate SSI, the severity 

level (SL) based on threshold, t in p.u. should be 

derived first as follow; 

 

(5) 

 

where, 

NSPB:  Number of phases experiencing voltage 

sag with magnitudes below t p.u.; 

NTPB: Total number of phases in the system. 

 

Then, the SSI value is obtained by considering 

five threshold levels; 0.1, 0.3, 0.5, 0.7 and 0.9 p.u. 

where the lowest t value is assigned with the highest 

weighting factor, k and vice versa as given in (6). 

The SSI values are stored in a matrix where its 

column correlated to bus number and its row 

correlated to type of fault (F). 

 

(6) 

 

 

To combine the MOI and SSI indices, both of 

them should have similar optimal criteria of either 

maximum or minimum. In this case, the SSI matrix 

should be modified to give a minimum criterion in 

the optimization to make it similar to the case of 

minimization of MOI. It is important to note that a 

maximum value of SSI element is equal to 1. Thus, 

it can be obtained by using complementary matrix 

of SSI. Then, a negative severity sag index (NSSI) 

is introduced to evaluate the best placement of 

monitors in the system. The NSSI can be obtained 

using (7). As a result, a lower NSSI value indicates 

a better arrangement of PQMs in the system. 

 

(7) 

where, 

ONE :  Matrix with all entries ‘1’ where its 

dimension is the same as the SSI 

matrix; 

NFT : Number of fault types. 

 

All the above functions can be combined in 

single objective function by using the summation 

method since all the functions have similar optimal 

criteria. However, the objective functions should be 

independent and should not influence each other in 

finding the optimal solution. The single multi-

objective function to solve optimization problems in 

this study is expressed in (8). The concept is based 

on weighted sum method that has been commonly 

used to solve multi-objective problems [14]. 

However, it is not exactly similar to weighted sum 

method since the relative weight of NRM is 

automatically increased when the NSSI is increased 

due to more PQM placements in the system so as to 

maintain the selection priority. 

 

(8) 

 

3.3 Optimization Constraints 
The optimization algorithm must run while 

satisfying all the constraints that are used to find 

optimal number of PQMs for the system. As given 

in (9), the multiplication of the TMRA matrix by the 

transposed MP matrix gives the number of monitors 

that can detect voltage sags due to a fault at a 

specific bus. If one of the resulting matrix elements 

is 0 (zero) then it means that no monitor is capable 

of detecting sag caused by faults at a particular bus, 

whereas if the value is greater than 1 (one), that 

means more than one monitor have observed a fault 

at the same bus. For that reason, the following 

restrictions must be fulfilled to make sure that each 

fault is observed by at least one monitor; 

 

(9) 

 

 

 

4 Quantum-Inspired BGSA 
Recently, evolutionary computation techniques are 

evolving rapidly in solving optimization problems 

because they are found to be more robust and 

efficient in optimizing multidimensional problems 

in various fields [15]. In this study, a novel 

optimization technique called as quantum-inspired 

binary gravitational search algorithm (QBGSA) 
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which is an improvement from the existing BGSA is 

developed. Overview of the BGSA and the adopted 

quantum concepts in the optimization are first 

explained to give better understanding of the 

proposed heuristic optimization technique. 

 

4.1 Binary Gravitational Search Algorithm 
The binary gravitational search algorithm (BGSA) is 

a probabilistic optimization technique introduced 

and developed by Rashedi [9]. The conventional 

GSA was originally designed to solve problems in 

continuous valued space [16]. The search algorithm 

is based on the metaphor of gravitational interaction 

between masses in the Newton theory. A j-th bit of 

the i-th agent (xij) in a system is represented as a bit 

0 or 1 where a combination of bits gives the i-th 

agent position. The GSA operators calculate agent‘s 

acceleration (aij) based on gravitational force and its 

mass in each iteration using the following equations: 

    

(10) 

 

 

(11) 

 

 

(12) 

 

 

(13) 

 

where, 

G0 : initial gravity constant; 

T  : total number of iterations; 

F : gravitational force action; 

M  : agent gravitational mass; 

Rik : hamming distance between i-th agent 

and k-th agent; 

ε : small positive coefficient, 2
-52

; 

r :  uniform random variable in interval 

[0,1]. 

Kbest : selection number of the best agent 

applying force to system which 

decreases monotonously in percentage 

from Kbestmax to Kbestmin along the 

iteration. 

 

The next agent’s velocity (vij) is calculated based 

on its current velocity and its acceleration as 

expressed in (14). Then, a new agent’s position (xij) 

is updated using a condition as shown in (15). 

However, the velocity is limited in interval [-6,6] so 

as to achieve a good convergence rate. 

 

(14) 

 

 

(15) 

 
 

4.2 Quantum-Inspired Computing 
The first quantum inspired computing method was 

introduced by Moore and Nayaranan [17]. It is a 

numerical computational technique that utilizes the 

principle of quantum mechanics. The smallest unit 

for quantum computing which is known as quantum 

bit (Q-bit) may be in the “1” state, in the “0” state or 

in superposition of the two corresponding to 

weighting factors of complex number (α,β) [10] as 

represented in (16). The ׀α²׀ and ׀β²׀ in the 

representation gives a probability that the Q-bit will 

be in the “0” state and the “1” state, respectively. 

Thus, the state probability can be normalized to 

unity as ׀α׀ + ²׀β1 = ²׀.  

(16) 

Similar to agent’s position in BGSA, all decision 

variables (xij) can be represented by a string of Q-

bits as a single representation called Q-bit 

individual. In the quantum computing, the Q-bit 

individual is updated using a quantum gate (Q-gate) 

which is a reversible gate and can be represented as 

a unitary operator, U. It is either a rotation gate, 

NOT gate, controlled NOT gate or the Hadamard 

gate etc. [18] used to change the probability of the 

Q-bit state so as to promise a reversible of the 

formation. In this study, the rotation gate is 

considered since it has been applied in many search 

algorithm [10]-[12]. The rotation gate is expressed 

as follows; 

(17) 

 

4.3 BGSA with Quantum Computing 
In the proposed QBGSA, a rotation angle (∆θ) is 

utilized to determine the new agent’s position, xij. 

Here, the concept of acceleration, aij updating 

procedure in the BGSA is applied to obtain the 

rotation angle and the magnitude of the rotation 

angle (θ) is used to replace the gravitational mass. 

To reduce too much dependence on randomised 

exploration process, the random variables in (12) 

and (14) are removed. As a result, the agent’s 

acceleration, aij is the total gravitational force acting 
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on the other agents which depend on their mass and 

distance to the particular agent. These two elements 

are given by a decision parameter, γ in QBGSA. In 

this study, the same variation operators as in [12] 

are used, and are called as coordinate rotation gate 

and dynamic magnitude rotation angle approaches. 

Therefore, there is no pre-determined lookup table 

to be used and therefore the rotation angle is 

calculated as in the following expression:  

 

(18) 

 

where, θ is the magnitude of rotation angle which 

monotonously decreases from θmax to θmin along 

iteration and
k

iγ can be obtained using the following 

conditions; 

 

(19) 

 

 

(20) 

 

where, τ is a maximum of different number of bits 

between i-th agent and k-th agent obtained from the 

percentage of total bits which is to be considered as 

effective force acting on the i-th agent. That means 

attraction force by a far agent is very small and can 

be neglected. However, the best fitness agent with 

the highest mass can give effective force on the 

agent even its position is far to i-th agent and it will 

give twice more force than the other forces when its 

position is near to the i-th agent. On the other hand, 

the lighter agent can move easily as compared to 

heavier agent due to inertia mass action against the 

motion [16]. As for that reason, only the heavier k-

th agent can give effective acceleration on i-th 

agent.         

Then, the QBGSA operators update the Q-bit 

individual string based on the obtained rotation 

angle using the rotation gate as shown in (21). The 

agent’s position (xij) is updated based on probability 

of ׀β׀
2
 stored in the Q-bit individual using criteria as 

given in (22). 

 

(21) 

 

 

(22) 

5 Results and Discussion 
To demonstrate the performance of the proposed 

QBGSA in solving the optimal PQM placement 

problem, the radial 69-bus distribution system [19] 

is used in this study. In this paper, bolted three-

phase (LLL) faults, double-line to ground (DLG) 

faults and single-phase to ground (SLG) faults were 

simulated at each bus in the system using the 

DIgSILENT software to obtain the FV matrix. The 

new QBGSA is implemented and compared to the 

conventional BGSA [9], QBPSO [12] and BPSO 

[20] as to illustrate its performance in solving the 

same problem.  

All the optimization parameters are standardized 

where population size and maximum population are 

set to 40 and 100, respectively. In the BPSO, two 

positive coefficients are set to 2 (c1 = c2 = 2) and 

inertia weight, w monotonously decreases from 0.9 

(wmax) to 0.4 (wmin). In the BGSA, the initial gravity 

constant, G0 is set to 100 and the best applying 

force, Kbest is monotonously decreased from 100% 

(Kbestmax) to 2.5% (Kbestmin). In the QBPSO, the 

magnitude of rotation angle, θ is monotonously 

decreased from 0.05π (θmax) to 0.001π (θmin) and all 

initial Q-bit individual (α+jβ) is set as
2

1
2

1 j+ . 

In the QBGSA, the Kbest is similar to the BGSA 

whereas the magnitude of rotation angle, θ and 

initial Q-bit individual are similar as in the QBPSO. 

The parameter τ in QBGSA is set to 8% of the total 

number of bits.    

Table I shows the worst, average, best and 

standard deviation, σ from the adopted techniques’ 

performances in terms of convergence rate and 

quality of optimal solution after performing 30 runs 

at α = 0.85 p.u. for the 69-bus distribution system. 

Fig. 1 illustrates the convergence characteristics of 

the techniques in obtaining the best optimal solution 

for the test system. Here, BPSO is the fastest in 

convergence but the worst in terms of optimal 

solution as compared to the other techniques. This 

shows a premature convergence in BPSO. Beside 

this, BGSA gives better optimal solution than BPSO 

but its convergence rate is the worst. In this case, the 

merged quantum computing to BPSO and BGSA 

has shown a significant improvement in escaping 

from the premature convergence and give much 

better optimal solutions.  Although QBPSO 

provides better solution than BPSO, it requires more 

iterations to explore over a search space for the 

solution. The QBGSA has obtained the best optimal 

solution with the lowest standard deviation but its 

convergence is relatively slow. However, the 
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proposed QBGSA shows an overall improvement on 

the convergence rate of the traditional BGSA. 

Hence, the best optimal solution given by QBGSA 

is taken as the PQM placement in this study. The 

optimal PQM placement for this case study is at 

buses 1, 6, 29, 32, 36, 38, 48 and 57. 

 

Table 1 Performance of BPSO, BGSA, QBPSO and 

QBGSA on 69-bus system for α at 0.85 p.u. 

Item Worst Average Best σ 

BPSO 
Fitness 81.12 58.41 40.66 10.45 

Iteration 54 25.43 12 10.51 

BGSA 
Fitness 46.9 34.44 24.93 5.53 

Iteration 100 93.83 83 4.36 

QBPSO 
Fitness 26.28 21.11 18.37 1.84 

Iteration 97 59.87 35 19.49 

QBGSA 
Fitness 20.28 19.58 18.28 0.64 

Iteration 99 73.87 47 14.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The convergence characteristics of BPSO, 

BGSA, QBPSO and QBGSA 

 

 

4 Conclusion 
This paper presented a combinational QBGSA and a 

comparative performance of QBGSA, QBPSO, 

BGSA and BPSO in solving the multi-objective 

optimization problems for optimal PQM placement 

in a distribution test system. The optimization 

problem formulation is mainly based on the use of 

the TMRA and the two placement evaluation 

indices, namely, the SSI and the MOI. The 

optimization techniques have been tested on the 69-

bus distribution test system for determining the best 

optimal PQM placements. The comparative results 

showed that the proposed QBGSA is the most 

effective and precise among the aforementioned 

optimization techniques. 
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