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Abstract:  

We introduce a probabilistic worst case bound on the solution quality for the simple genetic algorithm. Given a 

probability and number of iterations a simple genetic algorithm has performed we show how to bound the 

distance between the best solution found and the optimal. We introduce several concepts needed for the 

analysis. The ideas are illustrated on several well-known functions used in the analysis of genetic algorithms. 
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1 Introduction 
During the last two decades there has been 

substantial work on modelling the behaviour of GAs 

as dynamical systems [13]. Vose and Liepins [12] 

first developed the idea of punctuated equilibria and 

derived asymptotic properties for the simple, infinite 

population GA. Nix and Vose [9] later showed that 

this behaviour can be modelled for finite 

populations as a Markov Chain and provided a way 

to compute transition probabilities. 

Since the earlier work by Vose and his co-

authors several bounds have been developed ([1], 

[2], [3], [7], [16]). The general conclusion from this 

body of work is that in the worst case GA behaves 

like random search even in the presence of multiple-

optima. 

 There has been some research on developing 

probabilistic bounds on the quality of the solution 

obtained by heuristic search on combinatorial 

problems. For example, Golden and Alt [6] show 

how to construct a confidence interval for an 

optimal solution and report successful results for the 

Traveling Salesman Problem. They use the limiting 

distribution of the minimum of a sample (i.e., the 

best solution). Ovacik, Rajagopalan and Uzsoy [11] 

use several procedures on single machine 

scheduling problems. Nydick and Weiss [10] use 

jackknife-based estimators that combine any 

heuristic based solution with the two best random 

solutions.  Giddings et al. [5] give an excellent 

review of such methods.  

 In this work, we describe how one can make 

probabilistic statements about the quality of the 

solution obtained by a GA and provide bounds for a 

variety of function classes discussed in the 

literature. Unlike methods described in the previous 

paragraph our results are distribution free and 

dependent on the number of iterations of the GA. 

The main thrust of this work is to present a 

foundation for the analysis of a worst-case error 

bound. We illustrate its use on some well-known 

functions extensively used to test GAs.  

 
 

2 The Simple Genetic Algorithm 
Let Ω be the set of binary strings of length 

1>ℓ over which we wish to maximize a function 

:f +Ω → ℜ  using SGA. Unless otherwise 

specified we will assume that f has a unique 

optimum. We represent x∈Ω  either as a bit string 

(e.g., x = 010110) or as the integer it represents (i.e., 

x = 22). ⊕ and ⊗  represent bitwise “exclusive-or” 

and “and” operators respectively. x  is the number 

of nonzero bits of string x. 
tx  represents the best 

solution after t iterations. 
*x  is the optimal solution. 

We define { }1,xO y y x y= ⊕ = ∈Ω  to be the 
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set of strings that are within one bit of x. 
x

KO  is a 

class composed of subsets of O
x
 of size K-1 each 

unioned with x. That is  

{ }{ } , 1x x

KO O x O O O K= ∪ ⊆ = − . Finally, KO  

is the union of all 
x

KO ,
x

K K

x

O O
∈Ω

=∪ . 

 It is important to explain the sets 
x

KO  and OK as 

they are crucial to the understanding of a key 

theorem by Aytug and Koehler [2] that will be 

presented next. Given a string x∈Ω , class 
x

KO  

includes all sets of size K that include string x and 

K-1 other strings that are within one bit of x. For 

example for K=2, 3=ℓ  and x=1 

{ }1 0,3,5 {000,011,101}O = =  so 

1

2 {{1,0},{1,3},{1,5}}O = . OK consists of sets that 

are composed of members of
x

KO  for all x, (i.e., 

0 1 2 1...K K K KO O O O −= ∪ ∪ ∪
ℓ

).  

We will limit our discussion to simple GA's 

involving one-point crossover and uniform 

mutation. After creating a random population SGA 

operates by applying crossover and mutation at each 

iteration until stopped [13]. 

 Nix and Vose, [9], show that a GA can be 

modeled as a Markov Chain and derive the 

transition probabilities for SGA.  Based on this 

model Aytug and Koehler, [1], derived a worst case 

bound on the number of iterations needed to find 

one of K solutions (for example, one of K multiple 

optimal solutions). They show that in the worst case 

these K solutions are members of the set 
*xO .  

 Let tK be the number of iterations required to 

make sure that the SGA has seen one of the K pre-

specified solutions with probability at least α. Then 

the following holds: 

Theorem 1 (Theorem 2.1 of Aytug and Koehler, 

[1]) 

tK is bounded above by 

( )
( ) ( )( )1 1

ln 1
.

ln 1 min ( 1) ( 2) , (1 )
Kt

n K K K

α

µ µ µ µ− −

 
− ≤

  − − + − −   
ℓ ℓ ℓ

 

where 1≤ +ℓK when 0.5≤µ and 

2 K≤ ≤ ℓ when 0.5>µ .   

It is important to emphasize that Aytug and Koehler 

showed this bound is valid for any K distinguished 

strings (which are usually thought of as strings 

having a fitness value close to the optimal fitness 

but may be distinguished in some other manner) and 

the bound is tight for all 
x

KO . Theorem 1 bounds the 

number of iterations necessary to visit states that 

include strings that are one bit off of a baseline 

string (and consequently have two differing bits). 

For example, for K=2 and 3=ℓ  strings 0, 1, 2, and 

4 have this property. If 0 is the baseline string all 

other strings are one bit off of 0.  tK guarantees (with 

probability α) that the SGA has seen populations 

that include 0 or 1 , and 0 or 2, and 0 or 4.   In other 

words, it guarantees that the GA has seen at least 

one member of the sets {0,1}, {0,2}, {0,4}.  It is 

this behaviour that we will use to derive our results. 

 

 

3 Worst Case Error Bounds 
We now develop a probabilistic bound on the 

difference between the optimal value of the 

objective and the best-known value after tK 

iterations.  Precisely we are interested in finding an 

ε  such that 

{ ( *) ( ) }KtP f x f x ε α− ≤ ≥ . 

This type of analysis is called a post analysis in the 

sense that it bounds the difference in objective 

values between the best-known solution and any 

optimal solution after the search has been 

conducted. 

We now show how the bound developed by Aytug 

and Koehler [1] can be used to estimate this error 

when we stop the SGA after tK iterations.  For the 

sake of clarity we show our results for 

2 1K≤ ≤ +ℓ . Cases where 1K > +ℓ  follow a 

similar line of reasoning (as can be seen using 

arguments in [1]). 

Theorem 2 With probability α, if 
{ }

*
min max ( *) ( ) , 2 1

x
K

K
x OO O

f x f x Kε
∈∈

= − ≤ ≤ +ℓ

 

 then 2 3 ... Kε ε ε≤ ≤ ≤ . 

 

 

Proof: 

For a given K let { }
*

arg max min ( )
x
K

K
y OO O

O f y
∈∈

= . For 

simplicity first assume KO  is unique for each K.  

For a given K, KO  has the strings with the best K-1 

objective values of O
x* 

that are within one bit of x* 

plus string x*.  Then  1K KO O +⊂  and 

1 /K Ky O O+∈  is the K
th
 best string that is within 

one bit of x*.  It follows that, { }min ( ) ( )
Kx O
f x f y

∈
≥  
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and 1K Kε ε +≤  .  Repeating this for all K>1 

concludes the proof for the case when KO is unique.  

In the event that KO  is not unique 1KO +  may 

not be unique either. However, for each alternative 

KO  there is a matching 1KO +  such that 1K KO O +⊂  

still yields the desired result. In this case, 1K Kε ε +=  

holds for some 1 2K K K≤ ≤  depending on how 

many solutions with the same objective function 

value exist. This completes the proof. 

Theorem 2 states that the larger the K the worse 

the provable difference may get.  Note however, 

Theorem 1 shows that the larger the K the smaller 

the number of iterations to guarantee the bound with 

probability α.  

 When KO  is not unique it is sufficient to see a 

member of only one of these sets to realize the same 

error bound, which in turn suggests that tK of 

Theorem 1 overestimates the number of iterations 

needed. Quantifying the exact number of iterations 

when such information is available is beyond the 

scope of this paper. We now present one of the main 

results of this paper. 

Corollary 1:  

With probability α, ( *) ( )t Kf x f x ε− ≤  only if 

Kt t≥ . 

Proof: 

By definition tK is the number of iterations 

necessary to see one of K specified strings in all sets 

of size K and Ktx is the best string obtained. Since 

Theorem 1 guarantees that at least one member of 

KO  (defined in Theorem 2) has been seen after tK 

iterations the result follows. 

To determine the quality of the best string after t 

iterations one needs to use Theorem 1 to compute K. 

Once K is known Theorem 2 describes how far the 

string is from the optimal. Corollary 1 formalizes 

this procedure. 

 In this section we will analyze some of the 

common classes of functions used in the literature to 

test GAs. We refer the interested reader to Digalakis 

and Margaritis [4], Mitchell and Forrest [8], and 

Wegener and Witt [14] among others for a list of 

such functions. The aim is not to do an exhaustive 

proof of bounds on all functions studied but rather 

to illustrate the use of the concept of the worst-case 

for a GA search.  After Corollary 2 we will only 

prove the results for K=2, however all results 

generalize to 1K ≤ +ℓ  simply by finding the K
th
 

best string (including the optimal) in the same 

manner we found the 2
nd

 best string. 

 

 

3.1 Quadratic Pseudo-Boolean Functions 

(QPBF)  
Wegener and Witt [14] define a quadratic pseudo-

boolean function to be 

0

1 1 1

( ) , ,i i ij i j i ij

i i j i

f x a a x a x x a a
= = = +

= + + ∈∑ ∑ ∑
ℓ ℓ ℓ

ℤ . 

Corollary 2 below characterizes the runtime 

behavior. 

Corollary 2 For all QPBF, the best string, 2tx , the 

GA has obtained after 2t  iterations satisfies  

(1) 2

1

( *) ( ) min
t

k ki i
k

i

f x f x a a x
<

=

 
− ≤ + 

 
∑
ℓ

ℓ
 with 

probability α where x* is the optimal string.  
(2) Moreover for 1K ≤ +ℓ  

[ ]1
( *) ( )Kt

K
f x f x z −− ≤ where z[K-1] is the K-1

st
 

largest z when sorted in ascending order, where 

1

k k ik i

i

z a a x
=

= +∑
ℓ

 

Proof: 

Since we have seen all strings that are within one bit 

of the optimal, the second best string has one bit 

with a positive coefficient set to zero or a bit with a 

negative coefficient set to one. First observe that 
2 * 2 ,t kx x k= ⊕ ∃ ≤ ℓ  and 

( )

( ) ( )( )

2

* * * *

1

* * * * *

* * * *

1

* * * * *

( ) ( ) ( 1)

1

( 1 ) 1

i i k k ij i j

i k i k j i k

t

k ij i i i k k

i i k

ij i j k ij i

i k j i k i

k k k k k ki i

i

a x a x a x x

f x f x x a x a x a x

a x x x a x

a x x x x a x

≠ ≠ = + ≠

≠

≠ = + ≠

+ +

− = + − − ⊕

− − ⊕

= − ⊕ + − ⊕

 
 
 
 
 
 
 
 

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑

( )( )* * *1k k k ki i

i

x x a a x
 

= − ⊕ + 
 

∑   

then 2*( ) ( ) mint

k ki i
k

i

f x f x a a x− = +∑ since 

( )( ) { }* * 1 1, 1k kx x− ⊕ ∈ − . 

(2) This follows from Theorem 2.  

Remark: 

One of the simplest functions that is commonly 

studied is the bitwise linear function which is a 

special case of the QPBF with all 0ija = . 

Consequently the worst case bound in Corollary 2 
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reduces to ( )2( *) ( ) min
t

k
k

f x f x a
<

− ≤
ℓ

 for bitwise 

linear functions. 

 

 

3.2 Linear Separable Functions (LSF),  
Wright and Zhao [16] define a linear separable 

function as follows:  Let mi be a binary mask (i.e., a 

string of 0,1) such that 1 ... 2 1Bm m⊕ ⊕ = −ℓ  and 

0,i jm m i j⊗ = ≠ .  A function f is separable over 

masks specified by m1, …, mB if 

 
1

( ) ( )
B

i

i

f x f x m
=

= ⊗∑ .  

When ( ) ( ),i i i if x m a x m a⊗ = ⊗ ∈ℝ, f is a linear 

separable function. 

Corollary 3 Let f be a linear separable function. 

Then 

2

, : 2 2
( *) ( ) min 2 , ,

h h
i

t h

i
i h m

f x f x a i B h
⊗ =

− ≤ ≤ < ℓ  

 after 2t  iterations. 

Proof: 

First observe that 2 * 2 ,0t hx x h= ⊕ ≤ < ℓ . Then 

( )( )( )

( ) ( )( )( )

( )( )

2* * *

1

* *

1

* * *

1

*

* *

( ) ( ) ( ) 2

( ) 2

( ) ( )

( 2 )

( ) ( 2 )

B
t h

i i

i

B
h

i i i

i

B

i i k

i

i k

h

k

h

k k

f x f x f x m f x m

f x m f x m m

f x m f x m f x m

f x m

f x m f x m

=

=

=
∉

− = ⊗ − ⊕ ⊗

= ⊗ − ⊗ ⊕ ⊗

= ⊗ − ⊗ + ⊗

− ⊗ ⊕

= ⊗ − ⊗ ⊕

∑

∑

∑

for a given k and h.  Since f is linearly separable  

( ) ( )2* * *( ) ( ) 2

2 .

t h

k k k k

h

k

f x f x a x m a x m

a

− = ⊗ − ⊗ ±

= ±

Since the SGA was run for 2t  iterations 2tx can be 

any of the strings that satisfies 
2 * 2 ,0t hx x h= ⊕ ≤ < ℓ .  This gives the freedom to 

choose the mask and its coefficient such that 
h h

i2 m 2⊗ =  and 
h

ia 2  is minimized.  

Remark: One special case of this class of functions 

is the royal road function of Mitchell and Forrest 

[8].  The royal road function can be shown to have a 

worst-case bound of |mi| for all 1K ≤ +ℓ  if all 

masks are the same size or min i
i
m  if they are 

varying size for iK m≤ . (See Wiles and Bradley 

[15] for further discussion on these functions.) 

 

4 Conclusion 
We presented a framework to analyze the solution 

quality of the SGA. Theorem 2 establishes how the 

ideas in Theorem 1 (i.e., K distinguished strings) 

can be used to bound error with some probability. 

We showed that with some pre specified probability 

we can bound the distance between the current best 

and optimum. We also analyzed two commonly 

used functions using Corollary 1.  

 In essence the results presented here are worst-

worst case bounds - worst in terms of the number of 

iterations and worst in terms of the structure of the 

K distinguished strings. Work is under way to 

determine what happens if we have information 

about the structure of the neighborhood of the 

optimal. 
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