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Abstract: - Modifications that introduce parallelization of standard cuckoo search algorithm are proposed in this 

paper. Basic form of the cuckoo search algorithm has already shown great potential for optimization problems, 

especially when applied to unconstrained continuous functions. In this paper two aspects of parallelization are 

proposed. The first one addresses the performance issue, while the second one deals with quality of results. 

Multicore processors became standard today. When different runs of algorithm execute within different threads, 

better performance can be reached. Second issue refers to multiple flocks approach that combines search results 

from two or more flocks. Set of well-known unconstrained continuous benchmark function is used to illustrate 

testing results of the proposed parallelized cuckoo search algorithm. 
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1 Introduction 
Optimization has been interesting topic for 

researches over decades. Mathematical optimization 

refers to choosing the best element from the 

collection of available elements. The most 

straightforward case of optimization is minimization 

or maximization of real function.  

If variables of the function that is to be optimized 

are considered, optimization can be discrete or 

continuous. The first is also known as combinatorial 

optimization because we are looking for an array or 

set of discrete objects such as integers, permutations 

or graphs that improve objective function value. 

Continuous optimization can use real values. 

Continuous optimization problems are widespread 

in mathematical modeling of real systems and have 

been successfully applied in many practical 

applications. Numerical optimization can be further 

divided into two groups: unconstrained and 

constrained. In unconstrained optimization no 

limitations on the values of the parameters exist. 

Under such condition, an objective function needs to 

be minimized or maximized:   
 

           min f(x)     or     max f(x)                     (1) 

 

where x   R
n
 is a real vector with d ≥ 1 

components, and f : R
n 

R is an objective function. 
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If there are constraints on parameter values, the 

optimization problem is referred to as constrained. 

These constraints make certain values illegal that 

might otherwise be the global optimum. Constrained 

problems can be defined as follows [1]: 

           min f(x), x=(x1, …, xn)R
n
            (2) 

where xF S is a real vector with d≥1 

components, S   R
n
. R

n
 is defined by lower and 

upper bounds for variables: 

              lbi ≤ xi ≤ ubi,     1 ≤ i ≤ n           (3) 

and the feasible region F S is defined by a set of m 

linear or nonlinear constraints: 

           gj(x) ≤ 0, for j = 1, . . . , q 

          hj(x) = 0, for j = q + 1, . . .,m           (4) 

where q is the number of inequality constraints and 

m-q is the number of equality constraints. 

Many optimization methods have been 

developed. Among the latest are metaheuristics that 

are designed to deal with complex optimization 

problems where other optimization methods have 

failed to be either effective or efficient [2]. 

Metaheuristics can be applied to a wide variety of 

practical problems where they achieve respective 

results. With the progress of metaheuristics such as 

tabu search, genetic algorithms and simulated 

annealing, the primary challenge has become the 

adaptation of metaheuristics to a specific problem.  

That adaptation is usually much easier than 
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developing a specialized heuristic for specific 

problem, which makes metaheuristics appealing 

choice for implementation in general applications 

[2]. They can successfully be applied to continuous 

as well to discrete optimization problems [3]. 

Population based metaheuristics is a class of 

algorithms that work with a population of possible 

solutions trying to improve them in an iterative 

process. Swarm intelligence is a subclass of 

population based metaheuristics that is inspired by 

animal colony systems such as flock of birds, school 

of fish, colony of ants, bee hive or cuckoos. Swarm 

intelligence can be defined as artificial intelligence 

based system which relays on the collective 

behavior of decentralized, self-organized natural 

systems [4]. Swarm intelligence system is composed 

of many homogenous components called artificial 

agents. Local interaction between agents is based on 

simple rules. Collectively, agents produce complex 

interactions and behavior which lead whole system 

to the desired result. Swarm intelligence is 

sometimes used in conjunction with other 

algorithms, for example with genetic algorithms 

(GA) [5]. 

One of the pioneers of swarm intelligence 

algorithms is particle swarm optimization (PSO) 

proposed by Kennedy and Eberhart [6]. This 

algorithm models social behavior of fish schooling 

or bird flocking and can search very large spaces of 

candidate solutions.  

Artificial bee colony (ABC) algorithm is 

metaheuristics that simulates behavior of honey bee 

swarm [7]. In this algorithm, three types of bees 

carry on the search process: employed bees, 

onlookers and scouts. ABC algorithm, as well as its 

modifications, has been proven very successful with 

constrained optimization problems [8], [9]. 

Cuckoo search (CS) is a novel optimizing 

algorithm developed by Yang and Deb [10]. It is 

one of the latest swarm intelligence algorithms and 

has not been researched enough yet [11]. We 

investigate in this paper how CS algorithm behaves 

in multithreaded environment. We present 

parallelized implementation of CS algorithm and 

how this multithreaded adaptation of CS 

metaheuristics show substantial improvement over 

traditional CS. 

This paper consists of four sections. Necessary 

theoretical discussion about optimization and 

metaheuristics is in Section 1. Section 2 is the core 

of our paper, where we show both, traditional CS 

algorithm and its parallelized implementation. 

Section 3 contains results of numerical experiments 

where we tested our algorithm on continuous 

unconstrained optimization problems. Finally, 

Section 4 concludes this paper.   

2 Original and Parallelized CS 

Algorithm 
Cuckoo’s behavior in nature was inspiring source 

for developing CS algorithm. Cuckoos are 

characterized by aggressive reproduction strategy. 

Females often use another species nests for laying 

fertilized eggs. In that way, another species raise 

cuckoo’s brood. This phenomenon is called brood-

parasitism and it manifests in different forms. If the 

host belongs to the same species as intruder, it is the 

form of intraspecific brood-parasitism. Otherwise, it 

is kind of interspecific brood-parasitism.  

If host bird discovers intruder’s eggs, it will 

either throw them away or abandon its own nest and 

move away. Some parasite cuckoo species lay eggs 

that mimic the appearance of eggs of their favored 

hosts, thus avoiding removal of their eggs by host 

species. This cuckoos’ feature increases their 

fertility by reducing the probability of their eggs 

being discovered by the host bird. One example of 

such behavior is brood-parasitic Tapera [12]. 

Cuckoo’s chicks can also mimic the call of host’s 

chick. This enables them to gain more food from the 

host parent. Timing of laying eggs by cuckoos is 

also very important factor. Cuckoos hatch their eggs 

earlier than hosts. Following aggressive approach, 

they evict host eggs by throwing them out of the 

nest. This increases the cuckoo chick’s share of food 

provided by its host bird.  

In order to construct CS algorithm, 

understanding of cuckoo’s foraging behavior is also 

necessary. The foraging route of cuckoos is random 

walk because the next step is based on the current 

location and the probability of moving to the next 

location. Actually, cuckoos use special type of 

random walk - Lévy flights, where step-lengths are 

distributed according to a heavy-tailed probability 

distribution [13]. Specifically, the distribution used 

is a power law of the form     y = x 
-α

 , where 1 < α < 

3, and therefore has an infinite variance. Many 

flying animals use this type of foraging trajectory. 

 

 

2.1. Original CS Algorithm 
For successful implementation of CS algorithm, 

three idealized rules must be applied [14]: 
 

• Only one egg at a time is laid by cuckoo. 

Cuckoo dumps its egg in a randomly chosen 

nest. 

• Only the best nests with high quality eggs will 

be passed into the next generation. 
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• The number of available host nests is fixed. Egg 

laid by a cuckoo bird is discovered by the host 

bird with a probability pd   [0,1]. In this case, 

the host bird has two options. It can either throw 

the egg away, or it may abandon the nest. 
 

Last rule can be approximated by the fraction of 

pd of n nests that are replaced by new nests with new 

random solutions. Here, we use simple represen-

tation where one egg in a nest models a solution, 

and a cuckoo egg represents a new solution. Goal is 

to use the new and potentially better solutions to 

replace worse solutions (eggs in the nests).   

 The process of generating new solutions x
(t+1)

  

for a cuckoo i,  is performed with Lévy flight 

according to the following equation: 
 

               xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ),                      (5) 
 

where α (α>0) represents a step size. This step size 

should be related to the scales of problem the 

algorithm is trying to solve. In most cases, α can be 

set to the value of 1. The product ^ represents entry-

wise multiplications. Described random walk via 

Lévy flight used here efficient in exploring the 

search space as its step length is much longer in the 

long run. 

The random step length is drawn from a Lévy 

distribution which has an infinite variance with an 

infinite mean [14]:  
 

                      Lévy ~ u = t 
-λ
                         (6) 

   

where λ   (0,3]. 

Using presented theoretical background, pseudo 

code for CS algorithm can be summarized as: 
 

   Start 
       Objective function f(x), x= (x1,x2…xu)T 
       Generating initial population of n host nests xi 

              (i=1,2,…n) 
   While (t<MaxGenerations) and (! termin.condit.) 
       Move a cuckoo randomly via Lévy flights 
       Evaluate its fitness Fi   
       Randomly choose nest among n available nests    
         (for example j)  
       If(Fi > Fj) Replace j by the new solution; 
       Fraction pd  of worse nests are abandoned and    
         new nests are being built; 
       Keep the best solutions or nests with quality  
         solutions; 
       Rank the solutions and find the current best  
   End while 
   Post process and visualize results 
   End  
 

 

2.2. Parallelized CS Algorithm 
Ideal processor for programing has one very fast 

core, but in reality, it is very hard to build such 

CPU. In real life it is much easier and chipper to 

produce processor with n cores, each of speed k, 

than one core of speed n * k.  

In last 5 years, processors with multiple cores 

have become very popular. They are much cheaper, 

and have less power consumption. Bio inspired 

search algorithms ware always suitable for 

parallelization, but with multicore processors 

paradigm, implementation of parallelized population 

based algorithms increased. Many of population 

based algorithm ware parallelized, such as genetic 

algorithms (GA) [15], ACO [16], [17], PSO [18] 

and ABC [19]. Parallelization of these algorithms 

showed great successes, especially for continuous 

optimization problems, both constrained and 

unconstrained.  

The aim of parallelization is to cut down 

execution time of algorithm, to obtain better results, 

or both. Population based algorithm should be run 

more than once, because they are not deterministic. 

Final result is usually the best result from multiple 

runs.  Hence the execution of population based 

algorithm takes some time. Running those 

algorithms in parallel can be very productive.  

Methods that can speed the execution basically 

are trying to run evaluation function simultaneously 

for as many individuals as possible. The idea that 

comes first is to run calculation of objective 

function for every individual in population in 

separate thread. This approach showed some 

significant shortcomings. Population based 

algorithms usually have between 20 and 100 

individuals in population, and managing such large 

number of threads usually exceeds CPU costs of 

serial execution of algorithm. In this paper we 

propose a different approach. Every run of the 

algorithm is presented as a separate thread, and 

threads have no communication between themselves 

at all. CS algorithm is very suitable for this kind of 

parallelization. Every iteration of algorithm runs as 

separate thread with different random seed. After all 

threads are over, best, mean and worst solution is 

calculated. The speed increases almost as many 

times as there are execution cores in system, but if 

only one iteration of algorithm is executing, or 

algorithm is running on single core system, there is 

no speed gain at all.  

Other way of parallelization of bio inspired 

heuristics is to try to run more than one population 

on same search space and to find better ratio 

between exploration and exploitation. This is 

usually done by dividing main population in certain 
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number of subpopulations. This method is used in 

our algorithm. CS algorithm can achieve good 

results even with small number of cuckoos. 

Therefore, it can be divided in 4 sub-flocks easily. 

Every sub flock is running standard CS algorithm on 

the same search space with different random seed. 

After certain number of generations, the results from 

all flocks are copied into one array, that array is 

sorted by the quality of the results, and top quarter 

of array is copied back to flocks. The flocks then 

continue to execute standard CS algorithm with 

these results as input. The sub-flocks continue their 

search from best results from all sub-flocks as 

starting point. Our experiments showed that best 

results are obtained when synchronization is 

performed after 500 to 1000 cycles. This method 

prevents trapping into local optimum.  

 

 

3 Experiments 
In this section, we show experimental results which 

validate performance of our parallelized CS 

approach. 

 

 

3.1 Benchmarks 
For testing purposes, we used four standard 

benchmark functions for unconstrained continuous 

optimization: 
 

 Ackley  

 Sphere 

 Rastrigin 

 Griewank  
 

Ackley function is a continuous, multimodal 

function obtained by modulating an exponential 

function with a cosine wave of moderate amplitude. 

Formulation: 

f(x)= - 20exp(    √
 

 
∑   

  
   ) –  

- exp (
 

 
∑            

   )       
 

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2,…,xn) = (0, 0, . . .  , 0). 

 

Sphere function that is continuous, convex and 

unimodal. Formulation:   
 

f(x)=∑   
  

    
 

Global minimum value for this function is 0 and 

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0). 

 

Rastrigin function is based on Sphere function 

with the addition of cosine modulation to produce 

many local minima. Definition: 
 

f(x) = 10n + ∑    
  

                   

The global minimum value for this function is 0 

and the corresponding global optimum solution is 

xopt =(x1, x2, . . . , xn) = (0, 0, . . .  , 0). 

 

Griewank is third test function. Definition:  
 

f(x) = ∑
  

 

    
  ∏       

 
   

 
    √       

 

The global minimum value for this function is 0 

and the corresponding global optimum solution is  

xopt =(x1, x2, . . . , xn) = (100, 100, . . .  , 100).  

 

 

3.2 Parameter Settings and Testing Results 
All of the parallelization approaches have been 

implemented using Java programming language. In 

the Java programming language, concurrent 

programming is mostly concerned with threads. 

Threads are sometimes called lightweight processes. 

Both processes and threads provide an execution 

environment, but creating a new thread requires 

fewer resources than creating a new process. For 

test purposes, we created test application in Java 

programming language based on Yang’s and Deb’s 

software in Matlab. Tests were done on Intel I7-

2600k processor with 8GB of RAM on Windows 7 

x64 Operating System and NetBeans 7.0.1 IDE. The 

parameters of algorithm are given in table 1.  
 

 

Parameter Value 

Number of function evaluation calls 500,000 

Colony size 40 

pd 0.25 

Number of runs with different seeds 30 

Number of function parameters 5,10,50,500 
 

Table 1: Parameter settings 
 

In Table 2, results for speed improvements are 

illustrated. Comparison is shown against standard 

version of CS algorithm, and it is given for different 

number of parameters of objective function. The 

results show the execution time for 30 runs given in 

seconds.  

There is noticeable decrease in execution times 

for almost any combination of objective function 

and number of parameters. Since Intel I7-2600K 

processor has 4 physical and 4 logical cores, the 

ideal case would be the one in which parallel 

execution of algorithm is running 4 to 8 time faster 

than serial one. On this system in same cases 

parallel runs are executing more than 6 times faster.  
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When algorithm is used for objective functions 

with smaller number of parameters or for fairly 

simple objective functions, like Sphere function, 

more CPU resources is used for creating and 

synchronizing threads than for serial runs of CS 

algorithm. This is especially noticeable when 

Sphere function is used for 5, 10 and 50 parameters. 

Speed gains are starting to show only when number 

of parameters is set to 500.  Since this method of 

parallelization has no impact on quality of results, 

comparison of results are omitted. 
 
 

Function Number of 

parameters 

Serial 

runs 

(seconds) 

Parallel 

runs 

(seconds) 

Speed 

increase 

Ackley 

5 108,1 106,5 1,013786 

10 159,4 97,0 1,638939 

50 345,8 57,9 5,963531 

500 2274,0 387,2 5,873623 

Griewank 

5 153,7 112,6 1,358766 

10 195,1 98,8 1,974645 

50 603,2 93,4 6,457422 

500 4509,6 710,7 6,344098 

Rastrigin 

5 144,5 102,8 1,400854 

10 207,2 133,8 1,546700 

50 435,9 76,6 5,675302 

500 3975,3 678,2 5,861422 

Sphere 

5 21,8 89,4 0,234987 

10 48,0 89,8 0,534789 

50 87,2 115,5 0,753521 

500 207,7 139,0 1,489253 
 

Table 2: Speed test results 
 

Tables 3 and 4 show the results obtained for 

multiple flocks approach.  

 
 

Function NP = 5 

Standard MF 

Ackley Best 

Mean 

Worst 

Stdev. 

0 

0 

0 

0 

0 

0 

0 

0 

Griewank Best 

Mean 

Worst 

Stdev. 

2.0572E-12 

4.6408E-12 

5.9026E-12 

0 

0 

0 

0 

0 

Rastrigin Best 

Mean 

Worst 

Stdev. 

3.5786E-11 

5.2348E-11 

6.9383E-11 

0 

0 

0 

0 

0 

Sphere Best 

Mean 

Worst 

Stdev. 

0 

0 

0 

0 

0 

0 

0 

0 
 

Table 3: Results for tests – 5 parameters 
 

This method is trying to find better results than 

standard CS algorithm. Comparison between 

standard CS algorithm and multiple flocks approach 

is presented on different objective functions with 

various numbers of parameters. In order to make the 

comparison clearer, values below E-12 were 

assumed to be 0. 

Results presented in Tables 3 and 4 show that 

multiple flocks approach can easily outperform 

standard CS algorithm, both in quality and 

consistency of results. Multiple flock modification 

of CS algorithm reached better results for every 

combination of benchmark function and 

dimensionality of search space. 
 

 

Function NP = 10 NP = 50 

Standard MF Standard MF 

Ackley Best 

Mean 

Worst 

Stdev 

3.5126E-12 

5.4467E-12 

6.9329E-12 

0 

0 

0 

0 

0 

2.6781E-11 

4.8050E-11 

1.5262E-10 

3.3662E-12 

0 

0 

0 

0 

Griewank Best 

Mean 

Worst 

Stdev 

2.8024E-11 

3.0716E-11 

5.5676E-11 

0 

0 

0 

0 

0 

1.5847E-10 

7.6320E-10 

3.7878E-9 

6.5890E-11 

0 

0 

0 

0 

Rastrigin Best 

Mean 

Worst 

Stdev 

2.0176E-10 

3.4511E-10 

5.6471E-10 

8.5984E-11 

0 

0 

0 

0 

1.5790E-9 

3.6750E-9 

5.6276E-9 

1.6282E-10 

0 

0 

0 

0 

Sphere Best 

Mean 

Worst 

Stdev 

3.2851E-12 

5.4185E-12 

6.1045E-12 

0 

0 

0 

0 

0 

3.9943E-11 

5.5326E-11 

7.5737E-11 

0 

0 

0 

0 

0 
 

Table 4: Result for tests – 10 and 50 parameters 

 

 

4 Conclusion 
In this paper we presented parallelized 

implementation of the CS algorithm for 

unconstrained optimization problems. The 

performance of this algorithm was investigated 

through the set of several experiments on well-

known benchmark problems. The results obtained 

by this multithreaded algorithm are satisfying. It 

outperforms original, single threaded CS algorithm 

in both, speed and quality of results tests.  
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