

Parallelized Cuckoo Search Algorithm for Unconstrained Optimization

 Milos SUBOTIC
 1

, Milan TUBA
 2

, Nebojsa BACANIN
 3

, Dana SIMIAN
 4

1,2,3

 Faculty of Computer Science
4

Department of Computer Science

 University Megatrend Belgrade Lucian Blaga University of Sibiu

 Bulevar umetnosti 29, N. Belgrade 5-7 dr. I. Ratiu str., Sibiu

 SERBIA ROMANIA
 1

milos.subotic@gmail.com,
2
tuba@ieee.org,

3
nbacanin@megatrend.edu.rs,

4 dana.simian@ulbsibiu.ro

Abstract: - Modifications that introduce parallelization of standard cuckoo search algorithm are proposed in this

paper. Basic form of the cuckoo search algorithm has already shown great potential for optimization problems,

especially when applied to unconstrained continuous functions. In this paper two aspects of parallelization are

proposed. The first one addresses the performance issue, while the second one deals with quality of results.

Multicore processors became standard today. When different runs of algorithm execute within different threads,

better performance can be reached. Second issue refers to multiple flocks approach that combines search results

from two or more flocks. Set of well-known unconstrained continuous benchmark function is used to illustrate

testing results of the proposed parallelized cuckoo search algorithm.

Key-Words: - Cuckoo search, Parallelization, Unconstrained optimization, Swarm intelligence, Metaheuristics

1 Introduction
Optimization has been interesting topic for

researches over decades. Mathematical optimization

refers to choosing the best element from the

collection of available elements. The most

straightforward case of optimization is minimization

or maximization of real function.

If variables of the function that is to be optimized

are considered, optimization can be discrete or

continuous. The first is also known as combinatorial

optimization because we are looking for an array or

set of discrete objects such as integers, permutations

or graphs that improve objective function value.

Continuous optimization can use real values.

Continuous optimization problems are widespread

in mathematical modeling of real systems and have

been successfully applied in many practical

applications. Numerical optimization can be further

divided into two groups: unconstrained and

constrained. In unconstrained optimization no

limitations on the values of the parameters exist.

Under such condition, an objective function needs to

be minimized or maximized:

 min f(x) or max f(x) (1)

where x R
n
 is a real vector with d ≥ 1

components, and f : R
n

R is an objective function.

This research is supported by Ministry of Education and

Science, Republic of Serbia, Project No. III-44006

If there are constraints on parameter values, the

optimization problem is referred to as constrained.

These constraints make certain values illegal that

might otherwise be the global optimum. Constrained

problems can be defined as follows [1]:

 min f(x), x=(x1, …, xn)R
n
 (2)

where xF S is a real vector with d≥1

components, S R
n
. R

n
 is defined by lower and

upper bounds for variables:

 lbi ≤ xi ≤ ubi, 1 ≤ i ≤ n (3)

and the feasible region F S is defined by a set of m

linear or nonlinear constraints:

 gj(x) ≤ 0, for j = 1, . . . , q

 hj(x) = 0, for j = q + 1, . . .,m (4)

where q is the number of inequality constraints and

m-q is the number of equality constraints.

Many optimization methods have been

developed. Among the latest are metaheuristics that

are designed to deal with complex optimization

problems where other optimization methods have

failed to be either effective or efficient [2].

Metaheuristics can be applied to a wide variety of

practical problems where they achieve respective

results. With the progress of metaheuristics such as

tabu search, genetic algorithms and simulated

annealing, the primary challenge has become the

adaptation of metaheuristics to a specific problem.

That adaptation is usually much easier than

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 151

developing a specialized heuristic for specific

problem, which makes metaheuristics appealing

choice for implementation in general applications

[2]. They can successfully be applied to continuous

as well to discrete optimization problems [3].

Population based metaheuristics is a class of

algorithms that work with a population of possible

solutions trying to improve them in an iterative

process. Swarm intelligence is a subclass of

population based metaheuristics that is inspired by

animal colony systems such as flock of birds, school

of fish, colony of ants, bee hive or cuckoos. Swarm

intelligence can be defined as artificial intelligence

based system which relays on the collective

behavior of decentralized, self-organized natural

systems [4]. Swarm intelligence system is composed

of many homogenous components called artificial

agents. Local interaction between agents is based on

simple rules. Collectively, agents produce complex

interactions and behavior which lead whole system

to the desired result. Swarm intelligence is

sometimes used in conjunction with other

algorithms, for example with genetic algorithms

(GA) [5].

One of the pioneers of swarm intelligence

algorithms is particle swarm optimization (PSO)

proposed by Kennedy and Eberhart [6]. This

algorithm models social behavior of fish schooling

or bird flocking and can search very large spaces of

candidate solutions.

Artificial bee colony (ABC) algorithm is

metaheuristics that simulates behavior of honey bee

swarm [7]. In this algorithm, three types of bees

carry on the search process: employed bees,

onlookers and scouts. ABC algorithm, as well as its

modifications, has been proven very successful with

constrained optimization problems [8], [9].

Cuckoo search (CS) is a novel optimizing

algorithm developed by Yang and Deb [10]. It is

one of the latest swarm intelligence algorithms and

has not been researched enough yet [11]. We

investigate in this paper how CS algorithm behaves

in multithreaded environment. We present

parallelized implementation of CS algorithm and

how this multithreaded adaptation of CS

metaheuristics show substantial improvement over

traditional CS.

This paper consists of four sections. Necessary

theoretical discussion about optimization and

metaheuristics is in Section 1. Section 2 is the core

of our paper, where we show both, traditional CS

algorithm and its parallelized implementation.

Section 3 contains results of numerical experiments

where we tested our algorithm on continuous

unconstrained optimization problems. Finally,

Section 4 concludes this paper.

2 Original and Parallelized CS

Algorithm
Cuckoo’s behavior in nature was inspiring source

for developing CS algorithm. Cuckoos are

characterized by aggressive reproduction strategy.

Females often use another species nests for laying

fertilized eggs. In that way, another species raise

cuckoo’s brood. This phenomenon is called brood-

parasitism and it manifests in different forms. If the

host belongs to the same species as intruder, it is the

form of intraspecific brood-parasitism. Otherwise, it

is kind of interspecific brood-parasitism.

If host bird discovers intruder’s eggs, it will

either throw them away or abandon its own nest and

move away. Some parasite cuckoo species lay eggs

that mimic the appearance of eggs of their favored

hosts, thus avoiding removal of their eggs by host

species. This cuckoos’ feature increases their

fertility by reducing the probability of their eggs

being discovered by the host bird. One example of

such behavior is brood-parasitic Tapera [12].

Cuckoo’s chicks can also mimic the call of host’s

chick. This enables them to gain more food from the

host parent. Timing of laying eggs by cuckoos is

also very important factor. Cuckoos hatch their eggs

earlier than hosts. Following aggressive approach,

they evict host eggs by throwing them out of the

nest. This increases the cuckoo chick’s share of food

provided by its host bird.

In order to construct CS algorithm,

understanding of cuckoo’s foraging behavior is also

necessary. The foraging route of cuckoos is random

walk because the next step is based on the current

location and the probability of moving to the next

location. Actually, cuckoos use special type of

random walk - Lévy flights, where step-lengths are

distributed according to a heavy-tailed probability

distribution [13]. Specifically, the distribution used

is a power law of the form y = x
-α

 , where 1 < α <

3, and therefore has an infinite variance. Many

flying animals use this type of foraging trajectory.

2.1. Original CS Algorithm
For successful implementation of CS algorithm,

three idealized rules must be applied [14]:

• Only one egg at a time is laid by cuckoo.

Cuckoo dumps its egg in a randomly chosen

nest.

• Only the best nests with high quality eggs will

be passed into the next generation.

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 152

• The number of available host nests is fixed. Egg

laid by a cuckoo bird is discovered by the host

bird with a probability pd [0,1]. In this case,

the host bird has two options. It can either throw

the egg away, or it may abandon the nest.

Last rule can be approximated by the fraction of

pd of n nests that are replaced by new nests with new

random solutions. Here, we use simple represen-

tation where one egg in a nest models a solution,

and a cuckoo egg represents a new solution. Goal is

to use the new and potentially better solutions to

replace worse solutions (eggs in the nests).

 The process of generating new solutions x
(t+1)

for a cuckoo i, is performed with Lévy flight

according to the following equation:

 xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ), (5)

where α (α>0) represents a step size. This step size

should be related to the scales of problem the

algorithm is trying to solve. In most cases, α can be

set to the value of 1. The product ^ represents entry-

wise multiplications. Described random walk via

Lévy flight used here efficient in exploring the

search space as its step length is much longer in the

long run.

The random step length is drawn from a Lévy

distribution which has an infinite variance with an

infinite mean [14]:

 Lévy ~ u = t
-λ
 (6)

where λ (0,3].

Using presented theoretical background, pseudo

code for CS algorithm can be summarized as:

 Start
 Objective function f(x), x= (x1,x2…xu)T
 Generating initial population of n host nests xi

 (i=1,2,…n)
 While (t<MaxGenerations) and (! termin.condit.)
 Move a cuckoo randomly via Lévy flights
 Evaluate its fitness Fi
 Randomly choose nest among n available nests
 (for example j)
 If(Fi > Fj) Replace j by the new solution;
 Fraction pd of worse nests are abandoned and
 new nests are being built;
 Keep the best solutions or nests with quality
 solutions;
 Rank the solutions and find the current best
 End while
 Post process and visualize results
 End

2.2. Parallelized CS Algorithm
Ideal processor for programing has one very fast

core, but in reality, it is very hard to build such

CPU. In real life it is much easier and chipper to

produce processor with n cores, each of speed k,

than one core of speed n * k.

In last 5 years, processors with multiple cores

have become very popular. They are much cheaper,

and have less power consumption. Bio inspired

search algorithms ware always suitable for

parallelization, but with multicore processors

paradigm, implementation of parallelized population

based algorithms increased. Many of population

based algorithm ware parallelized, such as genetic

algorithms (GA) [15], ACO [16], [17], PSO [18]

and ABC [19]. Parallelization of these algorithms

showed great successes, especially for continuous

optimization problems, both constrained and

unconstrained.

The aim of parallelization is to cut down

execution time of algorithm, to obtain better results,

or both. Population based algorithm should be run

more than once, because they are not deterministic.

Final result is usually the best result from multiple

runs. Hence the execution of population based

algorithm takes some time. Running those

algorithms in parallel can be very productive.

Methods that can speed the execution basically

are trying to run evaluation function simultaneously

for as many individuals as possible. The idea that

comes first is to run calculation of objective

function for every individual in population in

separate thread. This approach showed some

significant shortcomings. Population based

algorithms usually have between 20 and 100

individuals in population, and managing such large

number of threads usually exceeds CPU costs of

serial execution of algorithm. In this paper we

propose a different approach. Every run of the

algorithm is presented as a separate thread, and

threads have no communication between themselves

at all. CS algorithm is very suitable for this kind of

parallelization. Every iteration of algorithm runs as

separate thread with different random seed. After all

threads are over, best, mean and worst solution is

calculated. The speed increases almost as many

times as there are execution cores in system, but if

only one iteration of algorithm is executing, or

algorithm is running on single core system, there is

no speed gain at all.

Other way of parallelization of bio inspired

heuristics is to try to run more than one population

on same search space and to find better ratio

between exploration and exploitation. This is

usually done by dividing main population in certain

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 153

number of subpopulations. This method is used in

our algorithm. CS algorithm can achieve good

results even with small number of cuckoos.

Therefore, it can be divided in 4 sub-flocks easily.

Every sub flock is running standard CS algorithm on

the same search space with different random seed.

After certain number of generations, the results from

all flocks are copied into one array, that array is

sorted by the quality of the results, and top quarter

of array is copied back to flocks. The flocks then

continue to execute standard CS algorithm with

these results as input. The sub-flocks continue their

search from best results from all sub-flocks as

starting point. Our experiments showed that best

results are obtained when synchronization is

performed after 500 to 1000 cycles. This method

prevents trapping into local optimum.

3 Experiments
In this section, we show experimental results which

validate performance of our parallelized CS

approach.

3.1 Benchmarks
For testing purposes, we used four standard

benchmark functions for unconstrained continuous

optimization:

 Ackley

 Sphere

 Rastrigin

 Griewank

Ackley function is a continuous, multimodal

function obtained by modulating an exponential

function with a cosine wave of moderate amplitude.

Formulation:

f(x)= - 20exp(√

∑

) –

- exp (

∑

)

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2,…,xn) = (0, 0, . . . , 0).

Sphere function that is continuous, convex and

unimodal. Formulation:

f(x)=∑

Global minimum value for this function is 0 and

optimum solution is xopt =(x1, x2,…,xn) = (0, 0, .. , 0).

Rastrigin function is based on Sphere function

with the addition of cosine modulation to produce

many local minima. Definition:

f(x) = 10n + ∑

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (0, 0, . . . , 0).

Griewank is third test function. Definition:

f(x) = ∑

 ∏

 √

The global minimum value for this function is 0

and the corresponding global optimum solution is

xopt =(x1, x2, . . . , xn) = (100, 100, . . . , 100).

3.2 Parameter Settings and Testing Results
All of the parallelization approaches have been

implemented using Java programming language. In

the Java programming language, concurrent

programming is mostly concerned with threads.

Threads are sometimes called lightweight processes.

Both processes and threads provide an execution

environment, but creating a new thread requires

fewer resources than creating a new process. For

test purposes, we created test application in Java

programming language based on Yang’s and Deb’s

software in Matlab. Tests were done on Intel I7-

2600k processor with 8GB of RAM on Windows 7

x64 Operating System and NetBeans 7.0.1 IDE. The

parameters of algorithm are given in table 1.

Parameter Value

Number of function evaluation calls 500,000

Colony size 40

pd 0.25

Number of runs with different seeds 30

Number of function parameters 5,10,50,500

Table 1: Parameter settings

In Table 2, results for speed improvements are

illustrated. Comparison is shown against standard

version of CS algorithm, and it is given for different

number of parameters of objective function. The

results show the execution time for 30 runs given in

seconds.

There is noticeable decrease in execution times

for almost any combination of objective function

and number of parameters. Since Intel I7-2600K

processor has 4 physical and 4 logical cores, the

ideal case would be the one in which parallel

execution of algorithm is running 4 to 8 time faster

than serial one. On this system in same cases

parallel runs are executing more than 6 times faster.

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 154

When algorithm is used for objective functions

with smaller number of parameters or for fairly

simple objective functions, like Sphere function,

more CPU resources is used for creating and

synchronizing threads than for serial runs of CS

algorithm. This is especially noticeable when

Sphere function is used for 5, 10 and 50 parameters.

Speed gains are starting to show only when number

of parameters is set to 500. Since this method of

parallelization has no impact on quality of results,

comparison of results are omitted.

Function Number of

parameters

Serial

runs

(seconds)

Parallel

runs

(seconds)

Speed

increase

Ackley

5 108,1 106,5 1,013786

10 159,4 97,0 1,638939

50 345,8 57,9 5,963531

500 2274,0 387,2 5,873623

Griewank

5 153,7 112,6 1,358766

10 195,1 98,8 1,974645

50 603,2 93,4 6,457422

500 4509,6 710,7 6,344098

Rastrigin

5 144,5 102,8 1,400854

10 207,2 133,8 1,546700

50 435,9 76,6 5,675302

500 3975,3 678,2 5,861422

Sphere

5 21,8 89,4 0,234987

10 48,0 89,8 0,534789

50 87,2 115,5 0,753521

500 207,7 139,0 1,489253

Table 2: Speed test results

Tables 3 and 4 show the results obtained for

multiple flocks approach.

Function NP = 5

Standard MF

Ackley Best

Mean

Worst

Stdev.

0

0

0

0

0

0

0

0

Griewank Best

Mean

Worst

Stdev.

2.0572E-12

4.6408E-12

5.9026E-12

0

0

0

0

0

Rastrigin Best

Mean

Worst

Stdev.

3.5786E-11

5.2348E-11

6.9383E-11

0

0

0

0

0

Sphere Best

Mean

Worst

Stdev.

0

0

0

0

0

0

0

0

Table 3: Results for tests – 5 parameters

This method is trying to find better results than

standard CS algorithm. Comparison between

standard CS algorithm and multiple flocks approach

is presented on different objective functions with

various numbers of parameters. In order to make the

comparison clearer, values below E-12 were

assumed to be 0.

Results presented in Tables 3 and 4 show that

multiple flocks approach can easily outperform

standard CS algorithm, both in quality and

consistency of results. Multiple flock modification

of CS algorithm reached better results for every

combination of benchmark function and

dimensionality of search space.

Function NP = 10 NP = 50

Standard MF Standard MF

Ackley Best

Mean

Worst

Stdev

3.5126E-12

5.4467E-12

6.9329E-12

0

0

0

0

0

2.6781E-11

4.8050E-11

1.5262E-10

3.3662E-12

0

0

0

0

Griewank Best

Mean

Worst

Stdev

2.8024E-11

3.0716E-11

5.5676E-11

0

0

0

0

0

1.5847E-10

7.6320E-10

3.7878E-9

6.5890E-11

0

0

0

0

Rastrigin Best

Mean

Worst

Stdev

2.0176E-10

3.4511E-10

5.6471E-10

8.5984E-11

0

0

0

0

1.5790E-9

3.6750E-9

5.6276E-9

1.6282E-10

0

0

0

0

Sphere Best

Mean

Worst

Stdev

3.2851E-12

5.4185E-12

6.1045E-12

0

0

0

0

0

3.9943E-11

5.5326E-11

7.5737E-11

0

0

0

0

0

Table 4: Result for tests – 10 and 50 parameters

4 Conclusion
In this paper we presented parallelized

implementation of the CS algorithm for

unconstrained optimization problems. The

performance of this algorithm was investigated

through the set of several experiments on well-

known benchmark problems. The results obtained

by this multithreaded algorithm are satisfying. It

outperforms original, single threaded CS algorithm

in both, speed and quality of results tests.

References:

[1] Nocedal J., Wright J. S., Numerical

Optimization, Second Edition, Springer Berlin,

2006, p.669.

[2] Ólafsson S., Metaheuristics, Nelson and

Henderson Handbook on Simulation,

Handbooks in Operations Research and

Management Science VII, Elsevier, 2006. pp.

633-654.

[3] Chen T. Y., Cheng Y. L., Global optimization

using hybrid approach, WSEAS Transactions

on Mathematics, Vol. 7, Issue 6, 2008, pp. 254-

262.

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 155

[4] Bonabeau E., Dorigo M., Theraulaz G., Swarm

intelligence: from natural to artificial systems,

Oxford University Press, New York, 1999, p.

307.

[5] Cecilia R., Tenreiro Machado J. A., Crossing

Genetic and Swarm Intelligence Algorithms to

Generate Logic Circuits, WSEAS Transactions

on computers, Vol. 8, Issue 9, 2009, pp. 1419-

1428.

[6] Kennedy J., Eberhart R., Particle Swarm

Optimization, Proceedings of IEEE

International Conference on Neural Networks,

1995, pp. 1942–1948.

[7] Karaboga D., An idea based on honey bee

swarm for numerical optimization, Technical

Report TR06, Computer Engineering,

Department, Erciyes University, Turkey, 2005.

[8] Karaboga D., Akay B., A modified ABC for

constrained optimization problems, Applied

soft computing, Vol. 11, Issue 3, 2011, pp.

3021-3031.

[9] Stanarevic N., Tuba M., Bacanin N., Modified

artificial bee colony algorithm for constrained

problems optimization, International journal of

mathematical models and methods in applied

sciences, Vol. 5, Issue 3, 2011, pp. 644-651.

[10] Yang X. S., Deb S., Cuckoo search via Lévy
flights, In: Proc. of World Congress on Nature

& Biologically Inspired Computing (NaBIC),

2009, pp. 210-214.

[11] Tuba M., Subotic M., Stanarevic N., Modified

cuckoo search algorithm for unconstrained

optimization problems, Proceedings of the

European Computing Conference ECC’11,

Paris, France, 2011, pp. 263-268

[12] Payne R. B., Sorenson M. D., Klitz K., The

Cuckoos, Oxford University Press, 2005, p.

618.

[13] Pavlyukevich I. J., Cooling down Lévy flights,

J. of Physics A: Mathematical and Theoretical,

Vol. 40, No. 41, 2007, pp. 225-232.

[14] Yang X. S., Deb S., Engineering Optimization

by Cuckoo Search, Int. J. of Mathematical

Modeling and Numerical Optimization, Vol. 1,

No. 4, 2010, pp. 330–343.

[15] Sepehri N., Wan F.L.K, Lawrence P.D.,

Dumont G.A.M., Hydraulic compliance

identification using a parallel genetic

algorithm, Mechatronics, Vol. 4, Issue 6, 1994,

pp. 617–633

[16] Pedemonte M., Nesmachnow S., Cancela H., A

survey of parallel ant colony optimization,

Applied Soft Computing, Vol. 11, Issue 8,

2011, pp. 5181-5197.

[17] Jovanovic R., Tuba M., Simian D., Comparison

of Different Topologies for Island-Based Multi-

Colony Ant Algorithms for the Minimum

Weight Vertex Cover Problem, WSEAS

Transactions on computers, Vol. 9, Issue 1,

2010, pp. 83-92.

[18] Li B., Wada K., Communication latency

tolerant parallel algorithm for particle swarm

optimization, Parallel Computing, Vol. 37,

Issue 1, 2011, pp. 1-10.

[19] Subotic M., Tuba M., Stanarevic M, Different

approaches in parallelization of the artificial

bee colony algorithm, International Journal of

mathematical models and methods in applied

sciences, Vol. 5, Issue 4, 2011, pp. 755-762.

Recent Researches in Applied Information Science

ISBN: 978-1-61804-089-3 156

http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html

