
 

Channel Estimation in a DMT Based Power-Line Communication System Using 
Sparse Bayesian Regression 

 
Ashraf A. Tahat *, and Nikolaos. P. Galatsanos † 

* School of Electrical Engineering, Princess Sumaya University for Technology, Amman, Jordan. 
† Electrical and Computer Engineering Department, University of Patras, Rio, Greece. 

tahat@psut.edu.jo, and ngalatsanos@upatras.gr  
 

Abstract: - An enhanced power-line communications channel estimation method in discrete multi-tone 
(DMT) communication system based on sparse Bayesian regression is presented.  By exploiting a 
probabilistic Bayesian learning framework, the sparse model used provides an accurate model for channel 
estimation in presence of noise and consequently equalization.  We consider frequency domain equalization 
(FEQ) using the improved channel estimate at both the transmitter and receiver for a power-line system and 
compare the resulting bit error rate (BER) performance curves for both approaches and various  channel 
estimation techniques.  Simulation results show that the performance of the proposed method is superior to 
previous least squares based techniques. 
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1.  Introduction 
Power-line communications (PLC) have received a lot 

of attention recently, because they represent efficient and 
economic solutions for both access and local area 
networks.  PLC have been rapidly developing in the past 
few years as one of the most promising technologies to 
provide competitive techniques for numerous in-home 
communication applications that offer end-users a broad 
spectrum of services such as fast Internet access, voice-
over-IP, multimedia applications, home automation and 
energy management. The key advantage of powerlines is 
that they provide a “pre-installed” infrastructure of wires 
and wall outlets that are easy to access throughout a 
building. However, a PLC channel is characterized with 
strong frequency selective and different types of noise [1], 
[2]. 

Multi-carrier (MC) based systems are popular for 
wireline and wireless communications due to their many 
advantages.  At the present time, the MC transmission 
format as presented in [3] is more commonly known as 
Discrete Multi-tone (DMT) modulation or Orthogonal 
Frequency Division Multiplexing (OFDM).  Contrary to 
analog MC systems, an FFT-based DMT implementation 
permits considerable overlap between subchannels, and 
results in high bandwidth efficiency.  The use of DMT is 
well suited for PLC channels [4].  One of the advantages 
of DMT is its flexibility in loading bits onto the different 
tones taking into account the estimated signal-to-noise 
ratio (SNR).  The measurement of SNR is usually 
performed during the initialization phase of the modem 
during which the frequency response of the channel is also 
estimated.  To deliver high bit rates towards the user, 
DMT modems depend on advanced digital signal 
processing to mitigate several loop (channel) impairments 
such as: time dispersion, noise, echo and radio frequency 
interference (RFI).  In this paper, we use Bayesian 
regression with a sparse model to improve channel 
estimation when the SNR is low. A model with similar 
philosophy has been used in machine learning 

applications also and is known as the relevance vector 
machine (RVM) [5]. Sparse Bayesian models when used 
for regression avoid fitting noise in the presented signal 
by automatically setting to zero the appropriate regression 
coefficients [5], [6]. This is important for channel 
equalization problems in the moderate-low SNR case [7]. 
In such cases the available signal contains the desired 
channel response embedded in noise. We demonstrate 
with numerical examples that approach improves the 
probability of error performance as compared with the 
traditional Least Squares (LS) approach.  

 

2. System Model 
Consider the system block diagram shown in Figure 1, 

which represents a Discrete Multi-Tone (DMT) link that 
includes: a DMT modulator, the channel model, DMT 
demodulator, and frequency domain equalizer. 

 
 
 
 
 
 
 
 

Fig. 1-a: DMT system block diagram with FEQ at receiver 

 
 
 
 
 
 
 

Fig. 1-b: DMT system block diagram with FEQ at transmitter 
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2.1 The DMT Modulator 
DMT transmission [3] splits a high-rate data stream, R, 

into N lower rate streams transmitted simultaneously over 
subcarriers.  The symbol rate for any of the N data streams 
is R/N symbols/second, which are sent to an 2N-point 
inverse fast Fourier transform (IFFT) block. After zero 
padding complex conjugate symmetry is created around 
the center of the IFFT. This converts the N frequency-
domain complex in general data symbols into 2N time-
domain real-valued samples as shown in Figure 2.  A 
cyclic prefix (CP) of length v is pre-pended to the 2N 
point time domain samples to form the cyclically 
extended DMT symbol.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of the DMT modulator 
 
This is similar to the configuration used for DMT-based 
Asymmetric Digital Subscriber Line (ADSL), but with 
fixed modulation on each subchannel (i.e., QPSK).   The 
cyclic prefix length, v, is chosen to encompass the 
maximum delay spread of the channel to prevent 
intersymbol interference (ISI) and makes the DMT 
symbol appear periodic over the time span of interest. 
 

2.2 The PLC Channel Model 
The power-line network differs considerably in 

topology structure, and physical properties from 
conventional media such as twisted pair, coaxial, or fiber-
optic cables.  Therefore PLC channels have complex 
characteristics when high frequency signals are 
transmitted [2].  They have two undesired properties:  The 
first is low pass behavior caused by attenuation that 
increases with line length and frequency of transmitted 
signal.  The second is multipath propagation caused by 
impedance mismatches at the branches and unmatched 
line ends.  In addition, their characteristics depend on 
variety of other factors such as network structure, type of 
the lines used, and the locations of the transmitter and 
receiver.  Due to their complexity, a widely accepted 
model has not been known for PLC channel description. 
Only recently, models based on measurements were 
developed for signal transmission in the access domain 
[2], [8].  In this paper we will use the simplified PLC 
channel model described in [2] as: 
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where M is the total number of paths in the model, with 
corresponding path weighting factors gi, path lengths di 
and phase velocity vp.  Parameters a0, a1 and k describe 
the low pass characteristics of the channel.  Channel 
parameters are obtained through measurements and are 
defined in [2], for the set of reference channels extracted 
on the basis of statistically representative scenarios.  In 
the access domain, channels are defined for lengths of: 
150m, 250m, and 350m, and quality classes labeled as 
“good”, “medium” and “bad”, depending on the 
attenuation and the depth of notches in the frequency band 
25MHz.  PLC channel noise can be modeled using 
colored Gaussian noise with higher power values at lower 
frequencies.  The noise power spectral density is given by 

0/
10)( ffeNNfN −⋅+=   [8], where some typical values 

for the parameters N0, N1, and f0 are equal to -140dB/Hz, -
38dB/Hz, and 0.7MHz, respectively. This PLC channel 
model is simple and suitable for simulation and analysis 
of PLC system performance.  

2.3 Linear System Representation of Signal 
Transmission 

When the channel impulse response (CIR) is smaller 
than or equal in length to the CP length, v, the 2N DMT 
sampled-time points (Baud) and the channel are circularly 
convolved. This enables straight forward frequency 
domain channel equalization at the receiver.  However, 
when the order of the CIR is larger than the cyclic prefix, 
more complex equalization techniques are required [9].  In 
this paper, the PLC channel that we will consider has a 
CIR that does not exceed the CP.  Hence, insertion of the 
CP at the transmitter and then discarding the first v 
samples at the receiver gives the received real-valued 
sampled-time domain samples over one DMT data block 
(baud) as: 

 nCxr += ,  (2) 

where the vector  r = [ r0, r1, r2, …, r2N-1]T contains the 
received time domain samples, the vector x = [ x0, x1, x2, 
…, x2N-1]T contains the transmitted time domain samples, 
and the vector n = [ n0, n1, n2, …, n2N-1]T contains the 
samples of the band limited additive noise with average 
power (variance) σn

2 .  The matrix multiplication operator 
in (2) represents circular convolution without inter symbol 
interference (ISI).  The circulant matrix C ∈ ℜ2N×2N 

 
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01

01

10

00

0
0

00

hhh

h
h

h
hh

hhh

L

L

L

L

L

LL

MOOOOM

OM

M

LK

C

  , (3) 

can be diagonalized by pre- and post-multiplication with 
the 2N-point discrete Fourier transform (DFT) matrix, 
W2N , and inverse DFT (IDFT) matrix (W2N )-1 [9] i.e.,  
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where [ H0, H1, H2, …, H2N-1]T  is the frequency response 
of the channel. 
When the transmitted symbols are generated in the 
frequency domain (i.e.,  x =  W2N

-1 [ X0, X1, X2, …, X2N-

1]T), and the received samples are converted to the 
frequency domain ( i.e. , [ R0, R1, R2, …, R2N-1]T  = W2N r), 
we obtain the very simple input-output relationship:  
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or, alternatively as: 
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where  [ N0, N1, N2, …, N2N-1]T  = W2N  n .  From (5) and 
(6), we can see that each received frequency domain 
symbol on each of the sub-channels is simply a scaled 
version of the transmitted frequency domain symbol plus 
colored Gaussian noise.  Moreover, every sub-channel can 
be processed independently of the other sub-channels.  In 
other words, block transmission with CP has converted a 
time dispersive channel into 2N parallel, narrowband flat 
sub-channels, or tones each having a channel gain Hk  and 
additive Gaussian noise, hence the term discrete multi-
tone transmission (DMT). 

3. Channel Estimation 
During startup of the DMT modem, the receiver 

measures the quality of the signals received (SNR) on 
each tone and reports this information to the transmitter 
[1], this is repeated periodically for dynamic channels.  To 
estimate the channel during initialization, a pseudo-
random frequency-domain training (pilot) sequence, Xb(k), 
is employed.  Where Xb is some constant modulus 
frequency-domain training sequence (i.e., |Xb(k)| = 
constant for k = 0, 1, …, 2N-1)).  Here, without loss of 
generality, we normalize Xb so that |Xb(k)| = 1.  Now, the 
received pilot symbols can be expressed in vector form as: 

 NHXR += bb .  (7) 

In (7), Rb is the  2N × 1 received signal vector, the 
diagonal matrix Xb is the transmitted (pilot) signal, N is a 
vector containing the complex noise of the 2N  
subcarriers, and H is a vector that contains the overall 
complex channel gains between transmitter and receiver.    

The problem at hand is to estimate the frequency-
domain channel vector, Hk, ( k = 0, 1, 2, 3, ⋅⋅⋅, N-1 ) as the 
FFT of L unknown sample-spaced time-domain tap gains, 
where L is chosen to encompass the maximum expected 

delay spread, and  does not exceed the CP length, v.  The 
frequency-domain model of the channel for each of the 2N 
tones is given by: 
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where hn is channel tap at discrete time n. 
To perform channel estimation from (7), we start by 

multiplying each of the frequency-domain symbols by the 
conjugate of the training symbols to produce the vector Tb 
as [7]: 

 NXHXXRXT H
b

H
b

H
bb +== bb   ,   (9) 

where the superscript H, denotes conjugate-transpose.  
Because of the property of unitary magnitude of the 
training symbols, (9) can be expressed as:  

 NHRXT b
H
bb ′+== .  (10) 

In the noise-free case, Tb in (10) will contain the perfect 
frequency-domain channel gains.  Due to channel noise, 
Tb  contains the channel estimates that are corrupted by 
the additive noise, N′. This is equivalent to least squares 
(LS) estimation [11] in which no assumption about the 
channel impulse response length has been incorporated 
(i.e., hn can have values larger than zero for n =0, 1, …, 
2N-1). 
The LS estimator for the impulse response, H, minimizes 
the criterion (Rb-Xb H)H (Rb-Xb H) and is given by: 

 ( ) 1H H
LS b b b b

−
=H X X X R   ,  (11) 

where due to the unitary magnitude of the training 
symbols we have 

 .H
LS b b b= =H X R T  (12) 

When the values of the channel impulse response are 
forced to be zero for sample numbers larger than the 
cyclic prefix duration, v , then this will be equivalent to 
“modified LS” estimation [11].   
Our objective is to improve the performance of the 
channel estimation at low to moderate SNR after 
truncation of the channel impulse response to v.  
Specifically, we will use a model similar to the one used 
for the relevance vector machine method (RVM), [5] and 
[6]. We apply this model to DMT channel estimation by 
first taking the inverse Fourier transform of (10) to fit a 
regression model as follows: 

 'nhtb +=   , (13) 

where tb = [ t0, t1, t2, …, t2N-1]T , is the target vector time 
domain samples, h = [ h0, h1, h2, …, hv, 0, …, 0 ]T  is the 
2N × 1   channel vector, and the vector n′ = [ n0, n1, n2, …, 
n2N-1]T contains samples of the band-limited additive 
Gaussian noise with variance σ′2 . 

Recent Researches in Multimedia Systems, Signal Processing, Robotics, Control and Manufacturing Technology

ISBN: 978-960-474-283-7 106



 

In order to model h from the observations bt in (13) and 
avoid the effects of the noise, we will use sparse Bayesian 
regression. This approach has the property of setting the 
appropriate regression weights to zero automatically, 
avoiding the fitting of noise in the signal bt . 

Assume that the channel can be approximated using the 
function y(n) which is the linear combination of kernel 
functions as: 
 ( ) ( )i

i

y n w n iϕ= −∑  .         (14) 

This convolution that can be written in matrix vector as: 
 =y Φw   ,       (15) 
where w = [ w0, w1, w2, …,  wi ,  …, wv]T are the model 
weights, and Φ is the v × (v+1) convolution (design) 
matrix that is created from the kernel we select. One 
commonly used kernel is the Gaussian shaped given by: 
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However, there are many other choices [6].  Now, our 
model becomes: 

 ewΦeytb +=+=  .  (17) 

Where y = [ y0, y1, y2, …, yv]T is an approximation 
function and   e = [ e0, e1, e2, …, ev]T is the vector with the 
regression model error.   
The used Bayesian model assumes that the errors are 
modeled as independent identically distributed zero-mean 
Gaussian random variables, with variance σ2 so:  

 ∏
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The parameter σ2 can be set in advance if known, but can 
be also estimated from the data.  This error model implies 
a multivariate Gaussian likelihood for the target vector tb : 
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Maximum-likelihood estimation of w from (17) is 
equivalent to the Least Squares solution given by  

 ( ) 1T T
LS b

−
=w ΦΦ Φ t   ,  (20) 

and leads to severe over-fitting of the data [6].  
In order to overcome this problem a flexible Gaussian 
prior over the weights w and Bayesian inference will be 
used [6]. More specifically,  
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with α  a vector of v+1 hyperparameters [5], [6]. The 
flexibility of this prior is based on the fact that it uses a 
separate hyperparameter for every weight. 
The weights w are marginalized in according to 

2 2( ; , ) ( / ; ) ( ; )b bp p p dσ σ= ∫t a t w w a w .   (22) 
This integral can be found in closed form and is given by: 

 2 1( | , ) ( | , ),b bp Nσ − −= + 1 Tt α t 0 Β ΦΑ Φ  (23) 

where we have defined Α = diag( α0, α1, α2, …, αv ) , Β = 
σ2Iv, and Iv is the v × v identity matrix. The pdf 

2( | , )bp σt α is called the marginal likelihood (or 

evidence) for the hyperparameters 2 and σα [11]. 
Because the involved pdf’s are Gaussian calculation of the 
posterior in closed form is also possible and is given by: 

 ( )2( | , , ) | ,bp Nσ =w t α w μΣ ,  (24) 

with 

 1( )  and .T T
b

−= + =Σ Φ ΒΦ Α μ ΣΦ Β t   (25) 

The regression estimates obtained by Bayesian Inference 
are given by Φμ  where the hyperparameters 2and σα
used in μ  are the Maximum Likelihood (ML) estimates 
given the observations bt  and are found by maximizing 

2( , )bp σα t  [5]. However, maximization of (23) with 

respect to α and σ2, which is termed as the Type II ML  
[6], [11], is equivalent to finding the maximum of 

2( , )bp σα t  assuming a uniform hyperprior [5], [6].  

The values of α and σ2 which maximize (23) cannot be 
obtained in closed form. However, they can be found by 
stationary point analysis of (23) and yield the following 
iterative update equations [12]: 
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where μi is the ith  posterior mean weight from (25) and 
the quantities γi are defined by: 1i i iiγ α= − Σ with Σii the 
ith diagonal element of the posterior weight covariance 
from (25) computed with the current 2 and σα  values.  

The learning algorithm thus proceeds by repeated 
application of (25) and (26) until some convergence 
criteria have been satisfied [5], [13]. It can be shown that 
this iteration is equivalent to an expectation-maximization 
(EM) algorithm [6]. The E-step is (25) and the M-step is 
(26). This relation guarantees convergence of the 
proposed algorithm [6].  
An important property of this model is that typically the 
optimal value of most hyperparameters iα is infinite [5], 
[13]. From (25) this implies that the corresponding μi is 
zero. Thus, the regressor ( ) ( )1

v
ii

y n n iμ φ
=

= −∑  is sparse 
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since many its weights μi are zero.  In matrix from, the 
RVM channel estimate is expressed as: 

 RVMh =Φμ     (27) 

4.  Frequency-Domain Channel Equalization 
If the channel is known for the noise free case, we can 

perform the equalization by inverting (2) assuming C is 
non-singular.  The eigenvalues of the 2N × 2N circulant 
matrix are equal to the DFT coefficients of the first 
column [14].  Since the first column has the channel 
coefficients in ascending order, from (7) these eigenvalues 
are: 
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where W = e j2π/2N, and Hk represents the channel 
frequency response.  Note that hn = 0 for L < n < 2N.    
The circulant matrix C can be diagonalized with the DFT 
matrix [13] as was mentioned in (4) as : 

 [ ]{ } CNNN HHdiagC Λ== −
−

120
1

22 KWW  . (29) 

The diagonal elements of [ΛC]-1 are 1/ Hk , can be 
regarded as a set of DFT-domain equalizers.  Of course, in 
practice channel noise can be amplified by [ΛC]-1 if the 
coefficients, 1/ Hk, are large and frequency equalization is 
carried out at the receiver as in Figure 1-a, and in this 
version, the receiver has all the complexity.  The symbols 
are equalized in the frequency domain before detection as: 

 RΛX 1ˆ −= C
   ,                (30) 

where X̂ is a 2N × 1 vector, and R is a  2N × 1 received 
signal vector . 
 If the channel is known, we can move [ΛC]-1 to the 
transmitter [15], yielding a useful configuration for the 
cases where the receiver is simpler.  In addition, channel 
noise will not be amplified for this second version. This 
also results in superior performance as will be 
demonstrated in the simulation section.  The symbols are 
equalized in the frequency domain before modulation and 
transmission as: 

 XΛX 1−= C

(       (31) 

where  X̌  is a  2N × 1  symbols vector. 

5.  Simulation Results 
MATLAB® simulations are used to evaluate the 

performance of the DMT/RVM system. Following are the 
simulation parameters: 2N = 512 the DMT FFT size, v = 
64 is the Cyclic Prefix length.  The used sub channels 
consisted of tones 6 to 255, where each of the subcarriers 
uses a QPSK modulation scheme.  The additive channel 
noise is band limited colored Gaussian with power σn

2.  
The actual power-line channel length is L = 43. It was 
generated based on the model of equation (1) using 
parameters of a test network with physical length of 212 
meters and four path models from [2] as follows: k=1, 
a0=0 , a1=7.8 × 10-10 s/m, and path parameters gi= {0.64, 

0.38, -0.15, 0.05} and corresponding di/m={200, 222.4, 
244.8, 267.5}.  

In Figure 3, we present an example target vector time 
domain samples of equation (13), which in the noise-free 
case should be the actual impulse response of the channel 
and is superimposed on the same plot  

 
Fig. 3.  An example target vector 

 

 
Fig. 4.  Channel impulse response and its estimate obtained using the 

RVM method 

The channels were assumed to remain constant after each 
sounding using the pilot sequence. Figure 4 depicts the 
actual sampled-time domain channel in the cyclic prefix 
range where it is equal to zero for values of time larger 
than the cyclic prefix.  The target vector is also plotted in 
the same time range which is equivalent to the Least 
Squares (LS) estimate of the channel.  The proposed 
Bayesian sparse regression algorithm is used to process 
the target vector samples to filter out the noise at an SNR 
of 5 dB.  The locations of the non-zero regression weights 
are identified on the plot with circles. Notice that we use 
only 13 non-zero weights from a total of 65. The 
remaining 52 are set to zero by the sparse model. 
To demonstrate the effects of estimating the channel 
impulse response on the frequency attenuation of each 
subcarrier (and hence equalization), in Figure 5 we plot 
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the frequency response of the estimated channel, the 
actual channel, and the original noise corrupted channel. 
From Figure 5 we observe that in the frequency domain 
the estimated channel by the sparse model has smoother 
variation between adjacent tones and is closer to the 
desired frequency response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Frequency response of actual and estimated channel. 

 

When FEQ is implemented at the transmitter using the 
estimated channel at the receiver, BER performance 
curves (labeled TX-  ) demonstrate in Figure 6 the 
superior performance attained as a result of the more 
accurate sparse regression channel (RVM) estimate over 
the LS one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
Fig. 6. BER curves with equalization at transmitter and receiver. 

 
Also, the BER performance curve based on the actual 

channel (perfect estimate) is superimposed on the same 
plot of Figure 6 as a performance bench mark.  We also 
compare in Figure 6 the accuracy in channel estimation 
when FEQ is implemented at the receiver as compared to 
that at the transmitter.  We can make two observations: 
First, it is evident that FEQ at the transmitter is far 

superior to that at the receiver for the same channel 
estimate.  Second, the improved accuracy in channel 
estimation has limited effect on BER performance when 
FEQ is implemented at the receiver (labeled RX-  ), and 
BER curves are virtually identical for the actual channel, 
sparse regression channel estimate, and the LS channel 
estimate.  Low SNR of the attenuated subcarriers during 
the equalization process renders the improved channel 
accuracy not important in this case. 

 

6.  Conclusion 
In order to attain full use of available bandwidth in a 

power-line DMT data transmission system, channel 
equalization is a prerequisite. In this paper, an enhanced 
channel estimation method in DMT communication 
systems based on sparse Bayesian regression via the RVM 
method was presented.  This method provided improved 
accuracy in channel estimation for frequency equalization.  
Frequency domain equalization at the transmitter is more 
sensitive to the accuracy of channel estimation than at the 
receiver side and yields better BER performance curves.  
The performance of the proposed sparse regression 
method is superior to the traditional least squares 
technique. 

7. References 
[1] H. Hrasinca, A. Haidine, and R. Lehnert, Broadband Powerline 

Communications Networks. West Sussex, England: Wiley & 
Sons, 2004.  

[2] M. Zimmermann, K. Dostert, “A multipath model for the 
powerline channel,” IEEE Transactions on Communications, vol. 
50, pp. 553-559, April 2002.   

[3] S. Weinstein, and P. Ebert, “ Data transmission by frequency-
division multiplexing using the discrete Fourier transform,” IEEE 
Transactions on Communications Technology, vol. 19, pp. 628–
634, October 1971.  

[4] HomePlug Powerline Alliance, “HomePlug AV White Paper, ” 
2005  

[5]  M. Tipping, “Sparse Bayesian and the relevance vector 
machine,” Journal of Machine Learning Research, vol. 1, pp. 
211-244, September 2001. 

[6] C. Bishop, Pattern Recognition and Machine Learning. Secaucus, 
NJ: Springer-Verlag, 2006. 

[7] A. Tahat, and N. Galatsanos, “Relevenace Vector Machines for 
Enhanced BER in DMT Based Systems,” Journal of Electrical 
and Computer Engineering, vol. 2010, pp. 1-8, July 2010. 

[8] Theoretical postulations of PLC channel model, D4 OPERA 
project delivery, http://www.ist-opera.org/opera1, April 2005.    

[9]  T. Pollet, M. Peeters, M. Moonen, and L. Vandendorpe, 
“Equalization for DMT-based broadband modems,” IEEE 
Communications Mag., vol. 38, pp. 106–113, May 2000. 

[10] G. Golub and C. Van Loan, Matrix Computations (3rd edition). 
Baltimore, MD: The John Hopkins University Press, 1996.    

[11] J. de Beek, et. al., “On channel estimation in OFDM systems,” in 
Proc. IEEE Vehicular Technology Conference, Chicago, USA, 
Sept. 1995. pp. 815 - 819.   

[12]  J. Berger, Statistical Decision Theory and Bayesian Analysis. 
New York, NY: Springer, 1985. 

[13] A. Faul, M. Tipping, “Analysis of sparse Bayesian learning,” in 
Advances in Neural Information Processing Systems. Cambridge, 
MA: MIT Press, 2001, pp. 383-389.  

[14] A. Papoulis, Signal Analysis. New York, NY: McGraw Hill, 1977. 
[15] D. Love et. al., “An overview of limited feedback in wireless 

communication systems,” IEEE J.Sselected areas in 
Communications, vol. 26 , pp. 1341–1366, October 2008. 

 
. 

0 5 10 15 20 25 30 35 40
10-5

10-4

10-3

10-2

10-1

100

SNR (dB)

B
E

R

TX-LS
TX-Actual
TX-RVM
RX-RVM
RX-Actual
RX-LS

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Subcarrier Number (k)

|H
(k

)|

Actual
RVM
Noisy

Recent Researches in Multimedia Systems, Signal Processing, Robotics, Control and Manufacturing Technology

ISBN: 978-960-474-283-7 109




