
Voice Maps – the system for navigation of blind in urban area ̀

ANDRZEJ STEPNOWSKI, ŁUKASZ KAMIŃSKI and JERZY DEMKOWICZ
Department of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics Gdańsk

University of Technology
11/12 Narutowicza Street, 80-233 Gdańsk

POLAND
astep@pg.gda.pl kamyk@eti.pg.gda.pl demjot@eti.pg.gda.pl

Abstract: - The novel prototype application of the system supporting the street navigation and independent,
outdoor movement of the blind is presented. The system is capable of finding the route from the indicated
source to chosen destination, using dedicated digital map and a set of various sensors. Subsequently, the system
supports the movement of the blind along the found route. The user's position is obtained with the use of DGPS
receiver. In order to further improve accuracy, particle filtering method is used. The system operates on a casual
smartphone and communicates with the blind by the touch screen and by the voice messages generated by
speech synthesizer.

Key-Words: - Voice maps, street navigation of blind, GPS, smartphone, graph, particle filter, speech synthesis

1 State of the art
It is a problem of great importance to improve

the capability of independent, outdoor movement of
the blind. Usually, blind people are able to move
independently only along the routes which they
have already learnt together with a sighted guide.
That fact limits significantly their everyday life.
Blind people have a strong need to walk around by
themselves, even when they are in new location or
accidentally lost their way. Nowadays asking a
passer-by for help is the only solution, but we have
to be aware of the fact, that often there is nobody
around ready to help.

The usefulness of GPS as well as digital charts
applied for navigation support was discovered years
ago. Nowadays, the wide variety of different
software and hardware solutions is used in order to
make the land and street navigation easier. However,
they are mainly used for car navigation or tourist
support, and only a few companies or institutions
have tried to take advantage of the GPS in order to
support the self-dependent moving of the blind.

At present there are practically two products
accessible on the market which provide the
functionality for supporting the independent,
outdoor movement of the blind based on the digital
chart of the terrain and the GPS receiver. The first is
the “Sendero GPS”[1] developed by the Sendero
Group LLC, based on the Braille Note platform and
the second is the “Trekker” [2] by HumanWare
Group, based on palmtop with dedicated set of
buttons – Fig. 1. Those systems are capable of
supporting the movement of the blind by finding a

walk route from the source to the destination point,
assisting the user during his walk, and allowing to
explore the set of points of interest (POI) in the
surroundings. However, it must be pointed out that:

• Those systems are dedicated mainly for the
North American market.

• They use only one sensor type – the GPS
receiver – which does not ensure very high
accuracy of positioning in urban area.

• Those systems are characterized by very
high purchase cost – of a few thousands of
USD for a single unit.

• No dedicated direction sensors are used –
the GPS receiver can be used to obtain
azimuth, but that method is highly
inaccurate during very slow movement of
the pedestrian.

Fig. 1. Image of “Trekker” by the HumanWare
Group, showing how to use dedicated buttons [2]

In Poland, the “Nawigator” by MiGRAF is

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 201

used, but its functionality is poor in comparison
with “Sendero GPS” or “Trekker”. “Nawigator”
utilises the GPS receiver data and is able to record
in its memory the pedestrian’s route, in a form of the
coordinates of a set of points defining the path. Then
the system assists the blind during his walk along
the route, but the prior process of defining the route
in situ must be performed with help of a sighted
person – the guide.

2 System concept and architecture
The system architecture is presented in Fig. 2.

The developed system is composed of following
parts:

• Street Navigation Supporting System (the
main system) responsible for direct,
automatic assistance in moving of the blind
user,

• Database, responsible for collecting and
delivering necessary spatial data.

• Application for “in situ” data acquisition,
used by operator that collect precise spatial
data,

• OpenStreetMap service, that is used as a
data source for area, which haven't been yet
visited by operators.

The main system's crucial modules are:
• Spatial Data Cache, that stores the data in

the devices persistent memory.
• System Kernel implementing the algorithms

for path finding and supporting the user's
movement.

• GPS Unit providing the position of the user,
using GPS and DGPS receivers, prototype
version of inertial unit for places, where
signal from GPS satellites is not available
and particle filter, which further improves
accuracy.

• Compass Unit delivering the user's azimuth,
using either built-in or external sensors,
mainly magnetometers and electronic
compasses (it may depend on platform)

• Dedicated user interface, based on modern
smartphones capabilities (touch screen,

vibrations, speech synthesis etc.).

The system has a set of data pre-installed in
its cache, containing main districts of Gdansk city.
As long as the user won't leave that area, the
application will work autonomously, and no
connection with an external database is required.

Fig. 2. Architecture of the system

3 Selection of mobile platform
A great impact was put on the portability of

the system. The current reports about smartphone
market share were precisely investigated and
proved, that Java programming language is the most
common and wide-spread language used on modern
mobile platforms. It's the main programming
language of Android and BlackBerry, and can be
also used to write applications for all JavaME
phones, including Symbian, most of Windows
Mobile devices and many less powerful phones with
custom operating systems (so-called “feature
phones”).

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 202

Fig. 3. On the left - smartphone market share between main operating systems. Inner circle shows data from Q3
2009, outer circle data from Q3 2010. On the right – percentage of JavaME, Dalvik and non-Java devices in Q3

2009 and Q3 2010. Other operating systems together have less than 4% of share in global smartphone
market[3]

The main problem are the differences
between Java-enabled platforms. For example,
Android has its own JVM (Java Virtual Machine),
called Dalvik, and BlackBerry smartphones use
enhanced JavaME platform, with many custom
packages and libraries. To solve that issue, we
decided two divide the implementation on two parts:

• system kernel, written using constrained set
of Java classes, accessible on all
smartphone platforms,

• implementation of elements specific to
certain platform (user interface, speech
synthesis, memory usage, communication
with sensors).
After counting lines of code in both parts,

we found out, that size of source code of platform
specific implementation can be estimated as 10-15%
of the size of system kernel's source code,
depending on the platform. Therefore, most of the
code is written only once, can be tested more
precisely and easily and portability of the system is
achieved with a relatively low cost.

Fig. 4. Prototype application on different
smartphones: Nokia n97 (JavaME), Motorola
MileStone and T-Mobile G1 (both Android).

4 User interface
The role of user interface is obvious – it

helps user to communicate with the system. Of

course, the process of communication is
bidirectional.

Systems generates instructions using mainly
speech synthesis. The implementation of speech
synthesis depends greatly on the platform that is
used. Android offers the simplest solution – it has
build in Text-To-Speech mechanism, which can be
easily extended with cheap additional voices (for
example, polish voice implemented by SVOX
company costs around 3$ on Android Market). TTS
API is relatively easy, therefore dynamic speech
synthesis was easy to implement.

JavaME platform is more problematic. We
were unable to find qualitative mechanism that
works without troubles and supports polish voice.
Because of that, two alternative methods were
prepared. The first one uses remote speech
generation. Speech synthesis takes place on the
central server, sound files are generated on demand,
send using wireless internet connection and then
read by the device. That approach was tested with
the Ivona Speech Synthesizer and API based on web
services (“Software as a Service” technique). The
main flaw is the fact, that system looses its
autonomy – it needs instant internet connection in
order to operate correctly. There is also one more
issue – messages are read with additional delay,
which in certain conditions may reach a few
seconds, what is unacceptable.

The second approach is to generate all the
necessary sound files before, keep them in device's
memory and read when they are needed. However, it
requires more persistent memory and excludes low-
end devices. What's more, data files become much
bigger, as sound file needs to be generated for every
name or attribute. It makes data download or update
much more time consuming. The combination of
those two methods, where most common sound files

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 203

are kept in memory and other generated remotely,
behaves better that any of the approaches used
separately, but dynamic speech synthesis, available
on the Android platform, is without a doubt much
better.

Users communicate with the systems using
mainly touch screen. The menu is arranged in a
form of a tree. The options of the current part of that
tree (the part that the user has entered) are placed on
the screen, each of them occupies a rectangular area
of significant size. User moves his finger on the
touch screen, feels vibrations when he leaves one
rectangular area and enters another, and hears name
of the option that he has just moved to. The last
touched option is considered as a selected one.
Double taping on the screen will activate selected
option, either moving the user to another sub-tree of
the menu, or triggering certain action, f.e. activating
verbose mode of messages. On the right-bottom
corner of the screen there is also “Back” option,
which takes the user back to the upper/previous part
of the menu. The menu can be also used on devices
without touch screens. In that case, arrow keys are
used to move around and one of the action keys
replaces double tapping.

Fig. 5. Touch menu example. User moves from one
option to another (selected option is always red).
Menu can be easily used with one hand – user do
not have to stop using white cane when selecting

menu options.

In order to input text, user can use either
hardware keyboard, or virtual touch screen
keyboard. In both cases, system reads loudly every
letter that is written by the user, so that he can
identify his own mistakes and correct them quickly.
On Android platform there are two additional input
mechanism. One utilizes “8pen” [4] approach of fast
typing, which is hard to learn, but very efficient if
mastered. The second method, implemented by
authors, uses Android's mechanism of gesture

recognition and prototype version of gesture
alphabet, based on the Moon's alphabet.

5 Navigation and user tracking
In our system, provided with spatial data in

a form of a graph, we are able to implement the
navigation algorithms. The graph of pedestrian paths
is sparse, therefore the best way to represent it is to
use the adjacency list. The graph is weighted – each
edge (representing a path fragment) has some data
associated with it, that can be used to calculate the
“cost” of the walk from its beginning to its end. The
bigger the length of the edge or the narrower path,
or the worse the surface – the higher the cost. All the
data describing the “difficulty” of the path are used
in calculation of the cost of the graph edges in order
to prepare the graph for searching the optimal
routes.

5.1 Optimal Route Searching
Once the weighted graph is prepared, the

shortest path algorithms are used to determine
optimal route for the blind user. The most widely
known algorithm among the shortest path
algorithms family is Dijkstra's algorithm, having the
worst case performance of:

O(| E | + | V | log | V |) (1)

where | E | is the number of edges, and | V | the
number of vertices.
However, the performance of Dijkstra’s algorithm is
worse than performance of algorithms using
heuristics, like A* algorithm [5]. A* calculates the
heuristic of the distance between two vertices and
prefers the ones which are possibly closer to the
goal than others. Therefore, it may omit many
vertices that do not need to be examined in order to
find optimal route. That is why the performance of
the A* is usually much better than performance of
Dijkstra's algorithm. What is more, as long as an
admissible heuristic is used, which means that the
statement (2) below is true, the A* algorithm always
computes the optimal route:

h(x, y) ≤ C(x, y) (2)

where x and y are vertices, h(x, y) is the heuristic of
the cost of route between them, and C(x, y) is the
actual, real cost of the route.

It is very easy to find the admissible
heuristic – it may be defined as the straight line
distance between two vertices, with the assumption
that the route between them has the lowest possible
difficulty.

Applying the different approach, it is

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 204

possible to “overestimate” the heuristic, breaking
the rule (2). By doing so, we risk that the output of
the algorithm will not be optimal, but on the other
hand, we achieve further progress in improving the
algorithm performance [5].

Some tests were made in order to examine
the differences in algorithms speed, along with their
correctness. Five algorithms were tested, namely:

 Dijkstra's algorithm (DIJKSTRA),
 A* algorithm with admissible heuristic

(ASTAR),
 A* algorithm with heuristic overestimated

by 50% (ASTAR_POLT),
 A* algorithm with heuristic overestimated

by 100% (ASTAR_2),
 A* algorithm with heuristic overestimated

by 300% (ASTAR_4).
The average time required to find the result (Fig. 6)
and algorithms' correctness were tested (Table 1.
and Table 2.).

Fig. 6. Average time (in microseconds) required by
the tested algorithms to find a path between two
points in 10000-vertices (light) and 100000-vertices
(dark) graphs

The performed tests have proved that Dijkstra's
algorithm has significantly lower performance than
the A* algorithms family, and it should not be
considered as a base algorithm for finding optimal
paths in the system. The non-admissible heuristic
causes many wrong answers, so in fact the A*
algorithms breaking rule (2) rarely produce an
optimal answer. However, as shown in the Table 2,
the relative error, may be acceptable, if we consider
A* algorithm with the low rate of overestimation.

Table 1. Percentage of non-optimal answers
provided by particular algorithms (in %) depending
on graph size (in number of vertices)

100 1000 10000 100000
DIJKSTRA 0 0 0 0
ASTAR 0 0 0 0
ASTAR_POLT 21,92 67,98 85 86,5
ASTAR_2 39,93 81,15 93,2 94
ASTAR_4 44,37 88,2 96,4 97,5

Table 2. Average relative error of particular
algorithms (in %) depending on graph size (in
number of vertices).

100 1000 10000 100000
DIJKSTRA 0 0 0 0
ASTAR 0 0 0 0
ASTAR_POLT 0,52 2,89 6,16 7,11
ASTAR_2 1,38 6,58 12,72 15,12
ASTAR_4 3,06 12,68 23,82 29,96

5.2 Supporting the User's Movement
Finding the optimal route from the current

or indicated user's position to the destination is an
important, but initial step of supporting the blind
person's navigation process. The next goal is to help
the user walk safely and correctly along the found
route. We have applied “the small steps” strategy,
guiding the user to the successive route vertices,
which usually represent crossings and turns.
Movement direction and user's position are
monitored continuously, and every significant and
mistaken change of user's movement direction or
position causes the system alert, and as a
consequence, the short voice message is given for
the user. It describes the mistake and suggests what
to do at the moment to continue walking correctly
and safely. Once the next vertex is reached, the
following one is chosen to be the current aim, and
the system becomes to guide the user to reach it.
Main examples of situations occurring during the
users’ walk has been shown in Fig. 7.

Fig. 7. System's hints depending on the user's
behaviour – user moving correctly (1), user with

wrong direction (2), user getting far away from the
route (3) and user abandoning the route (4), which
causes new route search. Yellow dot – the user, red

one – the next vertex to reach within the route.

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 205

6 Particle filter
Despite the primary positioning accuracy

improvement obtained by the use of connection of
DGPS receiver with ASG-EUPOS network, the
further accuracy improvement was reached by
means of particle filtering of geographic location
readouts. Particle filtering is an advanced estimation
technique derived from a sequential version of
Monte Carlo methods.

This technique generates a large number of
candidate solutions (particles) in search for the best
solution of a complex problem. The final system
state is a weighted average of particles states. With
successive iterations of the simulation, some
particles assume negligible weights and do not
effectively take part in the simulation. Those
particles are replaced with the ones that more
accurately converge to the optimal solution – this is
a so called resampling technique. The algorithm
takes into account inaccuracies by introducing
measurement errors and DOP information [7].

Fig. 8. Particle Filter Diagram

The filter block diagram is presented in Fig. 8.
The initialisation, performed only once, sets the
initial position and measurement’s covariance,
which is used in importance sampling step, during
weight determination. This step uses DOP
information for weight modification.

As a results a better, smoothed position is
obtained, as shown in the histogram on Fig. 10.
(variance 16.9 m), as compared to the histogram on
Fig.9 (variance 27.3 m).

Fig. 9. Sample distance error histogram before
particle filtering

Fig. 10. Sample distance error histogram after
particle filtering

7 Conclusion
The prototype application of the system

supporting the independent moving of the blind was
presented. All the system’s modules were described.
Proposed solution is under heavy development, but
first tests, taken with the help of blind experts and
volunteers, have proved that the results are
promising.
The plan for the future is to implement next version
of the prototype, that can be used by blind people
independently, without help and supervision of
sighted people, and to collect spatial data of
additional polish cities. Once it is achieved, more
intensive tests can be launched.

References:
[1] Sendero Group,
http://www.senderogroup.com/support.htm
[2] HumanWare, http://www.humanware.com/
[3] Gartner, http://www.gartner.com/it/page.jsp?
id=1466313
[4] The 8pen, http://www.the8pen.com/
[5] DeLoura, M.A. : Game programming gems I,
Cengage learning, 2000
[6] Kamiński, Ł., Łubniewski Z., Kowalik T.,
Stepnowski A.: Voice Maps – portable, dedicated
GIS for supporting street navigation and self-
dependent movement of the blind, Lecture Notes of
ETI Faculty of GUT - Vol. 18, No 8 (2010), p. 281-
286 .
[7] Przemyslaw Baranski, Maciej Polanczyk, Pawel
Strumillo, Fusion of Data from Inertial Sensors,
Raster Maps and GPS for Estimation of Pedestrain
Geographic Location in Urban Terrain, Metrology
and Measurements Systems, 2010

Recent Researches in Applied Computer and Applied Computational Science

ISBN: 978-960-474-281-3 206

