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Abstract: An update on generalized similarity transformation applied to the flow of power-law fluids is 
presented. The paper surveys both steady and unsteady flow problems: (i) wall jets and (ii) unsteady liquid-film 
stretching. The latter case assumes that the flow field is similar in time and space. Some practical issues are 
addressed.  
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1 Introduction 
The main positive aspect of the flow analysis using 
similarity transformation is the ability to reduce the 
equations of motion and to provide explicitly the 
functional dependence of characteristic flow scales, 
namely length, velocity, and (if applicable) pressure 
scales. In many shear-flow problems numerical 
solutions and sophisticated flow modelling should be 
preceded by the similarity analysis revealing 
analytically the role of relevant flow parameters and 
their physical and geometrical meaning. The present 
contribution demonstrates the use of generalized 
similarity transformation for non-Newtonian power-
law fluids which are very important from the 
technological viewpoint. Both steady and unsteady 
incompressible flow examples are considered below. 
     Firstly, axisymmetric wall jets with swirl (formed 
on bodies of revolution) are discussed. Wall jets are 
often used in mechanical, chemical, and aerospace 
engineering, frequently for solid surface conditioning 
associated with heat and/or mass transfer. The flows 
past axisymmetric bodies or in the stagnation region 
are frequently investigated through boundary-layer 
approximation and similarity analysis [1-13]. The 
complexity of the present wall-jet flow problem is 
given by the three following aspects [14]: an 
arbitrary (axisymmetric) body contour, a non-zero 
swirl component of velocity, and especially the 
presence of a wall, the inner wall-jet region being 
significantly affected by the body surface. The 
steady wall-jet flow is assumed similar in space so as 
to obtain characteristic length, velocity, and pressure 
scales.  
     Secondly, the unsteady liquid-film stretching is 
considered. Dynamics of viscous flows due to a 
stretching surface plays an important role in modern 

technology (polymer industry, rubber technology, 
metallurgical processes, namely manufacturing of 
plastic, rubber or metallic sheets, manufacturing of 
artificial fibres, wires etc.), as well as in 
bioengineering (dealing with flexible elastic surfaces 
as membranes and conduits) and in many other 
practical applications. 
     Most of the studies on flows due to a stretching 
surface considered the semi-bounded fluid extending 
to infinity [15-37]. Some studies have investigated 
the flow within the finite-thickness liquid film on a 
stretching surface [38-41]. From the technological 
viewpoint the finite (relatively thin) liquid film 
adhering to a stretched elastic surface is represented, 
for example, by paints or protective coatings in the 
extrusion or coextrusion processes. Due to unsteady 
nature of the liquid-film stretching, characteristic 
scales are sought as time and space dependent 
functions assuming that the flow field is similar in 
time and space. 
 
 
2 Axisymmetric Wall Jets with Swirl 
 
 
2.1 Problem Formulation & Transformation 
The curvilinear coordinate system (x, y, φ) with the 
curvilinear surface coordinate x defined in axial 
plane according to Fig. 1 is employed. In the present 
notation ( )xrr ≡  denotes a local body radius, φ is a 
polar angle coordinate. Following [14] the swirling 
wall jets past axisymmetric bodies for power-law 
fluids are described by the following set of three 
equations of motion ( 0≡∂∂ φ/  with respect to 
axisymmetry) 
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Fig. 1 Curvilinear coordinate system employed 
(axial cross-section). 
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where the stress tensor components are given 
according to power-law model (K, n are power-law 
model parameters, the given 3D version is valid 
within the frame of boundary-layer approximations) 
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by the continuity equation 
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and by the wall-jet boundary conditions for velocity 
components, stress tensor components, and pressure 
( ) 00 =,xu ,   ,   ( ) 00 =,xv ( ) 00 =,xw ,     (6a, b, c) 
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The application of all boundary conditions is crucial. 

     The jet width ( )xδ  is relatively small so as 
( ) ( )xrx <<δ , namely the classical assumptions of 

Boltze for boundary-layer flow on bodies of 
revolution (according to Schlichting [42]) are 
adopted as in many previous similarity solutions for 
power-law fluids [8], [9], [43]-[46]. In addition, 
divergent shapes are considered, , with 
non-extreme values of 

( ) 0>′ xr
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     The Glauert-type integral energy equations [14]  
dealing with the so-called ‘flux of exterior 
momentum flux’ (derived from (1), (3), (5)-(8)) 
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are needed in the course of the similarity procedure. 
     The generalized similarity transformation reads 
( ) ( ) ( )ηψ fxAyx ⋅=, ,          (12) 
( ) ( ) ( )( )xyyxByx δη /, ≡⋅= ,        (13) 
( ) ( ) ( )ηhxEyxw ⋅=, ,          (14) 
( ) ( ) ( )ηρτ 21 TxTyxyx ⋅⋅=, ,         (15) 

( ) ( ) ( )ηρτφ 43 TxTyxy ⋅⋅=, ,         (16) 

( ) ( ) ( ) ( )ηρ 21 PxPpyxpyxp ⋅⋅=−≡ ∞,,Δ .    (17) 
     The quantity ψ is the stream function, η denotes 
the similarity variable. Eq. (2) serves only for the 
determination of the transverse pressure distribution 
after the determination of the velocity field. The 
partial similarity results are obtained [14] as follows 
 (i) for the similarity functions: 
( ) ( )ηη hf ≡′    for all [ )+∞∈ ,0η ,           (18) 
( ) ( ) ( )( )ηηη TTT ≡≡ 42    for all [ )+∞∈ ,0η , (19) 
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 (ii) for the (positive) similarity coefficients: 
( ) ( ) ( ) ... , , , xExBxA  are determined as 
( ) ( ) ( ) ... , , , 212121 CCxECCxBCCxA ,;,;,;  
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where e is the swirl parameter (to be discussed later). 
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Fig. 2 Axial cross-section and the flow resultants projected onto the tangential plane at the point P.

 
2.2 Similarity Solution & Discussion 
The partial similarity results (stated at the end of the 
last section) are effectively employed for the 
transformation of the original ‘swirling’ problem 
formulation into the formally ‘non-swirling’ problem 
formulation (for detailed analysis see [14]). The 
results are obtained in terms of the velocity and 
shear-stress resultants, q and τ respectively, in ζ 
direction according to Fig. 2. It holds 
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( ) ( )( ) 2122 /
exrx −=≡ ξξ .         (24) 

The quantity ζ in Fig. 2 may be considered as the 
curvilinear surface coordinate following the resulting 
‘helical’ fluid motion past the body surface. 
     The solution in terms of the original coordinates 
and the velocity resultant can be summarized as [14] 
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where the constant ( )nCC ≡ . For a given flow 
behaviour index n there is a unique value of C 
obtained by solving the similarity function ( )ηf  
satisfying the resulting boundary-value problem 
valid for the power-law model in the form 

021
=′⋅+′′+′′′⋅′′⋅

− fCffffn n
,       (31) 

( ) ( ) ( ) 0,00,00 =∞′=′= fff .    (32a, b, c) 
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     The substitution of the peripheral velocity 
component w, expressed through (22) and (25), in 
Eq. (2), yields the transverse pressure distribution, 
namely the pressure similarity scale  and the 
pressure similarity function 
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     The jet flow is governed by the explicitly shape-
dependent centrifugal and Coriolis forces (see (1)-
(3)) what results in the explicitly shape-dependent 
characteristic scales (25), (27) and (33). The other 
basic aspect of the given jet flow is the swirl 
parameter e with the geometrical interpretation 
according to Fig. 2. In practice this parameter has to 
do with outflow parameters at the nozzle exit. In the 
frame of the similarity transformation adopted, the 
parameter e can be determined as 

WZe /=              (35) 
where Z represents, similarly as W given by (29), an 
integral invariant (constant for a given value of n) 
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Invariants Z and W may be approximated by outflow 
parameters at the nozzle exit using a suitable 
iterative approach (note that both Z and W contain 
the quantity ξ defined by (24)). 
     The integral quantity W represents a specific wall-
jet flow invariant which can be obtained within the 
frame of the given similarity transformation only. 
This quantity which may be understood as a 
‘generalized flux of momentum flux’, serves as a 
certain substitution for the Glauert-type integral 
invariant dealing with the ‘flux of exterior 
momentum flux’ 
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which is valid exclusively for the wall-jet flow of a 
Newtonian fluid, . 1=n
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i.e. just the integral quantity introduced in [47] for 
the case of non-swirling wall jets on bodies of 
revolution for the flow of power-law fluids. The 
same limiting procedure  applied to the 
characteristic scales (25), (27) and (33) provides the 
results for axisymmetric wall jets without swirl [47]. 

0→e

     The next section is to demonstrate the use of 
‘time-dependent’ similarity transformation. 
 
 
3 Unsteady Liquid-Film Stretching 
 
 
3.1 Problem Formulation & Transformation 
The flow of a thin liquid film of power-law fluids 
due to the unsteady stretching (or contracting) of an 
elastic surface along x-axis (stretched at 0=y ) is 
described for the plane and radial problems by the 
following set of equations 
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where 0=ε  for the plane problem and 1=ε  for the 
radial one. The shear stress component is described 
according to the power-law model by 

yunyuKyx ∂∂∂∂τ 1−=          (41) 
where K, n are power-law model parameters. 
     The stretching (or contracting) process is plane 
symmetric or axisymmetric with respect to the fixed 
origin at 0=x . The corresponding boundary 
conditions are the no-slip condition on the stretching 
surface at 0=y , and the kinematic and zero shear-
stress conditions on the free surface at ( )txhy  ,=  
where h denotes the film thickness. 
( ) ( )txUtxu  , ,0 , = ,           (42) 
( ) 0 ,0 , =txv ,                  (43) 

( )( ) thttxhxv dd , , , = ,          (44) 
( )( ) 0 , , , =ttxhxyxτ .           (45) 

     The distributions of the stretching velocity 
( )txU  ,  and initial film thickness  are not 

prescribed and their forms permitting similarity 
solution are sought and determined within the 
present analysis using ‘time-dependent’ similarity 
transformation. Further, it is assumed that the end 
effects (due to applied forces) and the gravity effects 
are negligible as well as that the film surface remains 
smooth and stable throughout the stretching (or 
contracting) process. 

( 0 ,xh )

 

Recent Researches in Engineering and Automatic Control

ISBN: 978-1-61804-057-2 116



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Flow sketch of the unsteady liquid-film stretching and the coordinate system employed. 
 

     The ‘time-dependent’ similarity transformation of 
the stream function ψ  and the similarity variable η  
reads 
( ) ( ) ( ) ( )ηψ ftExA ⋅⋅=tyx  , ,          (46) 
( ) ( ) ( ) ytFxBtyx ⋅⋅= , ,η          (47) 

where A, B, E and F are positive similarity 
coefficients and f is a similarity function. 

     For the case of plane stretching ( 0=ε ) and 
for the power-law model (41) the equation of motion 
(39) takes ─ after the similarity transformation and 
rearrangement ─ the form  
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where the primes indicate differentiation with respect 
to the arguments. One obtains a similar equation for 
radial stretching ( 1=ε ). 
     In the frame of exact similarity analysis, the strict 
application of all boundary conditions is a must. The 
similarity equation (48) reduces for the stretching 
surface at  or 0=y 0=η , and for the free surface 
at  or ( txhy  ,= ) βη =  (where β denotes the 
dimensionless film thickness). According to the zero 
shear-stress condition on the free surface (45) it 
follows that ( ) 0=′′ βf . Consequently, the 
restriction  (dilatant and Newtonian  fluids) 
must be considered (the denominator on the RHS of 
Eq. (48) turns out to zero for n ). 

1≥n

1<

     The proper application of boundary conditions 
provides for the plane problem the following partial 
similarity results 
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( ) ( )( ) ( ) 4
12 CtFtFtE nn =+− .         (52) 

Similar results can be found for radial stretching 
( 1=ε ). From (49)-(52) one obtains the similarity 
scales A, B, E, F. 
     On the contrary to the required boundary 
conditions, the initial stretching velocity ( )0 ,xU , 
better say the admissible stretching velocity ( )txU , 
and the initial film thickness  are not 
prescribed and sought so as to permit the similarity 
solution in the form (46) and (47). It follows directly 
for the relation between the streamwise velocity and 
the sought stretching velocity which represents a 
characteristic velocity scale (plane case) 

 ,
)( 0 ,xh
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3.2 Similarity Solution & Discussion 
The similarity solution answers two main questions: 
What is the admissible U  and h ? ( tx ) ,

) ,
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STRETCHING 
SURFACE 

( )0 ,x
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h(x, t) 
FILM 
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y
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STRETCHING 

u(x, y, t)

VELOCITY

     The unsteady stretching velocity U  is found 
to be of the form 

( tx
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where b and α are constants (by introducing 
 and letting, without loss of generality, 

), b is positive for a stretching surface 
and negative for a contracting surface, α is positive 
for an accelerating surface provided that 

α≡2C
bCC ≡= 31

α1<t  and 
negative for a decelerating surface. The stretching 
velocity is clearly independent of the fluid properties 
(i.e. power-law model parameters), K and n. 
     Introducing the relative unsteadiness parameter 

bS α= , the final similarity equation reads (plane 
case) 
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     The result (54) was first assumed for a Newtonian 
flow and unsteady liquid-film stretching in [38], with 
reference to the specific form of transformation of 
the (non-reduced) unsteady Navier-Stokes equations 
established in [48] using group theory (see also the 
very recent review on stretching [49] dealing with 
the Navier-Stokes equations and a number of 
relevant references therein). 
     The problem of plane unsteady liquid-film 
stretching of non-Newtonian power-law fluids in the 
frame of boundary-layer approximations and 
similarity transformation assuming that the 
stretching process is governed a priori by (54) has 
been studied in [40]. However, the applicability of 
similarity analysis proposed for  (pseudoplastic 
fluids) is dubious. Moreover, the application of the 
kinematic condition at the free surface in [40] is 
flawed, though it is just the required starting point 
for the numerical procedure applied to the obtained 
boundary-value problem dealing with a non-linear 
third-order ODE. 

1<n

     The time scale  characterizing the film 
thickness is of the form (same for both stretching 
geometries) 

( )tF

( ) ( )( ) ( )121 +−−= nnttF α .          (56) 
The admissible initial film thickness found is the 
same for the plane and radial stretching 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1112110 , +−+−+== nnnnn xbKxBxh ρββ .(57) 

The film thickness itself reads 
( ) ( ) ( )( ) ( ) ( )( ) ( )1210 , , +−−== nntxhtFxBtxh αβ / .    (58) 

It is clearly non-uniform and, hence, a function of 
both time and spatial position. 

The stretching kinematic condition at the free surface 
(44) provides the dimensionless flow rate for the 
plane case 

( ) ββ S
n
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⎜
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2
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or, alternatively, the condition (44) provides for the 
radial case 

( ) ββ S
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13

2
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On physical grounds, the relations (58)-(60) imply 
the usual upper limit for the range of power-law 
index, namely 2<n . It should be recalled that the 
lower limit for power-law fluids in the present 
stretching problem has been already established 
through the requirement  indicating the validity 
for dilatant and Newtonian fluids only. 

1≥n

 
 
4 Conclusions 
The use of generalized similarity transformation for 
the scaling of governing equations is surveyed and 
examined for the flow of power-law fluids. The 
explicit functional dependence of characteristic flow 
scales, namely length, velocity, and (if applicable) 
pressure scales is determined. The analytical 
approach is based on the assumption that the flow 
field is similar in space (steady problems) or in both 
time and space (unsteady problems). From the 
mathematical viewpoint, the original system of 
governing PDEs is simplified and reduced to more 
easily solvable ODE for function(s) of the single 
similarity variable. 
     In the present case of non-Newtonian power-law 
fluids, the similarity transformation has been applied 
to both steady and unsteady flow problems. In both 
cases, the strict use of all boundary conditions is 
prerequisite to obtain correct similarity solution. The 
analysis of axisymmetric wall jets reveals the 
analytical dependence of characteristic scales on the 
shape and swirl parameters. The physical and 
geometrical meaning of various parameters and flow 
invariants is specified. The analysis of unsteady 
liquid-film stretching answers mainly two questions: 
What is the stretching velocity and initial film 
thickness permitting similarity solution? By 
comparing the results (54), (57), and (58), it is 
obvious that unlike the stretching velocity the film 
thickness is dependent on the power-law fluid 
properties, K and n. By comparing the final ODEs 
for the two examined flow problems, (31) and (55), 
it follows that the film-stretching ODE (55) is 
explicitly dependent ─ apart from the flow behaviour 
index n ─ on the relative unsteadiness parameter S. 
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