
Realtime scheduling using GPUs - proof of feasibility

PETER FODREK*, ĽUDOVÍT FARKAS*, TOMÁŠ MURGAŠ**
*Institute of Control and Industrial Informatics

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava

SLOVAK REPUBLIC

**RT Systems s.r.o.
Kopčianska 14, 851 01 Bratislava

SLOVAK REPUBLIC
peter.fodrek@stuba.sk, ludovit.farkas@stuba.sk, tomas.murgas@rtsystems.sk

Abstract: - This paper will report our evaluation to use openCL as a platform for hard realtime scheduling.
Specifically, we have evaluated which types of tasks are faster on GPGPU than on CPU. We have investigated
computational tasks, memory intensive tasks (especially tasks using low latency GDDR memory) and disk
intensive tasks. This study is the first part of a larger research program to design an innovative Linux scheduler
subsystem that runs on GPGPU and schedules tasks running on GPGPU as well as on CPU. Based on the
results obtained from benchmarking various types of tasks, we found out that some of them are faster on
GPGPU than on CPU and therefore should preferably be executed on GPGPU. Preliminary data suggest that
we can expect a speed up of up to 10-fold with respect to execution time and latency.

Key-Words: - OpenCL, task scheduling, GPGPU, proof of feasibility, scheduling performance

1 Introduction
There are several algorithms to achieve low latency,
which is a requirement for hard real-time operating
systems for automation. But there is not a known
algorithm that is designed to run on General Purpose
Graphics Processing Units (GPGPUs).

MAC OS X 10.6 and 10.7 and their Darwin
named kernels are known for GPGPUs usage to
speed-up kernel tasks performance. One project
named KGPU that allows GPGPU performance for
Linux kernel is known. KGPU uses nVidia only
CUDA toolkit but there is a task to allow the
running of KGPU on AMD GPUs.

There is also another scheduler intended for soft-
realtime environment presented in [1]. It is called
Timegraph and it was evaluated on NVIDIA drivers.

AMD improved their drivers and switched Ati to
more universal and open standard named OpenCL
(Open Computing Language) and AMD added
support for openCL to AMD CPU device drivers.
Therefore programs written for openCL are portable
and can run on AMD CPUs and GPUs and nVidia
and Intel GPUs. This is a reason to do research
using openCL for the scheduling and other kernel
tasks.

The use of GPGPUs for hard realtime scheduling
would be an important contribution to hard realtime
operating systems that are used for realtime control.
This is a new topic in the research, so there cannot
be found much literature about it. This paper is one
of the first papers dealing with this issue. We can
state this according to the e-mail communication in
which our workgroup is described as the first in
Europe dealing with realtime scheduling using
GPGPUs.

In the rest of the paper we will show a basic
methodology for benchmarking the speed of
application execution and a method for comparing
the execution times between the applications that
run on the GPGPU and the applications that run on
the CPU.

2 Prerequisities
In this section we divided kernel tasks to several
types as shown in the subsections of this section.

2.1 Computing intensive tasks
Computing intensive tasks are tasks where the
dominant load is based on computational
performance. In the kernel tasks there are tasks that

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 285

are computing intensive. There are at least these
types of them:

• scheduling algorithms
– on-line
– off-line

• inter-process communications
– message queues
– signal handling a dispatch

• resource management tasks to achieve
maximum real-time performance with
minimal energy cost

2.2 Memory intensive tasks
There are two types of memory intensive tasks used
in the kernel space using GPGPU. Let us call and
classify them as of what type of memory they use:

• local - to store and transfer data using only
one part of the system
– for CPU using CPU memory -

(RAM/DDR)
– for GPU using GPU/GPGPU memory -

(VRAM/GDDR)
• global - to transfer data between GPU and

CPU and vice versa

3 Previous GPGPU solutions in the

Linux kernel
There is a project named KGPU. The main idea of
KGPU is a GPU computing framework for the
Linux kernel. It allows Linux kernel to call CUDA
programs running on GPUs directly. The motivation
is to augment operating systems with GPUs so that
not only user-space applications but also the
operating system itself can benefit from GPU
acceleration. It can also free the CPU from some
computation intensive work by enabling the GPU as
an extra computing device [2, 3]. This project was
started on March 28th, 2011 by Weibin Sun. The
main disadvantage of this project is its linkage only
to nVidia based GPUs because of using CUDA
library only.

This may be the problem of KGPU project. It is
not designed as universal framework from the
beginning. This may cause KGPU troubles for
future implementations.

4 Benchmarks
In this section we are going to show the testing
scripts for evaluation of the possibility to use
GPGPU in the schedulers of the kernel.

4.1 Testing script for time measurement
For the measurement of the program running-time
we used a listed script because the shell built-in time
command was unable to achieve output to file. This
is the negative side of that command because it
measures time in range of milliseconds not tenths of
milliseconds as shown in the script

#!/bin/bash
rm $2
for i in `seq 1 100`;
do
 echo $i
 echo $i >>$2
 sleep 1
 /usr/bin/time -p --output=$2 --append $1>/dev/null
 echo >>$2
 sleep 1
done

The listed script runs the test sequence 100 times
to achieve the desired quality and relevancy of the
measurement. We used the mean values and the
standard deviation to conclude the usability of such
technique.

The format of the output was not well formatted
for computer post-processing such as standard
deviation, average and median count. A more
suitable data format for statistical processing is the
format named Comma separated values (csv). To
produce output in this format we have created
another script listed below

#!/bin/bash
rm $2
echo "Total, Userspace, kernelspace" >>$2
for i in `seq 1 100`;
do
 echo $i
 #echo $i >>$2
 sleep 1
 /usr/bin/time -f "%e, %U, %S" --output=$2 --
append $1>/dev/null
 #echo >>$2
 sleep 1
done

4.2 Application for running OpenCL codes
For the compilation and running of our OpenCL
testing codes we used a program heavily based on
[4]. This program is suitable for speed tests. The
code contains some bugs like not checking response
from the function calls. The condition for its use is
that the user has to be sure that the program is
running. Sometimes we had to use a smaller count
of the parallel processing OpenCL kernels because

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 286

when using maximum count of them, the OpenCL
program could not run. We recommend the use of
half of the total count of the vector elements or
vector dimensions for parallel OpenCL kernel. This
issue will be one of the goals of our future research.
The program has to set the same number of the
kernels and vector elements.

4.3 OpenCL kernels
We have written three types of OpenCL codes to
test three different criterions for evaluating the use
of GPGPU. The first criterion has been the
execution of mathematical tasks, the second has
been the videoRAM transfer and the third has been
the file read. We have compared the evaluation
times with comparable functions written in standard
C codes. The OpenCL codes are listed below:

For mathematical tasks
__kernel void vector_add(__global const int *A, __global
const int *B, __global int *C)
{
 // Get the index of the current element to be processed
 int i = get_global_id(0);

 // Do the operation
 C[i] = A[i] + B[i];
}

For VideoRAM transfer
__kernel void vector_add(__global int *A, __global int
*B, __global int *C)
{
 // Get the index of the current element to be processed
 int i = get_global_id(0);

 // Do the operation
 C[i] = B[i];
 B[i]=A[i];
 A[i]=C[i];
}

For file read
__kernel void file_add(__global const int *A, __global
const int *B, __global int *C)
{
 // Get the index of the current element to
//be processed
 int i = get_global_id(0);
 int fp;

 // Do the operation
 fp=open("./dataFile.dat",O_CREATE|O_RDONLY);
 C[i]=fp;
 close(fp);
}

5 Benchmark results
In this section we are going to show the results of
our benchmarks by comparing the measured running
time data of the programs executed by the GPU and
the standard programs written in C executed by the
CPU. The results are in the form of histograms of
the program execution times.

Fig. 1 shows the execution times of a program
with 1000000 computations and 1 data transfer
between the CPU and the GPU. We have made the
same experiment with 100 times more computations
per experiment and again 1 data transfer as seen in
Fig. 2. The mean value is 55.24 seconds and the
standard deviation is 10.29 seconds. The median
value is 56.31 seconds. This is a deviation of about
5 % from the mean value.

„0-0,1“
„0,1-0,2“

„0,2-0,3“
„0,3-0,4“

„0,4-0,5“
„0,5-0,6“

„0,6-0,7“
„0,7-0,8“

„0,8-0,9“
„0,9-1,0“

„1,0-1,1“
„1,1-1,2“

„1,2-1,3“
„1,3-1,4“

„1,4-1,5“

0

10

20

30

40

50

60

70

80

90

Histogram

Time of execution

time interval [s]

nu
m

be
r o

f t
he

 e
xp

er
im

en
t i

n
th

e
in

te
rv

al

c

Fig. 1: Execution time intervals for 1 data transfer
between the CPU and the GPU and 1000000
computations.

„0-10“ „10-20“ „20-30“ „30-40“ „40-50“ „50-60“ „60-70“ „70-80“ „80-90“
0

5

10

15

20

25

30

35

Histogram

time of execution

interval

fre
qu

en
cy

(n
um

be
r o

f t
es

ts
 in

 ra
ng

e)

Fig. 2: Execution time intervals for 1 data transfer
between the CPU and the GPU and 100 times more
computations per experiment.

This shows us, that the execution times are
random variables using standard distribution.

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 287

Fig. 3 shows the results of experiments with not
just 1 data transfer per experiment, but with a data
transfer before and a data transfer after a
computation. The number of computations per
experiment has been 1000000.

1000
1150

1170
1190

1210
1230

1250
1270

1290
1310

1330
1350

1370
1390

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

Histogram
time intervals ending with value

time [s]

nu
m

be
r o

f e
xp

er
im

en
ts

Fig. 3: Execution time intervals for programs with a
data transfer before and after each computation

Because the experiments have been too long, we
have made only 25 experiments instead of 100. The
mean value has been 1268.06 seconds with a
standard deviation of 59.47 seconds and the median
has been 1276.82 seconds. The addition of data
transfer between the computations raised the
execution interval by 1358 times. It seems that the
data transfer between the RAM and the VRAM is
too time-consuming.
We have compared the execution times of the
OpenCL programs with comparable programs
written in C. Execution times for pure C code
without memory transfers are shown in Fig. 4.

4
4,2

4,4
4,6

4,8
5

5,2
5,4

5,6
5,8

6
6,2

6,4
6,6

6,8
7

7,2
7,4

7,6
7,8

8
8,2

8,4
8,6

8,8
9

9,2
9,4

9,6
9,8

10
10,2

10,4
10,6

10,8
11

0

5

10

15

20

25

30

35

40

Execution time interval distribution

time [s]

nu
m

be
r o

f e
xp

er
im

en
ts

Fig. 4: Execution time intervals for pure C code
without memory transfer

The mean value of the execution times of pure C
code has been 6.271 seconds with a high standard
deviation of 2 seconds what is about 1/3 of the mean

value. The median has been 5.015 seconds what is
about 20 percent difference to the mean value.
These values are too high to say that the execution
time of the standard C code is random with a
standard distribution. It also cannot be stated that
the C code execution is deterministic in standard
Linux kernel.

Fig. 5 shows the next experiment, which has
been a standard C code with additional data
transfers between RAM elements. The mean value
has been 14.53 seconds with a very high standard
deviation of 3.662 seconds what is about ¼ of the
mean value. The median is 12.18 seconds what is
about 16-17 % difference to the mean value. This
difference is extremely high to see a predictability
of the execution interval length.

It means that the OpenCL code running time
constraint on a GPGPU is more predictable than the
C language based code running on the CPU.

11
11,4

11,8
12,2

12,6
13

13,4
13,8

14,2
14,6

15
15,4

15,8
16,2

16,6
17

17,4
17,8

18,2
18,6

19
19,4

19,8
20,2

20,6
21

21,4
21,8

22,2
22,6

23
23,4

23,8
24,2

24,6
25

25,4
25,8

26,2
26,6

27
27,4

27,8

0

10

20

30

40

50

60

Histogram C langue with data transfer

times [s]
Fig. 5: Execution time intervals for pure C code
with additional memory transfers

6 Summary of the experiments
All of the proposed experiments are summarized in
Tab. 1.

Tab. 1: Summary of the execution times

Experiment type Mean
value [s]

Standard
deviation
[s]

Median
[s]

C code without
data transfer 6.271 2.000 5.015

C code with data
transfer 14.530 3.662 12.180

OpenCL code
without data
transfer

0.940 0.100 0.940

OpenCL code with
data transfer 1268.060 59.470 1276.820

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 288

As seen in Tab. 1, the OpenCL application is
much faster than a standard application written in C.
This is known by pure FLOPS performance
difference between the GPGPU and the CPU. In our
scenario, the Geforce 310M GPGPU’s performance
is 6 times higher than the Core I5 520M CPU in a
Dell Vostro 3300n laptop.

Based on our research we are able to state the
next recommendations:

Recommendation 1: Do not use any value based

argument in real-time or kernel code. Use only
reference based arguments for any C function you
ever use. This is a must for any hard real-time code
and for kernel code as well.

This is a standard in system programming but not

a standard in real-time programming.

Recommendation 2: When using GPGPU for

executing applications, minimize data transfers
between the CPU and the GPGPU.

This was never mentioned before so far we

know.
For the scheduling using GPGPU we are able to

define this recommendation:

Recommendation 3: When you are trying to do

scheduling using GPGPU performance, then you
are not able to use on-line scheduling, but you have
to use off-line scheduling algorithms like Computing
Schedules for Time-Triggered Control using
Genetic Algorithms [5].

7 Conclusion
We have developed a basic methodology for
benchmarking the speed of application execution
and a method for comparing the execution times
between the applications that run on the GPGPU and
the applications that run on the CPU. We have found
out that the data transfer is the main blocking issue
to use the GPGPU in on-line scheduling.

There are off-line algorithms [5] that are suitable
to be used on GPGPU effectively for hard real-time
scheduling.

The main problem is that an off-line algorithm
must assume the number of scheduling time slots for

tasks starting in the future before a re-run of the
scheduling algorithm occurs.

One of the main advantages of our approach is
that using GPGPU is more flexible then using pure
hardware co-processor based scheduling as
mentioned in [6].

Our research is just in the beginning, but we
hope it will be a notable contribution to the use of
GPGPUs in hard realtime operating systems.

8 Acknowledgments
This work was supported by the Slovak Research
and Development Agency under contract No.
VMSP-II-0034-09. It has been supported by the
project Req-00048-001 too.

References:
[1] S. Kato, K. Lakshaman, R. Rajkumar, Y.

Yshikawa, TimeGraph: GPU Scheduling for
Real-Time Multi-Tasking Environments, In
2011 USENIX Annual Technical Conference
Proceedings, June 15-17, 2011, Portland, OR
USA, pp. 17 – 30.

[2] W. Sun, R. Ricci, X. Lin, Kgpu augmenting
linux with the gpu, 2011.
http://code.google.com/p/kgpu/.

[3] W. Sun, R. Ricci, Augmenting Operating
Systems With The Gpu,
http://www.cs.utah.edu/~wbsun/kgpu.pdf

[4] E. Smistad, Getting started with opencl and gpu
computing, 2011.
http://www.thebigblob.com/getting-
startedwith-opencl-and-gpu-computing/.

[5] T. Nghiem, G. E. Fainekos, Computing
schedules for time-triggered control using
genetic algorithms. In Preprints of the 18th
IFAC World Congress,Milano (Italy) August 28
– September 2, 2011 (2011), International
Federation of Automatic Control, pp. 794–799.

[6] V. Domen, Co-processor for microkernel os
services. In Preprints of the 18th IFAC World
Congress,Milano (Italy) August 28 – September
2, 2011 (2011), International Federation of
Automatic Control, pp. 1946–1951.

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 289

