
 

 

  

Abstract— This paper focuses on the decentralized systems that 

use the revenue-sharing and cost-sharing contracts as coordination 

mechanisms. We consider a grand-coalition N with finite players, 

who agree to cooperate by undertaking part of the system’s cost 

individually, while the remaining costs C and revenues R are shared 

properly, in order to allocate the system’s profits and risks equally 

among them. We use cooperative game theory, in order to examine 

the possible coalitions of players and to estimate the finite set of 

solutions, with which the system’s profits and risks are allocated 

equally among all players. Specifically, each system’s solution 

consists of a pair of vectors r, c Є N, with which all player profits 

are normally distributed with equal mean values and variances. 

Moreover, we introduce a code that can be used for the computation 

of the precise number of possible solutions. 

Keywords— coalitions of players, cooperative game theory, 

profit and risk allocation, revenue-cost-sharing 

I. INTRODUCTION 

VER the last decades, the development and exploitation of 

new products and the implementation of projects is 

achieved through contractual agreements, where at least two 

individual players cooperate. In most cases, players form a 

grand-coalition under a decentralized scheme with several 

decision makers and follow a revenue-sharing or/and cost-

sharing mechanism. Specifically, these mechanisms are 

developed in order to coordinate all the cooperative parties, so 

as both their individual objectives and the grand-coalition’s 

performance can be optimized [1]-[2]. Taking into 

consideration that the individual players should develop a fair 

revenue-cost-sharing mechanism that will be accepted by all 

the grand-coalition’s members, this mechanism has to measure 

the risk that is allocated to each player. Generally, in such 

multi-person situations, where individual decision makers 

cooperate and the total outcome is influenced by each player’s 

outcome, game theory can be effectively applied [3]. Herein, 

we examine the correlation of both revenue and cost-sharing 

mechanisms for a grand-coalition, in which the players agree 

to undertake parts of the cost individually, while the remaining 
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costs and the system’s revenues are shared properly, in order 

to get all players equal profits under an equal risk allocation 

scheme. We develop a basic model and we use cooperative 

game theory, in order to examine the possible coalitions of 

players and to estimate the system’s solutions, with which the 

grand-coalition’s profits and risks are allocated equally among 

all players. The rest of this paper, which is closely related to 

the cooperative game theory and the quantitative risk analysis, 

is organized as follows. The review of the literature is 

presented in section II and the basic model is presented in 

sections III and IV, while useful conclusions and the future 

research issues are discussed in the last section V.    

II. LITERATURE REVIEW 

In the literature reviewed, several papers examine the 

revenue-sharing and cost-sharing contracts as coordination 

mechanisms [4]-[5]-[6]-[7], while [8] propose the equilibrium 

payment scheme for the revenue-sharing agreements. 

However, these mechanisms should use risk as driver, as 

mentioned in [9], while [10] indicate that firms collaborate in 

order to have an efficient risk-sharing, as approximately 96% 

of the US ventures include the risk-sharing between partners. 

Furthermore, a formula that increases the financial 

sustainability of partnerships in Greece is developed in [11] 

and preference to risk-sharing between partners due to 

financial constraints is demonstrated in [12]. In [13], it is 

suggested that the shared profit among players should be 

proportional to their investment and risk taking, while the 

applications of cooperative game theory to the supply chain’s 

management, focusing on the profit allocation and stability, are 

surveyed in [3]. Generally, game theory is applied in a finite 

set of players N = {1,2,3,…,n}, namely grand-coalition. 

Moreover, any subset in which this set can be divided is 

usually called a coalition [14], and any coalition with just one 

player is called a singleton coalition [15]. A cooperative game 

is a pair (N, u) where u is the characteristic function 

representing the collective payoff for a set of players that form 

a coalition [16]. The game’s solution is a vector x Є 
N
 

representing the allocation of the total profit to each player. A 

formal solution for the cooperative bargaining process was 

first introduced by Nash [17], namely Nash-bargaining 

solution, which consists of an axiomatic derivation of the 

solution for a bargaining game between two players, who have 

perfect information [18] and examine to cooperate and share 

the profits. The solution satisfies a set of axioms that is 
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symmetry, Pareto-optimality and feasibility, i.e. identical 

players receive identical profit allocations, any change to a 

different allocation that makes at least one player better off 

will make at least one of the other players worse off, and the 

sums of the players’ allocations do not exceed the total pie. 

Additionally, the solution is preserved under linear 

transformations and is independent of irrelevant alternatives. 

III. THE BASIC MODEL   

We focus on a decentralized system with a finite set of 

players N = {1,2,3,…,n} that is the grand-coalition. These 

players agree to cooperate by undertaking part of the system’s 

cost individually, i.e. the costs c1, c2, c3, …., and cn, are 

undertaken by players 1,2,3,…., and n, respectively. 

Furthermore, the grand-coalition’s remaining costs C and 

revenues R are shared between all players, through a revenue-

cost-sharing mechanism. Let Pi denote the profit allocated to 

each player. A complete list of the notations used in this paper 

is presented in Table 1. 

Obviously, the revenue-cost-sharing mechanism has to be 

feasible and individually rational, i.e. the sum of the players’ 

allocations does not exceed the total pie and each player gets 

at least as much as what it could obtain through the non-

cooperative option: 

 

1=C=R  and  (0,1)∈R ∑∑
1=1=

n

i
i

n

i
ii  (1) 

NicCR iiii ∈ ∀   , 0>-)(C -)(R =P  (2)        (1) 

 

We assume that there is full information among players and 

we examine the case where the grand-coalition’s profits should 

be shared equally and be proportional to each player’s 

investment and risk taking [13] – [19]. In order to define the 

system’s risks and to allocate them with fairness among 

players, the costs and revenues to be shared are normally 

distributed with specific mean value µ and variance σ
2
. That is, 

a different probability density function Π is assigned in the 

grand-coalition’s revenues: ΠR (µR, σR
2
) and the shared costs: 

ΠC (µC, σC
2
). According to these distributions, we get the 

following proposition. 

 

Proposition 1. The grand-coalition’s profits and risks are 

allocated equally when all players’ profits get equal 

probability distribution functions, satisfying (3): 

 

n

n

σ=...=σ=σ=σ

µ=....=µ= µ=µ

321

321
 (3) 

 

Proof of Proposition 1. Taking into consideration that both 

the grand-coalition’s revenues R and shared costs C are 

normally distributed, the profits P1, P2, P3 ,…., and Pn , which 

are allocated to players 1,2,3,…., and n, respectively, are 

calculated through normal density functions: 
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)µ-(
-
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nnP

nnnnP for player i = 1,2,.., and n, 

respectively.  

From these functions, the profits and risks are allocated 

equally when: ⇔)σ,(µ≡...≡)σ,(µ≡)σ,(µ 22
222

2
111 nnnPPP  

nµ=...= µ=µ 21  and nσ=...= σ=σ 21  

IV. EQUAL PROFIT AND RISK ALLOCATION AMONG ALL 

PLAYERS 

In this section we use insights from the cooperative game 

theory, in order to estimate the possible solutions for the 

players’ revenue-sharing and cost-sharing ratios, which define 

TABLE I 

LIST OF NOTATIONS 

Symbol Description   

N 
Finite set of players 

(grand-coalition) 
{ }nN .,1,2,3,....=  

c i 
Cost undertaken by 

player i 
 1,2,...,=  i.e. ,∈ ni Ni  

R 
Grand-coalition’s 

revenues 
(to be divided in all players) 

C 
Grand-coalition’s 

remaining cost 
(to be divided in all players) 

R i 
Revenue-sharing 

ratio of player i 
( ) 1=R  ,  0,1∈R ∑

1=

n

i
ii  

C i 
Cost-sharing ratio of 

player i 
1=C∑

1=

n

i
i  

P i 
Profit allocated to 

player i 
N∈ ∀  ,-C-R=P icCR iiii  

Π 
Probability density 

functions: CR   ,  

 )σ,µ(Π   ),σ,(µΠ 22
CCCRRR

 

P i 
Profit’s probability 

distribution function  Ni

cP iiCiRi

∈∀
 ),CΠ,R(Π=

 

µ i Expected profit   Ni-c-= iiCiRi ∈∀  , CµRµµ  

Confidence 

Intervals 

0.6827≈)σ+µ≤P≤σ-(µ   :yprobabilit iiiii  

0.9545≈)2σ+µ≤P≤2σ-(µ   :yprobabilit iiiii  

0.9973≈)3σ+µ≤P≤3σ-(µ    :yprobabilit iiiii  

Equal profit  

and risk 

allocation  nn

nnnPPP

σ=...=σ=σ     ,µ=...=µ=µ  

 ⇔)σ,(µ≡...≡)σ,(µ≡)σ,(µ

2121

22
222

2
111  

s(n) 
Number of possible 

solutions 
)(,...,3,2,1= nsj  

S 
Finite set of possible 

solutions 
( ){ }nsS 1,2,3,...,=  

r, c Є N 

Solutions for equal 

profit, risk allocation  

(pairs of vectors)    Sj
j
n

jjj

j
n

jjj

∈∀   ),C,...,2C,1C(=c

, )R...,,2R,1R(=r
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the equal profit and risk allocation among them. Initially, we 

examine the case with two players and further the cases where 

the grand-coalition consists of n > 2 players.  

A. Grand-coalition with two-players 

In cases where the grand-coalition consists of two players, 

i.e. N = {1,2}, the system’s profits and risks are allocated 

equally when (3) is satisfied:    ⇔  )σ,µ(≡)σ,(µ 2
222

2
111 PP  

2121 σ=σ , µ=µ . Moreover, we derive Theorem 1. 

 

Theorem 1. There is a unique solution: ( )*
2

*
1

*
2

*
1 C,C,R,R  , with 

which the system’s profits and risks are allocated equally 

among two players. 

 

Proof of Theorem 1. The probability distribution functions of 

the players’ 1 and 2 profits are given by: 

1111 -CΠ-RΠ= cP CR  and 2222 -CΠ-RΠ= cP CR . 

According to Proposition 1, the mean values and the profit 

values in the same confidence interval, e.g. the ( )2σ±µ  should 

be equal. 

Due to the fact that R1 + R2 = 1 and C1 + C2 = 1 from (1), 

where ( ) 0,1∈R,R 21 , we define that 21 C,C  can take negative 

or higher than 1 values, with respect to (1) and (2), so as to 

ensure that there is at least one solution ( )*
2

*
1

*
2

*
1 C,C,R,R , with 

which 2121 σ=σ , µ=µ . Furthermore, in order to prove the 

uniqueness of this solution, we suppose that there is at least 

one more solution, denoted by ( )**
2

**
1

**
2

**
1 C,C,R,R , which also 

satisfies (3). Particularly, at least one of **
1

*
1 R≠R , or 

**
2

*
2 R≠R , or **

1
*
1 C≠C , or **

2
*
2 C≠C , while in both cases 

there is: 

 

1=C+C=C+C=R+R=R+R **
2

**
1

*
2

*
1

**
2

**
1

*
2

*
1  (4) 

 

We consider that both ( )*
2

*
1

*
2

*
1 C,C,R,R , ( )**

2
**

1
**

2
**

1 C,C,R,R  

solutions satisfy (5), (7) and (6), (8) respectively:  

 

2
*
2

*
21

*
1

*
121 CµRµCµRµ⇔µµ -c-=-c-= CRCR  (5) 

 

2
**

2
**

21
**

1
**

121 CµRµCµRµ⇔µµ -c-=-c-= CRCR  (6) 

 

2
*
2

*
21

*
1

*
12211 -CΠ-RΠ=-CΠ-RΠ⇔2σ±µ=2σ±µ cc CRCR (7) 

 

2
**

2
**

21
**

1
**

1

2211

-CΠ-RΠ=-CΠ-RΠ

⇔2σ±µ=2σ±µ

cc CRCR
 (8) 

 

From (5) minus (6) we get: 

 

⇔(6)-(5)  

( ) ( ) 0=-C+C-Cµ-R+R-R-Rµ **
1

**
2

*
2

*
1

**
2

**
1

*
2

*
1 CCR  (9) 

and from (7) minus (8): 
⇔(8)-(7)  

( ) ( ) 0=-C+C-CΠ-R+R-R-RΠ **
1

**
2

*
2

*
1

**
2

**
1

*
2

*
1 CCR  (10) 

 

There is CRCR Π>Π,µ>µ  and thus both the parentheses 

in (9) as well as in (10) equal zero: 

*
1

**
1

*
1

**
1

*
2

**
2

*
2

**
2

**
2

**
2

*
2

*
2

**
2

**
2

*
2

*
2

**
2

**
1

*
2

*
1

**
2

**
1

*
2

*
1

C=C

R=R

⇔
(4)

C=C

R=R

⇔
0=C+C+1-C-C-1

0=R+R+1-R-R-1

⇔
(4)

0=C+C-C-C

0=R+R-R-R

  

Therefore, the second solution is equal to the first: 
**

2
*
2

**
1

*
1

**
2

*
2

**
1

*
1 C=C,C=C,R=R,R=R  and there is a unique 

solution: ( )*
2

*
1

*
2

*
1 C,C,R,R  for the equal profit and risk 

allocation among players 1 and 2.   

B. Grand-coalition with n > 2 players 

In order to find the solution/s that allocates the grand-

coalition’s profits and risks equally among all players, we use 

a cooperative game theory approach. Specifically, the grand-

coalition is divided in two coalitions, namely: NA = {1,2,…,h} 

NB = {h+1,h+2,…,n}, with: nh <≤1 . Due to (2), there is no 

coalition that can be profitably blocked by any coalition of 

players. Hence, there is no constraint considered for the 

division of the players, i.e. any player can be placed either in 

the NA or in the NB coalition. However, there is: RA + RB = CA 

+ CB = 1.  

Further, we derive Theorems 2 and 3.  

 

Theorem 2. For each pair of non-empty coalitions NA, NB, 

that the grand-coalition N can be divided, there is a unique 

solution: ( )*
B

*
A

*
B

*
A C,C,R,R , with which the system’s profits 

and risks are allocated equally among all players.     

 

Proof of Theorem 2. In order to demonstrate that the grand-

coalition’s profits and risks are allocated equally, the mean 

values and the profit values in the confidence intervals: ( )σ±µ  

, ( )2σ±µ  and ( )3σ±µ  should be equal for all players. We 

mention that these confidence intervals include the profit 

values for each player with 68.27%, 95.45% and 99.73% 

probability, respectively. However, the probability distribution 

functions of the NA, NB coalitions, are given by: 

  

∑
1=

AAA -CΠ-RΠ=
h

a
aCR cP  (11) 

∑
1+=

BBB -CΠ-RΠ=
n

hb
bCR cP  (12) 

 

According to Proposition 1, the mean values and the profit 

values in the same confidence interval, e.g. the ( )σ±µ , or the 

( )2σ±µ , or the ( )3σ±µ , should be equal. Similarly with the 
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proof of Theorem 1, we suppose that there are two solutions: 

( )*
B

*
A

*
B

*
A C,C,R,R  and ( )**

B
**

A
**

B
**

A C,C,R,R , which both satisfy  

(13) and (14): 

 

( ) ( ) ⇔   µ
-

=µ   ⇔  µ)-(=µ   ,µ=µ BABA hn

h
hnh ii  

=)CµRµ(
-

-)CµRµ( ∑∑
1+=

*
B

*
B

1=

*
A

*
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  

0=)CµRµ(
-

-)CµRµ( ∑∑
1+=

**
B

**
B

1=

**
A

**
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  (13) 

 

=)CΠRΠ(
-

-)CΠRΠ( ∑∑
1+=

*
B

*
B

1=

*
A

*
A

n
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bCR

h

a
aCR c--

hn

h
c--  

0=)CΠRΠ(
-

-)CΠRΠ( ∑∑
1+=

**
B

**
B

1=

**
A

**
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  (14) 

 

Following the same concept with the proof of Theorem 1, 

we solve (13), (14) and we get: ,R=R,R=R **
B

*
B

**
A

*
A  

**
B

*
B

**
A

*
A C=C,C=C . Thus, there is a unique solution: 

( )*
B

*
A

*
B

*
A C,C,R,R  for each pair of non-empty coalitions NA, 

NB, that the grand-coalition N can be divided, with which the 

system’s profits and risks are allocated equally among all 

players.     

 

Theorem 3. The number of possible solutions s(n), with which 

the system’s profits and risks are allocated equally among all 

players, is equal to the combinations of players divided in 

pairs of non-empty coalitions iteratively, until all are divided 

in singleton coalitions: {{1},{2},…,{n}}. Specifically, the 

number of possible solutions: s(n), 2≥∀ n , is given from (15) 

and (16), whether n is odd or even number respectively: 
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n
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n

n

n
n

n

 (16) 

 

Proof of Theorem 3. According to Theorem 2, for each pair 

of non-empty coalitions NA, NB, that the grand-coalition N can 

be divided, there is a unique solution: ( )*
B

*
A

*
B

*
A C,C,R,R . 

However, if we consider the further division of the NA 

coalition that includes h players in another pair of coalitions, 

namely NAA and NAB, where NAA consists of t players and NAB 

consists of h-t players, then according to Theorem 1, there is a 

unique solution: ( )*
AB

*
AA

*
AB

*
AA C,C,R,R , while the rest players 

n-h of the NB coalition can also be divided further in two other 

coalitions, namely NBA, NBB, and with the same concept there 

is another unique solution: ( )*
BB

*
BA

*
BB

*
BA C,C,R,R . We 

consider the iterative divisions in pairs of coalitions, until all 

the n players of the grand-coalition are divided in singleton 

coalitions: {{1},{2},…,{n}}. Taking into account that for 

each coalition considered there is a unique solution, we 

conclude that there is a unique solution for each player who is 

included in specific coalitions. This is calculated when all the 

solutions of the coalitions including him are multiplied. For 

instance, the solution for player i, who is included in NB, NBA, 

NBAA, NBAAB coalitions, is given: Ri = (RB)(RBA)(RBAA)(RBAAB) 

, and Ci = (CB)(CBA)(CBAA)(CBAAB). 

Obviously, each time we consider the division of a set N in a 

pair of coalitions with h and n-h players respectively, 

where nh <≤1 , there are alternative possible combinations of 

the players in the coalitions and each combination results in a 

unique system’s solution: ( ) ( )**
2

*
1

**
2

*
1 C,...,C,C,R,...,R,R nn . Thus, 

the number of the system’s possible solutions, with which the 

grand-coalition’s profits and risks are allocated equally among 

players, is equal to the number of possible combinations of the 

players in the coalitions, until all players are divided in a 

singleton coalition. Let s(n) denote the number of solutions for 

a grand-coalition with 2≥n  players. We mention that s(n) is 

equal to the sum of possible combinations of the n players in 

coalitions, which is multiplied with the number of possible 

solutions for the specific coalitions. That is, s(n) increases with 

the number of players, as for a grand-coalition with 3 players, 

i.e. N = {1,2,3}, there are 3 combinations in a 2- player 

coalition: 

  

1) {{1,2}={2,1},{3}} that gives a unique solution:  

( )*1
3

*1
2

*1
1

*1
3

*1
2

*1
1 C,C,C,R,R,R  

2) {{1,3}={3,1],{2}} that gives another solution: 

( )*2
3

*2
2

*2
1

*2
3

*2
2

*2
1 C,C,C,R,R,R  

3) {{2,3}={3,2},{1}} that gives another solution: 

( )*3
3

*3
2

*3
1

*3
3

*3
2

*3
1 C,C,C,R,R,R  

 

Each of these solutions allocates the grand-coalition’s 

profits and risks equally among all players, i.e. the s(3)=3. 

Particularly, the mean values are equal for all players in all 

solutions: 1,2,3=  ,  3,2,1=∀   ,  / µ=µ jinN
j
i . However, the 

standard deviations are equal for all players in each solution: 

1,2,3=∀ ,σ=σ =σ 321 j
jjj

 and may be different among the 

three solutions: 1,2,3=∀,σ≠σ≠σ 321 iiii . This happens, because 

at least one of the revenue-sharing or cost-sharing ratios differs 

among the solutions. Moreover, for a grand-coalition with 4 

players, i.e. N = {1,2,3,4}, there are 4=
3)!-(4!3

!4
combinations 

of the 4 players in a 3- player coalition:  {{1,2,3},{4}}, 
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{{1,2,4},{3}}, {{1,3,4},{2}} and {{2,3,4},{1}} , where each 

one has 3 possible solutions, while there are also three 

combinations of the 4 players in a 2-player coalition 

respectively: {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} and 

each one has 1 solution, thus: ⇔s(2)3+)3(4=)4( ss  

15=(1)3+)3(4=)4(s . Furthermore, the number of possible 

solutions, with which the system’s profits and risks are 

allocated equally among all players, is calculated with (15) and 

(16), whether n is odd or even number respectively.  

C. Computation of the precise number of possible solutions 

Taking into consideration that the grand-coalition is a finite 

set of players and the number of possible solutions is 

calculated with (14) and (15), whether n is odd or even number 

respectively, we conclude that there are finite possible 

solutions that define the equal profit and risk allocation among 

players. However, the number of possible solutions is rapidly 

increased with the number of players. Particularly, from the 

Proof of Theorem 1 we get s(2)=1 and from the Proof of 

Theorem 3, we get s(3)=3 and s(4)=15 and thus, for 

n=5,6,…,10  we compute:  

105=10(3)(1)+5(15)=)s(2)3(
!2!3

!5
+)4(

4!

5!
=)5( sss

945=)
2

1
())3((

)(3!

6!
+)s(2)4(

!2!4

!6
+)5(

5!

6!
=)6( 2

2
ssss

395,10=)3()4(
4!3!

7!
+(2))5(

!2!5

!7
+)6(

6!

7!
=)7( ssssss

135,135

=)
2

1
())4((

)!4(

!8
+)3()5(

5!3!

8!
+)s(2)6(

!2!6

!8
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That is, in Fig. 1 we introduce a code that can be used in the 

Wolfram Research, Inc., Mathematica, Version 7.0, 

Champaign, IL (2008), for the calculation of the precise 

number of possible solutions. 

Moreover, in Table II we illustrate the results arising for n = 

2,3,4,…., and 25. 

V. CONCLUSIONS 

In situations where individual players examine to cooperate 

by forming a grand-coalition, the system’s coordination can be 

achieved with revenue-cost-sharing mechanisms. Herein, we 

focus on cases where parts of the system’s costs are 

undertaken individually by players and the remaining costs and 

revenues are shared between them, in order to allocate equally 

the grand-coalition’s profits and risks. A cooperative game 

theory approach is used, in order to estimate the possible 

coalitions of players and to compute the finite set of system’s 

solutions. Each of these solutions is a pair of vectors r, c Є 
N
, 

with which the profits of all players are normally distributed, 

having equal mean values and variances. The development of 

an algorithm for the computation of the system’s solutions can 

TABLE II 

POSSIBLE SOLUTIONS )(ns  FOR THE GRAND-COALITION { }nN ,...3,2,1=  

 

n s(n) 

n = 2 1 

n = 3 3 

n = 4 15 

n = 5 105 

n = 6 945 

n = 7 10,395 

n = 8 135,135 

n = 9 2,027,025 

n = 10 34,429,425 

n = 11 654,729,075 

n = 12 13,749,310,575 

n = 13 31,623,414,225 

n = 14 7,905,853,580,625 

n = 15 213,458,046,676,875 

n = 16 6,190,283,353,629,375 

n = 17 191,898,783,962,510,625 

n = 18 6,332,659,870,762,850,625 

n = 19 221,643,095,476,699,771,875 

n = 20 8,200,794,532,637,891,559,375 

n = 21 319,830,986,772,877,770,815,625 

n = 22 13,113,070,457,687,988,603,440,625 

n = 23 563,862,029,680,583,509,947,946,875 

n = 24 25,373,791,335,626,257,947,657,609,375 

n = 25 1,192,568,192,774,434,123,539,907,640,625 

 

 

Fig. 1: Calculations of possible solutions with the Wolfram 

Mathematica, (2008). 
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be a subject for future research. Future papers can also be 

focused on the comparison between the system’s solutions for 

the equal profit and risk allocation among all players, with the 

Nash-bargaining solution.   
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