
Analytical Solution of an Eddy Current Problem for a Two-Layer 

Medium with Varying Electric Conductivity and Magnetic Permeability  
 

V. KOLISKINA  

Department of Engineering Mathematics 

Riga Technical University 

1 Meza Street, Riga  

LATVIA 

v.koliskina@gmail.com 

                                                     I.VOLODKO  

Department of Engineering Mathematics 

Riga Technical University 

1 Meza Street, Riga  

LATVIA 

inta.volodko@cs.rtu.lv 
 

 

Abstract: - Method of integral transforms is used in the present paper in order to construct an analytical solution 

of an eddy current problem describing the interaction of a coil with alternating current located above a two-

layer planar conducting medium. The electric conductivity and magnetic permeability of the upper layer are 

modeled by exponential functions of the vertical coordinate while the properties of the lower half-space are 

assumed to be constant. The change in impedance of the coil is calculated in closed form. Results of numerical 

computations are presented. 
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1 Introduction 
Theory of eddy current methods is well-developed 

in the literature for the case where a coil with 

alternating current is located above a conducting 

multilayer medium [1]-[4]. The properties of any 

conducting layer in [1]-[4] (for example, electric 

conductivity and magnetic permeability) are 

assumed to be constant.  

In many engineering applications such as surface 

hardening, surface alloying, determination of 

thickness of metal coatings, de-carbonization and 

spot welding (see, for example, [5], [6]) the electric 

and magnetic properties of a conducting material 

can be modified by an external magnetic field. 

Mathematical models describing the interaction of 

an alternating current in a coil with eddy currents in 

a conducting medium with constant properties 

should be modified in order to take into account 

variability of the characteristics of the material. The 

following two methods are usually used in practice. 

The first approach is based on the assumption that a 

conducting medium with variable properties can be 

approximated by a multilayer medium with large 

number of layers of relatively small thickness where 

the electric conductivity and magnetic permeability 

of each layer are assumed to be constant. In other 

words, the electric conductivity and magnetic 

permeability are modeled as piecewise constant 

functions of the vertical coordinate. Such an 

approach is described, for example, in [7] where up 

to 50 layers in the vertical direction are used. The 

second method assumes that the electric 

conductivity and/or magnetic permeability can be 

modeled by a relatively simple functions such as 

power or exponential functions depending on some 

parameters. For some combinations of the 

parameters  one can construct analytical solutions of 

the corresponding boundary value problems in terms 

of known special functions such as Bessel functions 

or hypergeometric functions (examples can be found 

in [4], [8]-[10]).  

In the present paper we follow the second 

approach. Closed-form solution for the change in 

impedance of a coil with alternating current located 

above a two-layer planar conducting medium is 

found for the case where both the electric 

conductivity and magnetic permeability of the upper 

layer are exponential functions of a vertical 

coordinate. The properties of the lower half-space 

are assumed to be constant.  
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2 Mathematical Formulation 
Suppose that a single-turn coil of radius cr is located 

at a distance h above a two-layer conducting 

medium (see Fig. 1).  
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Fig.1. A single-turn coil above a conducting two-

layer medium.  

 

We consider a system of cylindrical polar 

coordinates ),,( zr ϕ centered at O. The electric 

conductivity σ and magnetic permeability µ of the 

upper layer of thickness d are modeled by the 

following exponential functions of the vertical 

coordinate z : 

 

),exp( zm ασσ =     )exp(0 zm βµµµ = ,       (1) 

 

where  0µ is the magnetic constant, αµσ ,, mm  and 

β   are given constants.  The properties of the 

medium in the lower half-space are assumed to be 

constant ( constconst == 22 , µσ ).  

    We assume that the vector potential has only one 

non-zero component of the form 
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where ϕe
�

is a unit vector in the ϕ -direction. 

The current in the coil is given by 

ϕϕ ω etjIeti
��

)exp()( = ,                                  (3)                        

where ,1−=j ω is the frequency of the 

current and I is the amplitude of the current.  

The components 2,1,0),,( =izrAi of the vector 

potential in regions 10 ,RR and 2R (see Fig. 1) 

satisfy the following system of partial 

differential equations:  
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where )(xδ is the Dirac delta-function.  

The boundary conditions are 
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The following conditions hold at infinity: 

 

0, →
∂

∂

r

A
A i
i as ∞→r , ,2,1,0=i                (9) 

00 →A as +∞→z , 02 →A as −∞→z .  (10) 

 
Analytical solution to problem (4)-(10) is 

considered in the next section.  

 

 

3 Solution of the Problem 
Applying the Hankel transform of the form 
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to (4)-(10) we obtain 
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0
~
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   In order to construct the solution to (12) we 

consider the following two regions: 

hz <<0 and hz >  (the solutions in these 

regions are denoted by 00

~
A  and 01

~
A , 

respectively). Thus, 
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The general solution to (18) can be written in 

the form 
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The solution to (19) satisfying (17) is 

.
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The solution to (13) can be expressed in terms 

of modified Bessel functions (see [12], formula 

2.1.3.10, page 247): 
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Finally, the solution to (14) which is bounded as 

−∞→z is 
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where 202

2 µµωσλ jq += .  

Continuity of the vector potential at hz = gives 
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Integrating equation (12) with respect to z from 

ε−h to ε+h , considering the limit as 0+→ε  

and using continuity of the function 0

~
A at hz = we 

obtain 
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Arbitrary constants 61 CC − in (20)-(23) are 

determined using conditions (15), (16), (24) and 

(25). In particular, the constant 2C has the form 
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where 
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and  
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where 
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The induced vector potential (in the transformed 

space) due to the presence of a two-layer medium 

can be written in the form  
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where 2C is given by (26).  

    Applying the inverse Hankel transform 
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to (32) we obtain the induced vector potential of 

the form 
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where B and D are given by (27) and (28), 

respectively. The induced change in impedance 

of the coil is computed by means of the formula 

(see [4]) as follows 

 

.2),(0 cc

ind

ind rhrA
I

j
Z π

ω
⋅=                         (34) 

 

Using (33) and (34) we obtain the following formula 

for the computation of the change in impedance 

 

 .)( 22

1

0

2

0 λλπωµ λ derJ
D

B
rjZ h

ccind

−
∞

∫=          (35) 

 

 

4 Numerical results 
Numerical computations of the integral in (35) are 

done with Mathematica. It is convenient to rewrite 

(35) in dimensionless form. Introducing new 

variable crs λ= we transform (35) to the following 

form: 
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Here 
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The change in impedance, Z , computed by means 

of (36) is shown in Fig. 2 for the following values of 

the parameters: 

.4,05.0

,100,1,5.1,2.0 2

−==

====

ηδ

µµθγ m
 

Calculated points on each curve correspond to 

different values of 1β (in the range from 3 to 10), 

largerβ values correspond to larger values of the 

real part of Z . It is seen from the graph that for 

larger negative ξ the modulus of the change in 

impedance is getting smaller.  
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Fig.2. The real and imaginary parts of Z for three 

values of 2,4: −−ξ and 0 (from top to bottom). 

Calculated points on each curve correspond to 

different values of 1β .  

 

 

 

5 Conclusion 
Analytical solution for the change in impedance of a 

single-turn coil located above a two-layer 

conducting medium with varying electric 

conductivity and magnetic permeability in the upper 

layer is obtained in the present paper. The properties 

of the lower layer are assumed to be constant. 

Numerical results demonstrate that computations 

can easily be done for different values of the 

parameters of the problem. Such a model can be 

quite useful in applications. It is shown in [6] that 

under certain conditions (for example, as a result of 

surface hardening of ferromagnetic materials) a thin 

layer of reduced magnetic permeability appears near 

the surface. Experimental data show that the relative 

magnetic permeability can be approximated by an 

exponential function of the vertical coordinate. 

Mathematical model developed in this paper can be 

used in such cases for the calculation of the change 

in impedance of a coil placed above a ferromagnetic 

material with continuously varying electric 

conductivity and magnetic permeability.  
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