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Abstract: - The paper deals with the analysis of flux-controlled memristor which is described by its 
unambiguous charge-flux constitutive relation. The memristor is excited by ideal sinusoidal voltage source in 
order to sense its typical i – v pinched hysteretic loop. Two equivalent schematics of the transformation of the 
exciting voltage into the current response are described. The first one is selected for the spectral analysis of the 
current. It is shown that the corresponding Fourier series contains only the sine terms. It confirms the fact that 
the pinched hysteretic loops of ideal memristors must be always odd-symmetrical. 
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1 Introduction 
The memristive systems, which are intensively 
studied particularly for their potential utilization in 
digital or analog memories, are characteristic by 
their typical pinched hysteretic loops (PHLs) [1]. 
These patterns, plotted in the current-voltage 
characteristics of these systems under their 
periodical excitation, belong to well-known 
fingerprints of the corresponding memory effects.  

The above loops are important characteristics of 
memristive systems because they can be easily 
obtained via common measuring equipments. These 
loops can be of various shapes [2-6], as shown in 
the results published in several technical disciplines 
[7]. Some curves have the so-called odd symmetry, 
some of them do not. The original paper [8], in 
which the memristive systems are introduced, 
contains a note about two properties of PHLs of 
memristive system under sinusoidal excitation: 
“Double-valued Lissajous Figure Property”, and 
“Symmetric Lissajous Figure Property”. The paper 
[7] refers to possible cases when the PHL 
degenerates to a graph of single-valued function. It 
is also shown in [7] that, in contrast to classical 
memristor, the definition of general memristive 
system provides a lot of degrees of freedom, and 
thus the PHLs of such systems can significantly 
differ from the PHLs of the memristors.  

The rules and fundamental limitations of the 
shapes of PHLs of classical memristors are not 
analyzed to a satisfactory degree in hitherto 
published papers. In [9-12] and other papers, 
examples of memristors with prescribed flux-charge 
constitutive relations (CRs) are only given which 
lead to odd-symmetrical PHLs. However, it is not 
mentioned if this property relates to the PHLs of all 

memristors with unambiguous CR. The analysis of  
a surface bounded by the PHL of “HP memristor” is 
given in [13]. As far as we know, a generalization to 
memristors with arbitrary CR has not been 
published so far. Based on the calculation of 
energies dissipated in the memristor during one 
repeating period of the exciting signal, the so-called 
“Quantitative measure of hysteresis” is introduced 
in [14]. However, such a quantity does not represent 
the surface within the PHL.  

The shape of the PHL is determined by the 
pattern of the harmonic terms of voltage and current 
waveforms. Consequently, it is useful to deal with 
the Fourier analysis of these waveforms under the 
condition of periodical excitation of the memristor. 

The following considerations will be focused on 
the time-invariant flux-controlled memristor, or 
memristor with the CR defined by unambiguous 
functional relationship between the flux ϕ (= cause) 
and charge q (= consequence) [15] 

 )(ˆ ϕqq = , (1) 

where )(ˆ ϕq  is the continuous and piecewise 
differentiable function, specified in [7]. These 
considerations can be easily extended to the charge-
controlled memristor via the duality theorem [15]. 

The CR (1) is the basic characteristic of the 
memristor, expressing also the idea of memristor 
model in the sense of “Flux-dependent Ohm’s law” 
[7]: 
 vG

dt
dqi M )(ϕ== ,  (2) 

where 
 

ϕ
ϕϕ

d
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is a flux-dependent memductance. This dependence 
of the memductance on the history of the evolution 
of memristor voltage is reflected in the ambiguous 
current-voltage response, represented by the steady-
state PHL [7, 15]. 

Recently, general memristive systems, 
introduced in [8], have come to be referred to as 
memristors [7, 16]. For example, the Chapter 
“Unfolding the memristor” in [7] provides an 
extension of the equations of a classical memristor 
by other state variables and parameters in order to 
tweak the PHLs in a very general way. However, 
such generalized equations model the memristive 
system as in [1, 8].  

To avoid any misunderstanding, note that this 
study deals with the memristor defined in the 
original work [15] as the fourth fundamental circuit 
element, i.e. by its CR (1). The memristor will be 
excited by ideal voltage source with the zero-valued 
DC component, with the waveform  

 )sin()( tVtv Ω=  (4) 

where V and Ω are the amplitude and the angular 
frequency, the latter being related to the repeating 
frequency F in Hertz and to the repeating period T 
in seconds according to the relations Ω = 2πF = 
2π/T. 
 
 
2 Memristor with nonlinear CR 

excited by harmonic signal 
Consider the flux-controlled memristor with 
nonlinear CR (1), excited by ideal voltage source 
with the waveform (4). The mechanism of 
generating the current flowing through the 
memristor can be described by means of the block 
diagram in Fig. 1.  

However, this method is not useful for computer 
modeling of the memristor behavior since it 
contains the block of the time-domain 
differentiation, the well-known source of numerical 
problems, amplifying the numerical noise. That is 
why the block diagram in Fig. 2 is more suitable for 
the simulation. The current is not computed from 
the CR but from another equivalent characteristic, 
the memductance as a function of the flux (a similar 
characteristic is denoted in [7] “resistance vs. state 
map”). The current is then computed from the 
memristance and voltage via “flux-dependent 
Ohm’s law“. 

It is easy to implement the memristor model in 
Fig. 2 in some of the commonly used simulation 
programs, and to utilize it for interesting 
experiments. 

∫
 

dt
d

ϕ

q
v q iϕ

ϕ
0  

Fig. 1: Block diagram of the transformation of the 
terminal voltage of the flux-controlled memristor 
into current via CR. 
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Fig. 2: Block diagram of the transformation of the 
terminal voltage of the flux-controlled memristor 
into current via the flux-dependent memductance. 

 
For example, consider the CR (1) of the 

memristor in the form of the Taylor series 

 ∑
∞

=

=
1k

k
kgq ϕ , (5) 

where gk, k=1, 2, .. are real numbers. The series does 
not contain the absolute term, thus the CR graph 
will go through the origin of the q-ϕ coordinates.  

Differentiation according to Eq. (3) yields the 
formula of the memductance: 

 ∑
∞

=

−=
1

1)(
k

k
kM kgG ϕϕ . (6) 

A listing of the PSPICE code for simulating the 
behavior of memristors with the CR (5), considering 
the first five terms of the Taylor expansion, is 
shown below.  
 
*Model of flux-controlled memristor  
*excited by sine-wave voltage source  
*CR of the memristor is modeled via polynomial (5) 
.param V 1 freq 10 omega {2*pi*fre} phi0 0;line 1 
.param g1 1.5m g2 -9m g3 10 g4 -360 q5 3k ; line 2 
Ein in 0 value={V*sin(omega*time)} ;line 3 
Ephi phi 0 value={phi0+SDT(v(in))} ;line 4 
Gm in 0 value={(g1+2*g2*v(phi)+3*g3*v(phi)**2+ 
+ 4*g4*v(phi)**3+5*g5*v(phi)**4)*v(in)} ; line 5 
.tran 0 0.2 0 0.2m skipbp ;line 6 
.probe ; line 7 
.end 
 
Choosing concrete values of the coefficients gk, 
various types of CR, waveforms, and PHLs can be 
obtained. 
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The amplitude and repeating frequency of the 
sine-wave voltage, and the initial value phi0 are 
defined on Line 1. 

The coefficients of the Taylor series are given on 
Line 2.  

The model of voltage source according to Eq. (4) 
is on Line 3. 

The flux computation via time-domain 
integration of voltage by means of the SDT function 
is on Line 4. 

Line 5 contains a model of controlled current 
source, simulating the memristor. The current value 
is computed via Ohm’s law, with the memductance 
given by the series (6). 

The transient analysis within a time interval of 

up to 0.2 seconds and with a maximum time step of 
0.2 msec. is specified on Line 6. 

Line 7 contains the command for running the 
graphical postprocessor PROBE. 
 

It is obvious from Line 1 that the memristor 
being modeled is excited by the sinusoidal voltage 
with an amplitude of 1V and a repeating frequency 
of 10 Hz. The initial value of the flux is set to zero. 
Since the voltage has the sine form, the flux values 
are nonnegative, and the operating point will cross 
the CR curve only in the first quadrant, similar to 
the case in [7]. This condition can be modified via 
setting a nonzero value of phi0. The CR is tweaked 
by a pentad of gk coefficients.  
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Fig. 3: Voltage and current waveforms, CR, memductance versus flux, i-v pinched hysteretic loops for the 
coefficients [g1, g2, g3, g4, g5] (a) [1.5m, -20m, 0, 0, 0], (b) [1.5m, -0.2, 9, 0, 0]; flux (ϕ) waveforms vary from 0 
to ca 32 mVs. 
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3 Fourier analysis of memristor 
excited by sine-wave voltage 

A detailed mechanism of generating the current 
floating through the memristor, excited by the sine-
wave voltage source, is shown in Fig. 4. Three 
blocks are between the two signals (voltage and 
current), two of them being linear inertial (integrator 
and differentiator) and one nonlinear non-inertial 
(block modeling the CR). Passing the signal through 
these blocks causes linear and non-linear distortions 
with the well-known consequences in the time and 
frequency domains. Voltage-to-flux integration 
causes an amplitude modification and the formation 
of the DC component of the flux, which is 
dependent on the amplitude and frequency of the 
voltage waveform and also on the history of 
memristor behavior, which is represented by the 
initial flux ϕ0. The integration also leads to a phase 

delay of the AC component of the flux by 90 
degrees with respect to the exciting voltage. The 
flux is transformed into charge via nonlinear CR. 
The corresponding charge waveform is distorted by 
this transformation. The character of this distortion 
also depends on the DC component of the flux, 
which is influenced by the amplitude and frequency 
of the exciting voltage and by the memristor history. 
Since the nonlinear flux-charge transformation is 
noninertial, the harmonic components of the charge, 
generated by spreading the spectrum after passing 
the signal through the nonlinear system, are in phase 
with the AC component of the flux or, possibly, 
some of them can be shifted by 180 degrees (see the 
following analysis). The differentiation of the 
charge with respect to time yields a current that is 
free of the DC component. The differentiation 
causes the well-known linear distortion called pre-
emphasis, and the initial phases of all harmonic 
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Fig. 4: Mechanism of memristor voltage-to-current conversion in time- and frequency-domains. 
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components are increased by 90 degrees. As a 
result, the sine voltage, with its initial phase of -90 
degrees, is converted via three blocks to a current 
consisting of harmonic components, each having the 
initial phase either -90 degrees or +90 degrees. Both 
voltage and current are thus described by odd 
functions of time, and the current-voltage pinched 
hysteretic loop must therefore be odd-symmetrical.  

The above mechanism of voltage-to-current 
conversion from Fig. 4 can be described 
mathematically as follows. 

The terminal voltage of the memristor (4) is 
transformed via integration into the flux: 

 ∫ =+=
t

dvt
0

0 )()( ααϕϕ )cos(0 tVV
Ω

Ω
−

Ω
+ϕ  (7) 

where ϕ0 is the initial flux at time 0. 
The flux waveform can be divided into a DC part 

ϕDC, which depends on the initial condition ϕ0 and 
on the amplitude-to-frequency ratio of the exciting 
voltage, and a harmonic component )(~ tϕ with the 
same frequency as that of the exciting voltage , and 
with the amplitude being the ratio of the amplitude 
and the frequency of the voltage waveform. The 
initial phase of this component is 90 degrees below 
the initial phase of the voltage. The DC component 
of the flux sets the operating point [ϕOP , qOP] in the 
CR curve, see Fig. 5. Eq. (7) can be modified to the 
following form: 

 )cos()(~)( ttt OPOP ΩΦ−=+= ϕϕϕϕ  (8) 

where 

 
Ω

+=
V

OP 0ϕϕ , 
Ω

=Φ
V . (9) 

Similar to Eq. (8), the charge can be divided into 
DC and AC components: 

 )(~)( tqqtq OP +=   (10) 

Note that Eq. (5) represented the Taylor 
expansion of the CR near the origin of the 
coordinates (ϕ, q). An analogous expansion of the 
CR near the operating point [ϕOP , qOP] is 

 ∑
∞

=

=
1

~~~
k

k
kgq ϕ . (11) 

The coefficients of the Taylor series (11) and (5) 
are tied by the well-known transformation 

 ki
OP

ki
ik k

i
gg −

∞

=
∑ 








= ϕ~ . (12) 

Substituting ϕ~ from (8) to (11) and elaborated 
arrangements yield the Fourier series of )(~ tq : 

q
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Fig. 5: Definition of the quantities ϕOP and qOP. 
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where 
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Note that the binomial coefficient 







k
n  is zero if 

n, k are not integer numbers. 
The memristor current is equal to derivative of 

the signal )(~ tq with respect to time, or 

 ∑
∞

=

ΩΩ−=
0

)sin()~()(
m

m tmmqti . (16) 

After rewriting 

 ∑
∞

=

Ω=
1

)sin()(
m

m tmiti ,  (17) 

where 

 ∑
∞

=
−

+














−

Ω
−=

mi
i

i

i
i

m mi
iVgmi
2)2(

~)1( 1
1 , m > 0.  (18) 

The following conclusions result from the above 
analysis: 

The Fourier series of the meminductor current 
contains only sine-type components. The current as 
well as the voltage waveforms are thus odd functions 
of time. The corresponding hysteretic loop in the i-v 
coordinates must be “pinched” and odd-symmetric.  
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For the frequency of the voltage waveform 
approaching infinity, Ω → ∞, it is possible to verify 
the following well-known facts from the above 
model: ϕ(t) → ϕOP → ϕ0, or 0)(~ →tϕ , q(t) →qOP, or 

0)(~ →tq . In other words, the sweeping of the 
operating point along the CR dies away, and this 
point is fixed in the position [ϕOP, qOP], or  
[ϕ0, )(~

0ϕq ]. The memristance is then constant, and 
the memristor behaves as a linear resistor. 

All the higher harmonic components of the 
current waveform, with the exception of the 
fundamental harmonic, disappear. The fundamental 
harmonic is then (see Eqs (18), (12), and (6)) 

 VGigVVgi M
i

i
i )(~

0
1

1
011 ϕϕ === ∑

∞

=

− . (19) 

For Ω → ∞, the PHL in the i-v coordinates 
collapses to a line segment, passing through the 
origin, with the slope corresponding to the 
memductance for the initial flux ϕ0. 
 
 
4 Conclusions 
The analytical method of Fourier analysis of current 
response of the general flux-controlled memristor, 
modeled by constitutive relation (1), to sine-wave 
voltage, is described. It is shown that the Fourier 
series of the memristor current can contain only 
sine-type terms and no DC component. That is why 
the hysteretic loop of each ideal memristor in the i-v 
coordinates must exhibit “pinched” and “odd-
symmetry” attributes. 

It also follows from the analysis that if the ideal 
memristor is excited from a voltage source which 
provides periodical signal with zero DC component, 
the memristor is passing immediately, without any 
transients, to the periodical steady state. This is 
because the flux, i.e. a state variable, which 
determines the position of the operating point at the 
CR curve and thus also the value of 
memconductance, comes after one repeating period 
back to its initial value.  
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