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Abstract: - One method for calculating heat physical characteristics is discussed in this article. 

The method considers a model of heat conduction process when one knows the temperature at 

an inner point of a body. This method is based on application of temperature measurements 

inside a body for determination of temperature conductivity coefficient and heat conductivity 

coefficient. For solution of a problem, a mathematical model of heat conduction is used where 

temperature at an inner point is put forth into a series along boundary condition derivatives. 
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1 Introduction 
There are different methods for solving inverse 

coefficient problems of heat conduction. Methods 

that use temperature measurements at regular 

conditions are frequently used. Conditions are 

considered regular if effect of initial conditions has 

decreased so far that it is of no consequence and 

the temperature field can be described by Fourier 

series of mathematical model first item. There are 

other methods, too. For example, there are 

methods that use temperature measurements at the 

beginning of the process, methods that demand 

modifications of the temperature on the boundary 

to be periodical or demand constant heat flow on 

the boundary. Inverse problems are solved using 

temperature measurements of figures of simple 

shape.  

 

 

2 Mathematical model 
One-dimensional temperature field is considered 

as follows: 
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where t is temperature, τ is time, x∈[-b,b] is 

coordinate if k=1 and [ ]bx ,0∈  if k=2 or k=3, a is 

temperature conductivity coefficient.  If k=1, 

equation (1) describes heat conduction process on 

a plate; if k=2, then in a cylinder; if k=3, then in a 

sphere. Let us presume that temperature 

distribution is homogenous in the 

beginning ( )
0

0, txt = . We shall move temperature 

measurements aside so that the following would 

be fulfilled: 

 ( ) 00, =xt .                                       (2) 

It is assumed that on border x=b temperature is 

known and temperature field is symmetric:  
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Passing over to non-dimensional variables 
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where N is non-dimensional coordinate and F is 

non-dimensional time, thus problem (1)–(3) may 

be written as follows: 
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According to [2] solution of problem (5) – (6) is 

recorded in the following way:  
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where 
( )( )Ft
n

1  is derivative of temperature on the 

border. Coordinate functions Pn(N) are given below. 

If k=1, then  

( ) 10 =NP , 
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Series (7) converges quickly as [2] , 
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If k=2, then 
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Convergence of series (7) is characterized by 

inequality [2]  ( )
nn NP

4

1
0 ≤≤ , if N∈[0,1]. 

Passing over to real time in series (7), we obtain 
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3 The Inverse Problem 

It is assumed that temperature is known at 

point [ )1,01 ∈N . Then having taken a number of 

finite addends in formula (8) and denoting y
a

b
=

2

, 

we obtain 
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As series (8) converges quickly, one has grounds 

to discuss a case when temperature field may be 

described by the first two addends of the series 

(M=1). If M=1, then it follows from formula (9) 

[2]: 
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If temperature is measured in the center, id est., 

N1=0, then it results from (10) that the following is 

valid if k=1: 
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If k=2, then [1], [2] 
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In article [1] formula (12) is obtained by means of 

different approach. It is anticipated that results 

would be of higher quality if more than two 

addends are taken in sum (9). If three addends are 

taken in sum (M=2), then (9) results in: 
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Equation (13) is a quadratic equation as regards y, 

thus it has two roots, but temperature conduction 

coefficient is one. One can prove that if ( ) 01 >′ τt  

and ( ) 01 <″ τt , which can be easily provided 

experimentally, then root signs are different. 

Therefore a question, which root is valid, does not 

arise. If temperature measurements are made in 

the center of plate (k=1), then equation (13) is the 

following: 
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If four addends are summed up and temperature is 

measured in the center of plate (k=1, M=3), we 

obtain the following from equation (9) 
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Equation (15) has three roots. We have not proved 

it, but calculations made at various boundary 

conditions show that two of those are complex 

roots and one is real. Consequently any problem 

does not appear. 

If heat flow on the border q(τ) is known, then heat 

conductivity coefficient can be determined from 
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obtainable from formula (8) as follows: 
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4 Numerical Example 

Let us discuss an example when 
s

m
a

2
510−= , 

b=0.01m, ( ) ( )ττ +⋅= 1ln201f , [ ]500,0∈τ  k=1. 

Solution of problem (1) – (3) under such 

conditions was obtained by means of software 

MATHEMATICA. Change of temperature in the 

center was used as input information for inverse 

problem t(0,τ).  Following these data temperature 

conductivity coefficient was calculated, by using 

formula (11), (14) and (15). Summary of results is 

given in table 1. The table provides relative error 

in percents of temperature conductivity coefficient 

if formulas (11), (14) and (15) are used for 

determination of the latter. 
 

TABLE 1 

EVALUATION  

OF RELATIVE ERROR IN PERCENTS  

OF FORMULA (11), (14), (15) 

 

τ (11) (14) (15) 

100 4.80061 0.423142 0.0495278 

200 2.22947 0.0945881 0.00565302 

300 1.45214 0.0405149 0.00162426 

400 1.07678 0.0223744 0.000674739 

500 0.85569 0.0141629 0.000342275 
 

5 Conclusion 

Many calculations under different boundary 

conditions were made. In all the cases it was stated 

that when applying formula (14) and (15), error of 

temperature conductivity coefficient determination 

is significantly less than when applying formula 

(11). One concluded that calculations made as per 

measurements in the beginning of heat conduction 

process are less precise than those made in the end 

of the process where changes of temperature are 

slower. It is attributable to the fact that a 

mathematical model with small number of 

addends in sum does not describe initial stage of 

heat conduction process precisely. 
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