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Abstract: - The method to obtain electrical equivalent models of piezoelectric materials used in energy harvesting 
road traffic environment is presented in this paper. The experimental results are processed in order to determine the 
optimal topological structure and technology of the semiconductor elements used in the input stage of the power 
harvesting system. The non regulated power supply model under variable current demand is also presented.  
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1 Introduction 
Green and efficient energy generation is a challenge 
not only in transport, urban and industrial sectors, but 
also for microelectronic devices and electronic 
systems. Table 1 resumes several applications related 
with piezoelectric devices used as micro-power 
generators. Recently, powering sensor networks, 
monitoring devices and systems [17,18] related to 
civil infrastructures contribute the research in self-
powered systems. 
In order to obtain an electrical model of piezoelectric 
materials used as generators in road traffic 
applications a test bench [19] was developed to 
generate the electric signals produced by the 
piezoelectric materials in real traffic environment. In 
several cases is necessary associate the response of 
the material to an electronic circuit, to analyze 
generated power [20], use discontinuous conduction 
converters [21, 23] or adaptive circuits for remote 
applications [22]. In our case, using the 
characterization data collected with our road traffic 
test bench, the input stage electrical model of the 
energy harvesting system is obtained. This paper 
reviews the type and optimal topological structure of 
semiconductor elements to achieve optimal efficiency 
in that stage. 

 
 

2 Piezoelectric Model under Road 

Traffic Stimulus 
 

 

2.1 Test Bench 
The test bench block diagram is presented in Fig. 1.  
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Fig. 1: Test bench architecture 

 
In Fig. 2 it’s presented a picture with a test in 

progress. 
 

 
 Fig. 2: Test in progress 

 

The test bench performs the mechanical input to the 
materials, simulating continuous traffic conditions 
(like steady state traffic density). Table 2 presents a 
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test resume, at speeds between 14 and 116 km/h, and the peak voltage obtained in a piezoelectric cable. 
TABLE 1 

PIEZOELECTRIC POWER GENERATION 
 

Material 
 

Applications 
 

Dimensions 
 

Power 
(µW) 

Power 
density 

(µW/cm3) 

 
Voltage 

(V) 

 
Resistance 

(kΩ) 

 
Ref. 

PZT Composites, d33 39 
MPa compress. 

Composites   12000   1,2 

PVF2 Compress. Windmill 500 µm*90 mm*70mm 2.4 0.76 1 400 3 
BIMORPH PVDF.  d31 Shoe-mounted  1300  18 250 4 
PZT DIMORPH, d31 Shoe-mounted  8400  64.8 500 4 
PVDF bimorph.  Windmill 
Rotor . 12 cantilevers 
bimorphs.  Rotor d31 load  

Windmill rotor Each bimorph 60*20*0,5mm 10200 1420 6.8 4.6 5 

PZT-5 A. LOAD 
MEMBRANE; BLOOD 
PRESSURE 

Biomedical Area 1cm2 
Thick. 9µm 

2.3 2600   6 

PZT rectangular structure Knee Implant 1*1*1,8 cm3 4800 890   7 
Vibrant Transducer 
membrane  

Low power sensors Total radius: 20,5 mm (12,5mm 
PZT radius) , thick. 230 µm, 
Fastening thick.: 400 µm 

1700 106 9 47 1,2 

PZT thin layer. Cantilever 
generator 

MEMS (170*260) µm2 1 740 2.2 5200 8 

PZT thick layer, 80 Hz MEMS Layers of 20 µm 2  0.81 333 9 
PZT, 1.5 MPa lateral 
pressure, 15 Hz 

Wireless transmitter Volume: 0.2 cm3 1200 6000 9  10 

PZT stacked generator(164 
layers, 1 Hz , 250 N) 

Muscle activation power 5*5*80 mm3 690 345 19.3 540 1,2 

Thin layer PZT membrane 
coupled with heat engine. 

Hybrid Surface: 3 mm2 

Thick: 3,4 µm 
56 5.5 106 4  11 

PZT Cymbal d33 load Cymbal Diameter: 29 mm 
Thickness: 1mm 

39000 43900 400  12 

PZT button (ignition) d33 
load 

Pulse generator Diam:1.27 cm 
Thick: 1.3 mm 

25 109 1.514 106 500 0.01 13 

PMN-PT composites. d33 
compressive load 40,4 MPa 

Composite   22100   14 

PZT between steel and brass. 
Stress cycles of 0.7 N, 590 
Hz 

 0.51 cm3 11000 21570 14.07 18 15 

Piezoelectric nanowires 
Arrays and semiconductive 
ZnO 

Biosensors and 
Electronic 
nanogenerators 

Diameter wire 300 nm. 
Arrays 6.5*3.2 µm2 

∼10-20 
pW/ wire 

100-200 0.02  16 

 
 
 

TABLE 2  
TESTS RESULTS SIMULATING BURIED PIEZOELECTRIC CABLE UNDER CONTINOUS ROAD TRAFFIC   

β (º) Test N.  ∆τ (s) ∆T (s) no (rpm) v (km/h) Peak voltage(mV) 
 
 
 

22 

1 0.156 1.284 23.364 60.923 538.531 
2 0.136 1.148 26.132 69.882 531.581 
3 0.120 1.000 30.000 79.200 643.253 
4 0.108 0.892 33.632 88.000 647.536 
5 0.096 0.804 37.313 99.000 779.142 
6 0.088 0.736 40.761 108.000 821.405 
7 0.082 0.674 44.510 115.902 794.013 

 
 
 

45 

8 0.332 1.340 23.388 28.627 476.660 
9 0.284 1.148 26.132 33.465 454.793 

10 0.248 1.000 30.000 38.322 549.714 
11 0.220 0.892 33.632 43.200 601.004 
12 0.196 0.800 37.500 48.490 723.335 
13 0.178 0.734 40.872 53.393 818.550 
14 0.168 0.674 44.510 56.571 900.096 

 
 
 

90 

15 0.680 1.360 22.059 13.976 551.763 
16 0.576 1.156 25.952 16.500 675.318 
17 0.500 1.004 29.880 19.008 743.948 
18 0.444 0.888 33.784 21.405 770.583 
19 0.404 0.806 37.221 23.525 818.952 
20 0.368 0.732 40.984 25.826 886.554 
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21 0.340 0.676 44.379 27.953 847.158 

 
The test bench is composed by a computer 

controlled rotating platform droved by a geared ac-
motor. The angle between its axes (β)(º) (each axis 
comprises a pair of wheels) and the selection of the 
rotating angular speed (no)(rpm), see (1), simulates 
the time between the pass of the two axes (∆τ)(s) of a 
real vehicle.  

6⋅
=∆

on

β
τ  (1) 

The equivalent speed of a vehicle having a well 
known distance between its front and rear axis (b)(m) 
(in table 2 it’s used a distance of b= 2,64 m, that is a 
common distance in sedan type cars) is calculated 
using (2). 

6,3
100

⋅
⋅∆

=
τ

b
v  (2) 

Fig. 3 describes the electrical results obtained in the 
14th test of table 2, acquired with an Agilent 
Technologies TDS7054 scope, test probe 10073C 
(10:1, 500 MHz BW) and 1 MΩ as selected input 
impedance.  
 

 
Fig. 3: Electrical results of 14th test (table 2) 

 
 

2.2 Electrical Equivalent Models 
The experimental results in our laboratory simulate 

the behavior of buried piezoelectric cables in real 
traffic sensing applications. The electrical model [23, 
24] of the piezoelectric element excited by the 
mechanical action of the road traffic is composed by 
the Thèvenin association of the voltage generator in 
series with the capacitance of the piezoelectric cable 
or by the Norton equivalent, formed by a current 
generator associated in parallel with that capacitance. 

 We assume that the periodical mechanical 

excitation provided by the test bench is equivalent to 
continuous real traffic. The periodical nature of the 
electrical signals collected justifies the use of the 
Fourier mathematical analysis exposed in our method. 
The method is resumed in five steps. 

- Extract the amplitude and time values of each 
test, for one electrical period of the signal 
(∆T)(s), to write a text file with that values. 

- Calculate the Fourier components of that signal, 
until the necessary harmonic. We use the well 
known electronic simulator PSpice, and its 
voltage generator VPWL_F_RE_FOREVER 
with the above text file. 

- Test the simulation results of the series 
association of the harmonic components and the 
original signal of the text file with a load 
resistance in both cases approaching open load 
( 1000GΩ). 

- Apply the superposition principle and calculate 
the inner generators that in series with the 
capacitance of the piezoelectric material 
perform the real model of the piezoelectric 
element. 

- Test the above electric real model with a 1 MΩ 
load resistor, equivalent to the probe impedance 
that has been used to obtain the electrical initial 
measurements. 

The number of equivalent Fourier components in 
series with the equivalent capacitance of the material 
is between 75 and 100, using the total number of 
decimal positions to avoid the electric noise produced 
if the number of decimals were truncated. 

In Fig. 4 is presented the equivalent 75 generators 
of the real model of the test 14th (table 2), see Fig. 3. 

 

 
Fig. 4: Equivalent electrical model of 14th test (table 2). 

 

It is presented the amplitude, phase and frequency 
values of every Fourier component of that model. 

∆τ 

∆T 
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Finally, in Fig. 5 is represented the comparison of 
the last step of the method. The error is less than 2%, 
so we can evaluate the performance of piezoelectric 
materials (not only piezoelectric cables) in power 
harvesting related to road traffic environment. 

 

 

Fig. 5: Model 14th (table II) validated 

 
 

3 Energy Harvesting using the Models 
The generators modeled are in correspondence with 

consecutives buried piezoelectric cables. The practical 
distance of 1,6 cm between them was obtained by 
experimental results. This new parameter is included 
in the models as a time delay between the generators 
associated to consecutive cables using (3). 

( ) Rn

d
t

o

c
D

⋅Π⋅
=

30

 (3) 

In (3) tD is expressed in seconds, dc (m), no (rpm), 
and R (m) is the rotating platform radio of the test 
bench. As R=0,75m>>dc=0,016m, we are using the 
geometric approximation between  arc and chord. 

The value of the capacitor used to hold the charge 
from the piezoelectric cables, is set constant in order 
to compare the results. Its value will affect the time 
needed to achieve the steady state. To collect charge 
from the positive and negative stress, semiconductor 
topologies are used. Its type and optimized structure is 
presented in the next item. 

 
 

3.1 Rectifier Topologies 
In this section the compared results of several 

rectifying structures and the influence of the 
semiconductor diode type is presented. In the first 
analysis, the values of the capacitor and the load 
resistor were constant.  

The association of generators (one from one 
individual piezoelectric cable) was studied using 

bridge rectifiers connected in parallel or using 
polyphasic structures, i.e. star topology. The 
polyphasic topology in D structure was very soon 
rejected by its poor results. 

We present in Fig. 6 (a) an example of 16 cables 
(having internal structure like Fig. 4) associated by 
rectifier bridges in parallel. This is the inner structure 
of one hierarchical block, and these hierarchical 
blocks are associated in parallel in order to perform a 
great number of cells in parallel, Fig. 6 (b). 
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Fig. 6: (a) Bridge rectifiers in parallel association (b) 48 bridge 
rectifiers in parallel formed by 3 hierarchical blocks like 6(a).  
 
Fig. 7 resumes the results of 48 piezoelectric 

generator cables associated using silicon rectifier 
diodes (1N400X type), Schottky diodes (BAS40-04W 
and RB751 type) and signal diodes (1N4148 type) 
used in the topological rectifier structures analyzed. 
The simulation time in computers Intel® Core™ 2 
E8400 @ 3 GHz, 2 GB RAM, was 26 hours if 
Schottky diodes were used and 16 hours if 1N4148 
diodes were used. All the studies executed later were 
performed with 1N4148 diodes. 

Fig. 8 presents the maximum output voltage 
reached of 1,033.80 mV, using 80 models of 
piezoelectric generators associated in parallel with 
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1N4148 bridges. On next section we present results 
using series association of paralleled structures and 
mechanical amplification simulating heavy traffic. 

 
Fig. 7: Output voltage (mV) vs. time (s)  

 
Fig. 8: 1N4148 bridge: Output voltage (mV) vs. time (s) 

 

 

3.2 Final Results 
The results of the harvester formed by the series 

association of two 80 parallel circuits, using a set of 
resistor values from open load to 100 Ω, are depicted 
in Fig. 9. The 160 GB data file obtained with each one 
of the load conditions made impossible use the PSpice 
parametric study because the hard disk capacity. 

In Fig. 9(b), it’s presented the relation between 
power vs. current supplied to the load resistor. The 
point of maximum value verifies (4). 

o

oc

RoutMÁX R

V
P

⋅
=

4

2

(4) 

 This applies when the value of load resistor equals 
the output equivalent resistance (Ro) of the harvesting 
circuit. The high value found of Ro and the open load 
voltage (Voc), limits the practical power to be 
harvested. Table 3 presents maximum power and the 
parameters of the lineal input stage final model, 
including results for the test with mechanical 
amplification, which simulates the effect of heavy 
traffic. Their graphical results are presented in Fig. 9 
(c) and (d). At the optimal point of operation, 

mechanical amplification has an incremental voltage 
factor of 4,27 over the results without it, so the ratio 
for power collected is about (4,27)2 =18,28 . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9: Final results. Model without mechanical amplification 
(a), (b).Model with mechanical amplification (c), (d) 

 
TABLE 3 

EQUIVALENT FINAL LINEAL MODEL: PARAMETERS AND 
MAXIMUM OPTIMAL POWER. 
 
TEST using mechanical 

amplification 
Voc (mV) Ro (Ω) PRoutMÁX (µW) 

NO 2,748.3 715,431 2.635 
YES 11,341 666,300 48.258 

 

 

4 Conclusion 
The methodology to obtain generalized electrical 
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equivalent models of piezoelectric materials 
specifically designed to be involved under road traffic 
mechanical stimulus, is presented.  

The analysis of the optimal input stage of an energy 
harvesting system using piezoelectric materials, and 
its linearized electrical model are also covered. The 
equivalent model should be used in the design process 
of the following regulator circuit. 

The optimal harvested power results shown, with 
mechanical amplification, guarantees the availability 
of self-powering a practical sensor’s network, in civil 
and road applications, if the piezoelectric devices 
have enough mechanical amplification in locations 
with no power lines available. 
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