

Institute for Environment, Engineering, Economics and Applied Mathematics

Editors: Nikos Mastorakis, Valeri Mladenov, Carlos M. Travieso-Gonzalez, Michael Kohler

Mathematical Models and Methods in Modern Science

> - Proceedings of the 2<sup>nd</sup> International Conference on Mathematical Models for Engineering Science (MMES '11)

> - Proceedings of the 2<sup>nd</sup> International Conference on Development, Energy, Environment, Economics (DEEE '11)

- Proceedings of the 2<sup>nd</sup> International Conference on Communication and Management in Technological Innovation and Academic Globalization (COMATIA '11)

Puerto De La Gruz, Tenerife, Spain, December 10-12, 2011



# MATHEMATICAL MODELS and METHODS in MODERN SCIENCE

Proceedings of the 2nd International Conference on Mathematical Models for Engineering Science (MMES '11)

Proceedings of the 2nd International Conference on Development, Energy, Environment, Economics (DEEE '11)

Proceedings of the 2nd International Conference on Communication and Management in Technological Innovation and Academic Globalization (COMATIA '11)

> Puerto De La Cruz, Tenerife, Spain December 10-12, 2011

# MATHEMATICAL MODELS and METHODS in MODERN SCIENCE

**Proceedings of the 2nd International Conference on Mathematical Models for Engineering Science (MMES '11)** 

**Proceedings of the 2nd International Conference on Development, Energy, Environment, Economics (DEEE '11)** 

Proceedings of the 2nd International Conference on Communication and Management in Technological Innovation and Academic Globalization (COMATIA '11)

Puerto De La Cruz, Tenerife, Spain December 10-12, 2011

Published by WSEAS Press www.wseas.org

Copyright © 2011, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISBN: 978-1-61804-055-8



Institute for Environment, Engineering, Economics and Applied Mathematics

# MATHEMATICAL MODELS and METHODS in MODERN SCIENCE

Proceedings of the 2nd International Conference on Mathematical Models for Engineering Science (MMES '11)

Proceedings of the 2nd International Conference on Development, Energy, Environment, Economics (DEEE '11)

Proceedings of the 2nd International Conference on Communication and Management in Technological Innovation and Academic Globalization (COMATIA '11)

> Puerto De La Cruz, Tenerife, Spain December 10-12, 2011

# **Editors:**

Prof. Nikos Mastorakis, Technical University of Sofia, Bulgaria Prof. Valeri Mladenov, Technical University of Sofia, Bulgaria Prof. Carlos M. Travieso-Gonzalez, University of Las Palmas de Gran Canaria, Spain Prof. Michael Kohler, Technical University Ilmenau, Germany

### **International Program Committee Members:**

Nikos Mastorakis, BULGARIA Ronald Yager, USA Amauri Caballero, USA George Vachtsevanos, USA Robert Finkel, USA Demetrios Kazakos, USA Theodore Trafalis, USA Takis Kasparis, USA Zhiqiang Gao, USA Yan Wu, USA Spyros Tragoudas, USA Arkady Kholodenko, USA Gregory Baker, USA Galigekere Dattatreya, USA Caroline Sweezy, USA Asad Salem, USA Dian Zhou, USA Metin Demiralp, TURKEY Olga Martin, ROMANIA Panos Pardalos, USA Constantin Udriste, ROMANIA Kleanthis Psarris, USA Andrew D. Jones, USA Valeri Mladenov, BULGARIA Neri F., ITALY Chen S. Y., P. R. CHINA Shyi-Ming Chen, R. O. C. Yen K., USA Rong-Jyue Fang, TAIWAN Argyrios Varonides, USA Nikolai Kobasko, USA Xu Anping, P. R. CHINA Zhu H., JAPAN

# **Table of Contents**

| Plenary Lecture 1: Time Series Prediction based on Fuzzy and Neural Networks                                                                                                                                                                        | 11 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Minvydas Ragulskis                                                                                                                                                                                                                                  |    |
| <u>Plenary Lecture 2: Models for Gravity Currents and Intrusions: From Complex Physics to</u><br><u>Simple Mathematics and back to Applications</u><br><i>Marius Ungarish</i>                                                                       | 12 |
| <u>Plenary Lecture 3: Qualification and Quantification of 2D Natural Convection Inside Diode Air-</u><br><u>Filled Cavities. Application in Different Engineering Domains</u><br><i>Abderrahmane Bairi</i>                                          | 13 |
| <u>A Prediction of Long-Run Macroeconomic Relations and Investigation of Domestic Shock Effects</u><br><u>in the Czech Economy</u><br>Jana Hanclova                                                                                                 | 15 |
| <u>Teeth Reduction Dental Preparation using Virtual and Augmented Reality by Constanta Dental</u><br><u>Medicine Students through the VirDenT System</u><br>Mariei Corneliu, Duta Mihaela, Popovici Mircea-Dorin, Bogdan Crenguta, Grigorian Mircea | 21 |
| Methods based on the Approaches of the Design Assisted by Testing Applied for the<br>Determination of Material Properties<br>Marcela Karmazinova, Milan Pilgr, Jindrich J. Melcher                                                                  | 25 |
| <u>Methods of the Design Assisted by Testing – Applicable Tools for the Design Resistance</u><br><u>Evaluation using Test Results</u><br>Marcela Karmazinova, Jindrich J. Melcher                                                                   | 31 |
| Study on Economic Aspects of Medical Dental Office<br>Corneliu Amariei, Adriana Dutescu, Corina Stefanescu, Aurelian Stanila, Oana Stanila, Mircea<br>Grigorian                                                                                     | 37 |
| Program System for Determining the Energy-Economic Indicators of Artificial Lighting when it<br>is used Mixed Lighting<br>Sadetin Basri, Orlin Petrov, Radoslav Kyuchukov                                                                           | 42 |
| <u>The β-Convergence Analysis of the Visegrad Four NUTS 2 Regions</u><br>Jan Nevima, Lukas Melecky                                                                                                                                                  | 48 |
| Preliminary Analysis for Adopting High Pressure Treatment: A Simulation-Based Approach<br>Vassos Vassiliou, Michalis Menicou, Niki Chartosia, Stavros Christofi, Marios Charalambides                                                               | 54 |
| <u>Analysis and Idealization of Strain Mechanism of End-Plate Connections</u><br>Milan Pilgr, Marcela Karmazinova                                                                                                                                   | 60 |
| <u>Oil Price Analysis</u><br>Zdenek Riha, Viktorie Jirova, Marek Honcu                                                                                                                                                                              | 66 |
| <u>The Coase Theorem and New Implications of Strategic Management</u><br>Grigore Ioan Pirosca, Ecaterina Gica, George Laurentiu Serban-Oprescu                                                                                                      | 71 |

| <b>L-Stable Functions and its Applications</b><br>D. Bednarik, A. Berkova                                                                                                                                                             | 78  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Delayed Exponential Functions and their Application to Representations of Solutions of Linear<br>Equations with Constant Coefficients and with Single Delay<br>Josef Diblik, Blanka Moravkova, Denys Khusainov, Aleksandra Kukharenko | 82  |
| ROC and Reproducibility Analysis of Designed Algorithm for Potential Diagnosis of Parkinson's<br>Disease in Ultrasound Images<br>Jiri Blahuta, Tomas Soukup, Petr Cermak, Michal Vecerek, Milan Jakel, David Novak                    | 88  |
| Solutions and Stability of Solutions of a Linear Differential Matrix System with Delay<br>Jaromir Bastinec, Ganna Piddubna                                                                                                            | 94  |
| Finite Element Method for Calculation of Magnetic Field Produced from a Helical Turn in<br>Linear and Nonlinear Medium<br>Iulia Cata, Dumitru Toader                                                                                  | 100 |
| <b>Modeling Piezoelectric Harvesting Materials in Road Traffic Applications</b><br><i>M. Vazquez-Rodriguez, F. J. Jimenez, J. De Frutos</i>                                                                                           | 106 |
| <u>Modifications of Adomian Decomposition Method for Certain Classes of Singular Differential</u><br><u>Equations of the Second Order</u><br>Zdenek Smarda                                                                            | 112 |
| <b>Introduction to India's Energy and Proposed Rural Solar-PV Electrification</b><br>Najib Altawell, Tariq Muneer                                                                                                                     | 118 |
| <b>Mathematical Modelling of Slurry Flow with Medium Solid Particles</b><br>Artur Bartosik                                                                                                                                            | 124 |
| Simplifying Assessment Complexity with Many Valued Logics<br>Sylvia Encheva                                                                                                                                                           | 130 |
| <u>Spinor Geometry Based Robots Spatial Rotations Terminal Control</u><br>A. Milnikov, T. Natriashvili                                                                                                                                | 133 |
| <b>Determination Method of Heat Physical Characteristics for Thin Materials</b><br>Ilmars Iltins, Marija Iltina                                                                                                                       | 139 |
| <b>Determination of Heat Physical Characteristics by using Series along Boundary Condition</b><br><b>Derivatives</b><br><i>Ilmars Iltins, Marija Iltina</i>                                                                           | 144 |
| <b>Rural Electrification Cooperative Model (Solar-PV) in Madhya Pradesh</b><br>Najib Altawell, Tariq Muneer                                                                                                                           | 147 |
| <b>Fourier Analysis of Memristor Excited by Sinusoidal Signal</b><br>Viera Biolkova, Dalibor Biolek, Zdenek Kolka                                                                                                                     | 154 |
| <u>Worst-Case Control Mechanism for Approximate Symbolic Analysis</u><br>Zdenek Kolka, Viera Biolkova, Dalibor Biolek                                                                                                                 | 160 |

| Modeling Double-Inductor DC-DC Converters with DYNAST<br>Jaroslav Kalous, Viera Biolkova, Dalibor Biolek, Zdenek Kolka                                                                       | 165 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Factors Influencing Encapsulation Efficiency of Biologically Active Compound into PLA</b><br><u>Submicroparticles</u><br>Stloukal Petr, Koutny Marek, Sedlarik Vladimir, Pavel Kucharczyk | 170 |
| Influence of Long Term Storage on Thermooxidation Behavior of Prooxidant Containing Low<br>Density Polyethylene<br>L. Husarova, M. Koutny, P. Stloukal                                       | 175 |
| <u>A Geometric Approach to a Non Stationary Process</u><br>B. Yagoubi                                                                                                                        | 179 |
| <b>Approaches to Regional Competitiveness Evaluation in the Visegrad Four Countries</b><br><i>Lukas Melecky</i>                                                                              | 184 |
| <b>Evaluation of the EU Member States Competitive Potential by Data Envelopment Analysis</b><br>Michaela Stanickova, Karel Skokan                                                            | 190 |
| Analytical Solution of an Eddy Current Problem for a Two-Layer Medium with Varying Electric<br>Conductivity and Magnetic Permeability<br>V. Koliskina, I. Volodko                            | 196 |
| <mark>Transport of Cadmium Ions and its Complexes with LMWOAs across Phospholipid Bilayer</mark><br>Ivana Sestakova, Tomas Navratil, Vladimir Marecek                                        | 201 |
| Very High-Order Finite Volume Method for One-Dimensional Convection Diffusion Problems<br>Stephane Clain, Steven Diot, Raphael Loubere, Gaspar Machado, Rui Ralha, Rui M. S. Pereira         | 207 |
| <u>The Change in Impedance of a Single-Turn Coil Located above a Moving Medium</u><br>A. A. Kolyshkin, I. Volodko                                                                            | 212 |
| <mark>Equation of Motion of Blowback System</mark><br>Zbynek Krist                                                                                                                           | 218 |
| <b>Mathematical Model and Analyses of Fundamental Elements of Electric Power Systems</b><br>Jana Jirickova, Rostislav Vlk                                                                    | 222 |
| Modelling Water Resources using Vensim PLE<br>Rui M. S. Pereira, Naim Haie, Gaspar Machado                                                                                                   | 227 |
| <b>Possibilities of PV Panels Defects Identification and Determination of its Effect on the Economy</b><br>of Photovoltaic Power Plants Operation<br>Petr Mastny, Lukas Radil, Zuzana Mastna | 233 |
| Irrigation Planning in the Context of Climate Change<br>Sofia O. Lopes, Fernando A. C. C. Fontes, Rui M. S. Pereira, Gaspar J. Machado                                                       | 239 |
| Energetics, Security and Sustainable Development of Cities<br>Zdenek Riha, Bedrich Duchon, Veronika Faifrova                                                                                 | 245 |

| omputation of Magnetic Flux in a Helical Multiple Conductor with Finite Element Method                                                           | 251 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Dumitru Toader, Iulia Cata                                                                                                                       |     |
| Steering Wheel Motion Analysis for Detection of the Driver's Drowsiness<br>Daniel Haupt, Petr Honzik, Peter Raso, Ondrej Hyncica<br>Authors Area | 256 |
|                                                                                                                                                  | 262 |

# **Plenary Lecture 1**

# Time Series Prediction based on Fuzzy and Neural Networks



# **Professor Minvydas Ragulskis**

Research Group for Mathematical and Numerical Analysis of Dynamical Systems Faculty of Fundamental Sciences Kaunas University of Technology Lithuania

E-mail: minvydas.ragulskis@ktu.lt

**Abstract:** Time series forecasting, especially long-term prediction, is a challenge in many fields of science and engineering. Many techniques exist for time series forecasting. In general, the object of these techniques is to build a model of the process and then use this model on the last values of the time series to extrapolate past behavior into future. Forecasting procedures include different techniques and models. Although the search for a best time series forecasting method continues, it is agreeable that no single method will outperform all others in all situations. New developments and trends in the broad area of time series prediction based on fuzzy and neural networks will be reviewed in this talk.

A new method for the identification of an optimal set of time lags based on non-uniform attractor embedding from the observed non-linear time series is discussed. Simple deterministic method for the determination of non-uniform time lags comprises the pre-processing stage of the time series forecasting algorithm which is implemented in the form of a fuzzy inference system. Experiments done with benchmark chaotic time series show that the proposed method can considerably improve the forecasting accuracy. The proposed method is an efficient candidate for prediction of time series with multiple time scales and noise [1].

A near-optimal set of time lags is identified by evolutionary algorithms. The fitness function is constructed in such a way that it represents the spreading of the attractor in the delay coordinate space but does not contain any information on prediction error metrics. The weighted one-point crossover rule enables an effective identification of near-optimal sets of non-uniform time lags which are better than the globally optimal set of uniform time lags. Thus the reconstructed information on the properties of the underlying dynamical system is directly elaborated in the fuzzy prediction system. A number of numerical experiments are used to test the functionality of this method [2].

A new short-term time series forecasting method based on the identification of skeleton algebraic sequences is discussed in this talk. The concept of the rank of the Hankel matrix is exploited to detect a base fragment of the time series. Particle swarm optimization and evolutionary algorithms are then used to remove the noise and identify the skeleton algebraic sequence. Numerical experiments with an artificially generated and a real-world time series are used to illustrate the functionality of the proposed method [3].

[1] M.Ragulskis, K.Lukoseviciute. Non-uniform attractor embedding for time series forecasting by fuzzy inference systems. Neurocomputing. 2009, 72(10-12), 2618-2626.

[2] K.Lukoseviciute, M.Ragulskis. Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing. 2010(73), 2077-2088.

[3] M.Ragulskis et al. Short-term time series forecasting based on the identification of skeleton algebraic sequences. Neurocomputing. 2011, 64(10), 1735-1747.

#### Brief Biography of the Speaker:

Minvydas Ragulskis graduated from Kaunas University of Technology, Department of Applied Mathematics, Lithuania in 1989. He received his Ph.D. degree in 1992 and took the position of the assistant professor at the Department of Mathematical Research in Systems, Kaunas University of Technology in 1997. Since 1999 he took the position of the associated professor, since 2002 – the position of full professor at the same department.

He is the founder and the head of the Research Group for Mathematical and Numerical Analysis of Dynamical Systems (www.personalas.ktu.lt/~mragul). Three graduate students under his supervision have successfully defended their doctoral thesis; four graduate students study under his supervision at this moment. He is author of more than 80 papers in international journals and conference proceedings, and invited book chapters. He serves as a reviewer for numerous international journals and is a member of editorial boards of several journals. His research interests include nonlinear dynamical systems and numerical analysis.

### **Plenary Lecture 2**

# Models for Gravity Currents and Intrusions: From Complex Physics to Simple Mathematics and back to Applications



# Professor Marius Ungarish Department of Computer Science Technion, Israel Institute of Technology Haifa, Israel E-mail: unga@cs.technion.ac.il

Abstract: A gravity current appears when fluid of one density, pc, propagates into another fluid of a different density, ρα, and the motion is mainly in the horizontal direction. A gravity current is formed when we open the door of a heated house and cold air from outside flows over the floor into the less dense warm air inside. A gravity current is formed when we pour honey on a pancake and we let it spread out on its own. A gravity current which propagates inside a stratified fluid (rather than along a boundary) is called "intrusion." Gravity currents (intrusions) originate in many natural and industrial circumstances and are present in the atmosphere, lakes and oceans as winds, cold or warm streams or currents, polluted discharges, volcanic ash clouds, etc. The efficient understanding and prediction of this phenomenon is important in numerous industrial, geophysical, and environmental circumstances. Simple qualitative consideration and observations indicate that the gravity current is a very complex, multi-faced, and parameter-rich physical manifestation. Nevertheless, the gravity current also turns out to be a modeling-friendly phenomenon. Indeed, visualizations of the real flow field reveal an extremely complicated three-dimensional motion, with an irregular interface, billows, mixing, and instabilities. The accurate numerical simulation of this flow from the full set of governing equations (the Navier-Stokes system) requires weeks of number-crunching on powerful computer arrays. On the other hand, there are "mathematical models" for the gravity current, whose derivation is based on a long line of assumptions such as hydrostatic pressure, sharp interface, Boussinesq system, thin layer, idealized release conditions. This simplified set of equations enables us to determine the behavior of the averaged variables entirely from analytical considerations and/or numerical solutions that require insignificant CPU time. The lecture gives a brief presentation of some typical models and solutions. We see that: (a) Qualitatively, the simplified theory is able to provide the governing dimensionless parameters and the salient features of the various flow regimes; and (b) Quantitatively, the simple models predict velocities of propagation which agree with experiments and full Navier-Stokes simulations within a few percent, sometimes within the range of the experimental errors. We argue that the fact that such simple models give useful predictions is a result of well-selected physical components. The implementation of this conclusion in the selection of reliable tools for practical applications is discussed. [1] M. Ungarish. An Introduction to Gravity Currents and Intrusions. Chapman & Hall/CRC press, Boca Raton London New York, 2009.

#### Brief Biography of the Speaker:

Ungarish is presently George Farkas Professor in the Department of Computer Science at the Technion, Israel Institute of Technology, Haifa. His research is focused on modelling, simulation and interpretation of fluid dynamic problems. He graduated Cum Laude in Aeronautical Engineering at the Technion, and did his DSc at the same institute in Applied Mathematics on the simulation and modelling of rotating fluids. He continued his work on similar problems at MIT in the department of Applied Mathematics as a Rothschild and Bantrell post-doc (with H. P. Greenspan) and lecturer. He has held numerous visiting positions including at MIT, University of Cambridge DAMTP, Technical University Vienna, Institut Polytechnique de Grenoble, University of Witwatersrand at Johannesburg, and University of Florida at Gainesville. Ungarish is an authority in modelling and investigation of motion of complex fluids in the presence of gravity, centrifugal and Coriolis forces. He made fundamental contributions to the understanding, modelling and simulation of spin-up processes (of suspensions, stratified fluids, and magnetohydrodynamical fluids), the Taylor column effect, and propagation of gravity currents and intrusion, in particular for stratified and non-Boussinesq systems (a topic of high relevance to environmental flows like propagation of pollutants, volcanic ash clouds, oil slicks over the sea surface, and similar phenomena). He published numerous research papers on these topics in prestigious journals, and two books: "Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation," Springer-Verlag, 1993; and "An Introduction to Gravity Currents and Intrusions," CRC Press, Taylor and Francis Group, 2009.

## **Plenary Lecture 3**

# Qualification and Quantification of 2D Natural Convection Inside Diode Air-Filled Cavities. Application in Different Engineering Domains

### **Professor Abderrahmane Bairi**

Universite Paris Ouest Laboratoire de Thermique Interfaces Environnement Departement Genie Thermique et Energie - GTE FRANCE E-mail: abairi@u-paris10.fr

**Abstract:** Temperature control is essential in engineering. This presentation is focused on steady state and transient natural convection phenomena occurring in air-filled closed cavities of parallelogrammic cross-section whose both hot and cold active walls remain vertical. The passive top and bottom walls of the channel are inclined with respect to the horizontal with an angle of inclination that can be either positive or negative. Thus the lateral walls of the cavity have a parallelogram-shape. The phenomena occurring in this type of cavities are very different from those taking place in the more frequent rectangular cross-section cavities used in engineering. Many configurations are examined by varying the inclination angle. When this angle is negative, the hot wall is above the cold one, so the convective heat transfer is smaller than in the case of the right cavity (zero angle). For positive values of the angle, the hot wall is below the cold one. For this last configuration, the natural convection is favored and maximum heat transfer occurs at a specific angle. The cavity is then qualified as "conductive" by similarity with the electronic diode and the cavity itself is called diode thermal cavity. The main objective of this presentation is to qualify and quantify the convective heat transfer for different configurations of the active hot wall of the cavity. Some aspects of the steady state and transient natural convection in parallelogrammic enclosures are presented for different ranges of the Rayleigh number. This type of cavities can be applied in different engineering domains as in solar thermal collectors, building or on-board electronic devices.

#### Brief Biography of the Speaker:

Prof. Abderrahmane Bairi is Professor at the University of Paris Ouest, Head of Heat Transfer and Numerical Thermal Modelling Laboratories, Head of International relations of Thermal and Energy Engineering Department. His main teaching activities are related to heat transfer, experimental techniques and numerical methods. His research is carried out in the Laboratoire de Thermique Interfaces Environnement (LTIE) and deals with numerical and experimental natural convection, heat transfer at solid-solid interfaces, renewable energy and thermal characterization of materials. This research activity is applied to many engineering domains such as thermal control, aeronautics, building, solar energy, food industry and electronics control. Prof. Bairi is currently a member of the Editorial board of many scientific journals and Scientific Committees in the fields of Heat Transfer, Aerodynamics, Aeronautics and Terrestrial vehicle.