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Abstract— Sensor Web deployment is by nature a spatial 
problem since nodes are highly constrained by the geographic 
characteristics of the environment. Therefore, there is a need 
for an efficient modelling paradigm to address the issue of SW 
deployment taking into consideration the constraints of the 
geographic space and knowledge it provides to support their 
autonomous decision making capabilities. In this paper we 
propose a knowledge-based framework to support the 
simulation of SW deployments in Informed Virtual 
Geographic Environments (VGE) using multi-agent geo-
simulation techniques. This framework builds on our previous 
works on Informed Virtual Geographic Environments, on 
spatially reasoning agents and on qualitative reasoning about 
geo-simulation results. The framework is illustrated with a 
scenario of a sensor web deployment for weather monitoring 
purposes. 

Keywords: Sensor Webs, Multi-Agent Geo-Simulation, 
Informed Virtual Geographic Environments, Knwoledge 
Representation, Spatio-temporal  Reasoning.  

I.  INTRODUCTION 

Recent advances in wireless communications and sensing 
technologies have enabled the development of low-cost, 
low-power, multi-functional sensor nodes that are small in 
size and which communicate over short distances [1]. 
Sensor Webs (SW) are distributed network systems 
composed of hundreds of such sensor nodes [1]. New 
capabilities such as micro-sensing and in-situ sensing as 
well as the wireless connection of these nodes open new 
possibilities for applications in various domains such as 
military, environment and disaster relief [2]. The low per-
node cost and the shrinking size of microprocessors in 
addition to the enhancement of their computation capacities, 
while decreasing their energy consumption, will allow dense 
distribution of these wireless networks of sensors and 
actuators [1]. SW can be thought of as a macro-instrument 
concept that allows for the spatio-temporal understanding of 
phenomena which take place in geographic environments 
through the coordinated efforts of a large number of sensing 
nodes of different types [2]. However, once SW are 
deployed, the management of such complex systems is a 
real challenge because of their limited energy, 
communication, and processing capabilities [2].  
Sensor web management, as defined in [3], is “to manage, 
co-ordinate and integrate sensor nodes to accomplish 

specific and often dynamic sensing mission objectives”. The 
term “manage” means the control over the sensors. The 
term “co-ordinate” outlines the load balancing of tasks 
assigned to sensors with respect to their limited capabilities. 
Finally, the term “integrate” highlights the organization of 
the sensors into a coherent and structured network deployed 
in a geographic environment. Thus, sensor web deployment 
is by nature a spatial problem since nodes are highly 
constrained by the geographic characteristics of the 
environment.  
The majority of currently deployed sensor webs are mainly 
used for prototyping purposes [1]. In many cases, it is 
impractical to experiment on real sensor web systems for 
several reasons. First, a particular hardware platform, while 
theoretically possible, may not yet be manufactured because 
its fabrication may be constrained by technical or design 
limits [2]. Second, even if the hardware platform exists, it 
may be prohibitively expensive for experimentation [1]. For 
example, applications developed for research purposes may 
require hundreds or thousands of nodes in order to 
accurately monitor a natural phenomenon [2]. With current 
sensor nodes costing up to hundreds of dollars, evaluating 
such research could cost tens of thousands dollars [2]. Third, 
even if it is practical to evaluate research on the real 
hardware platform, it may not be practical to experiment in 
an appropriate environment [2]. An example of this are 
sensor webs which operate on glaciers, remote wildlife 
habitats, volcanos, and other environments where in-situ 
sensing techniques are required and with which it is 
expensive or dangerous to experiment [1]. Therefore, there 
is a need for an efficient modelling paradigm to address the 
issue of sensor webs deployment using actors representing 
sensor nodes evolving in and interacting with a 
representation of their geographic environment. 
One solution to this problem is Multi-Agent Geo-Simulation 
(MAGS). MAGS is a modelling and simulation paradigm 
which aims to study geographic phenomena in a variety of 
domains involving a large number of heterogeneous actors 
(implemented as software agents) evolving in, and 
interacting with, a Virtual representation of the Geographic 
Environment (VGE) [4]. Most of the current SW simulation 
platforms that we analyze d and assessed suffer from several 
limits. In fact, these platforms lack an explicit representation 
of the geographic environment [5]. A SW is deployed in a 
spatial environment, and ignoring the characteristics of this 
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environment would greatly decrease the quality of SW 
simulations. Consequently, sensor models are usually over 
simplified and do not support autonomous spatial reasoning 
and decision making capabilities that take into account the 
characteristics of the geographic environment. Moreover, 
SW simulations generate a huge volume of data which is 
usually analyzed using mathematical and statistical models 
[6]. However, since human reasoning is mainly qualitative 
and not quantitative, qualitative data analysis models are 
more suitable for decision support purposes.  
In order to remedy to the above mentioned limits, a critical 
step towards the geo-simulation of SW deployment is the 
creation of appropriate representations of the geographic 
space (VGE) and of the sensors evolving in it, in order to 
efficiently support the sensors’ spatio-temporal reasoning 
capabilities [5]. Moreover, a VGE should provide sensor 
agents with knowledge about the virtual environment in 
which they evolve and with which they interact. A number 
of challenges arise when creating knowledge about the 
environment, among which we mention: 1) to represent 
knowledge using a standard formalism; 2) to provide agents 
with tools and mechanisms to allow them acquire 
knowledge about the environment; and 3) to infer and to 
predict based on premises and facts that characterise the 
geographic environment in order to support spatial agents’ 
decision-making. 
In order to address the above mentioned challenges, we 
propose a knowledge-based multi-agent geo-simulation 
framework to support the simulation of SW deployments in 
VGEs. This framework builds on our previous works on 
Informed Virtual Geographic Environments [5], on spatially 
reasoning agents [2] and on qualitative reasoning about geo-
simulation results [7]. 
The rest of the paper is organised as follows. Section 1 
presents related works on agent-based simulation tools for 
SW. Section 2 presents our framework and details its 
underlying components. Section 3 illustrates our framework 
through a SW deployment scenario for weather monitoring 
purposes. Section 4 discusses the results and concludes with 
our future works.     

II. AGENT-BASED APPROCHES FOR SENSOR WEBS 

According to our literature review, architectures for the 
management of sensor webs involving the Multi-Agent 
Geosimulation paradigm do not exist. However, a few 
research projects have attempted to integrate the agent 
paradigm into sensor web architectures such as IrisNet [8], 
Abacus [9], Biswas and Phoha’s architecture [10], and 
SWAP [11]. 

Most of these architectures identify the need for 
distributed data collection and processing, and propose 
layered architectures to achieve this. In Abacus different 
agents in the processing layer detect and report alert 
conditions to a higher layer interacting with users [9]. IrisNet 
uses agents such as Sensor Agents (SA) and Sensor 
Organisers (SO) to collect and analyze data from sensors to 
answer specific classes of queries [8]. Biswas and Phoha’s 

approach uses agents in the service layer to analyze data 
from sensors and transfer it to the application layer [10]. 

All these approaches deal with data collection by 
providing a distributed infrastructure for publishing, 
discovering and accessing sensor resources. They also 
address the challenge of data fusion, to some extent, and aim 
to provide end-users with the information they need. These 
approaches share a common objective through the use of the 
agent-paradigm which is the distribution of tasks. However, 
these applications do not take complete advantage of the 
multi-agent systems approach. Indeed, they use reactive 
agents which are efficient for alerting purposes, but are 
neither able to perform situated behaviors nor autonomous 
decision-making. On the one hand, situated behaviors 
include performing spatial reasoning and taking advantage of 
the virtual environment’s description where sensor agents are 
located. On the other hand, autonomous decision-making 
includes managing sensor nodes in order to efficiently cover 
the area of interest while taking into account their limited 
capabilities as well as local spatial characteristics. We think 
that, in order to achieve intelligent and autonomous, it is 
essential to use a multi-agent geo-simulation approach in 
which agents are endowed with advanced capabilities such 
as perception, navigation, memory, and knowledge 
management. As the abovementioned architectures do not 
address the more challenging sensor web management 
issues, we propose the knowledge-based multi-agent geo-
simulation framework for the intelligent management of 
sensor webs. 

III.  A KNOWLEDGE-BASED MULTI-AGENT GEO-
SIMULATION FRAMEWORK 

As we mentioned in the introduction, in this paper we 
propose a knowledge-based multi-agent geo-simulation 
framework to support the simulation of SW deployments in 
VGEs.  
Figure 1 illustrates the main components of the framework. 
Multi-Agent Geo-Simulation is used to simulate the 
behaviour of a SW in a dynamic virtual geographic 
environment. Sensors are modeled as intelligent agents 
embedded in a virtual space where dynamic phenomena can 
occur. Sensor agents have reasoning capabilities allowing 
them to reason about the virtual space and to react to its 
dynamic phenomena. Spatio-Temporal knowledge is used 
for two main purposes.  
First, it is used during the geo-simulation to support agents 
reasoning capabilities. Second, it is used to analyze the 
results of the geo-simulation and to offer decision support to 
users. Finally, the results of the geo-simulation (which are 
inserted as facts in the Result Facts Base) are analyzed in 
order to offer decision support. In the following we present 
these components.  
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Figure 1: The proposed framework 

A. Multi-Agent Geo-Simulation  

The idea behind a multi-agent geo-simulation approach is to 
move the most intensive processing out of the Physical 
Sensor Web (PSW) into a parallel Virtual Sensor Web 
(VSW) operating on a base station or a remote server. The 
objective is to reproduce, in a realistic manner, the real 
world in a virtual environment. Indeed, in this virtual 
environment, which imposes no limits on data processing, 
energy consumption and communication capabilities, it is 
possible to create a system for the deployment of the 
physical sensor web. In order to faithfully mimic the 
physical sensor web deployed in the area of interest, we 
need to simulate, in a realistic way, the physical sensor 
nodes as well as the geographic environment where they are 
located. Physical sensor web are represented in the virtual 
environment using software agents. An agent is a program 
with domain knowledge, goals and actions [2]. An agent can 
observe and sense its environment as well as affect it. 
Agents’ capabilities may include (quasi-) autonomy, 
perception, reasoning, assessing, understanding, learning, 
goal processing, and goal-directed knowledge processing 
[7]. The reproduction of the geographic environment in 
which physical sensor nodes are deployed should be based 
on reliable data obtained from Geographic Information 
Systems (GIS). The concept of Multi-Agent Geo-Simulation 
(MAGS) evolves from such type of simulations involving 
software agents immersed in a virtual geographic 
environment. 
MAGS has attracted a growing interest from researchers and 
practitioners to simulate various phenomena in a variety of 
domains including traffic simulation, crowd simulation, 
urban dynamics, and changes of land use and cover, to name 
a few [6]. Such approaches are used to study various 
phenomena (i.e. car traffic, crowd behaviours, etc.) 
involving a large number of simulated actors (implemented 

as software agents) evolving in, and interacting with, an 
explicit description of the geographic environment called 
Virtual Geographic Environment (VGE) [4].  
MAGS is a useful approach to integrate the spatial 
dimension in our sensor web models. From this perspective, 
the Geographic Information System (GIS) plays an 
important role in the development of sensor deployment 
geo-simulation models. MAGS can be thought of as a 
coupling of two technologies: the Multi-Agent Systems 
(MAS) and the Geographic Information Systems [2]. Based 
on the MAS technology, the simulated entities are 
represented by software agents that can be behave and make 
decisions autonomously. They can interact with other agents 
and with a virtual representation of the actual geographic 
environment. They may be reactive, proactive, stationary or 
mobile, social or cognitive [2]. These agents evolve and 
interact with their VGE. 
Although several research works have addressed the issue of 
modeling and representing agents’ characteristics using 
formal and standard formalisms [12, 13], only a few works 
have attempted to adopt a standard formalism in order to 
represent virtual environments’ characteristics [14]. The 
main reason why virtual environments have received less 
interest from practitioners is that geographic environments 
may be complex, large-scale, and densely populated with 
geographic features of various extents. As a consequence, 
formally representing knowledge about geographic 
environments is usually complex and time and effort 
consuming. Another issue which needs to be addressed is 
the way to allow spatial agents to acquire this knowledge in 
order to autonomously make decisions with respect to their 
environment’s characteristics. There is a need for a 
knowledge management approach: (1) to represent 
knowledge about geographic environments using standard 
formalisms; (2) to allow spatial agents to acquire knowledge 
about the environment; (3) to allow agents to reason and to 
make decisions while taking into account knowledge about 
geographic environments. 

B. Spatio-Temporal Knowledge  

As we mentioned so far, spatio-temporal knowledge is used 
in the framework 1) to support agents decision making 
during the geo-simulation and 2) to analyze  the results of 
the geo-simulation in order to offer decision support. In the 
following we repsectively present the representation 
formalism and the categories of spatio-temporal knowledge 
used in the framework.  

1) Representation formalism 
We use Conceptual Graphs (CGS) to represent spatio-
temporal knowledge and to support spatio-temporal 
reasoning. CGs were introduced by Sowa [16] as a system 
of logic based on Peirce’s existential graphs and semantic 
networks of artificial intelligence. They provide extensible 
means to capture and represent the semantic of real-world 
knowledge and have been implemented in a variety of 
projects for information retrieval, database design, expert 
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systems, qualitative simulations, and natural language 
processing. However, their application to dynamic 
geographic spaces modeling and analyzing is an innovative 
issue [15]. More details about CGs and their theoretical 
foundations can be found in [16], among others. 
Syntactically, a conceptual graph is a network of concept 
nodes linked by relation nodes. Concept nodes are 
represented by the notation [Concept Type: Concept 
Instance] and relation nodes by (Relationship-Name). The 
formalism can be represented in either graphical or 
character-based notations. In the graphical notation, 
concepts are represented by rectangles, relations by circles 
and the links between concepts and relation nodes by 
arrows. The character-based notation (or linear form) is 
more compact than the graphical one and uses square 
brackets instead of boxes and parentheses instead of circles. 
Some examples are presented in the following sub-section.  

2) Knowledg Categories 

We distinguish three levels of spatio-temporal knowledge: 
1) Knowledge about the environment, 2) Knowledge about 
actors and their behaviours and 3) knowledge about the 
application domain (Figure 1) 

a) Knowledge about the environment 
We define the notion of knowledge about the environment 
(Environment Knowledge (EK) for short) as "‘a 
specification of a conceptualization of the environment 
characteristics: the objects, agents, and other entities that 
are assumed to exist in the informed virtual geographic 
environment and the relationships that hold among them"’. 
Hence, EK is a description (like a formal specification of a 
program) of the spatial concepts (geographic features) and 
relationships (topologic, semantic) that may exist in a 
geographic environment. What is more important is what 
environment knowledge is for. In multi-agent geo-
simulation, EK is a specification used for enabling 
knowledge exploitation for spatial agents. Practically, EK is 
an agreement to use spatial concepts (i.e., ask queries and 
make assertions), spatial relationships (i.e., describe actions 
and behaviors), in a way that is consistent so we can share 
knowledge with and among spatial agents. Our aim is to 
improve the perception-decision-action loop on which relies 
most of the existing agents’ models. 

b) Knowledge about Actors and Behaviours Archetypes 
When dealing with MAGS simulating Sensor Webs 
involving a large number of sensors of various extents, the 
specification of their attributes and associated spatial 
behaviors may be complex and time and effort consuming. 
Agents’ characterization aims to specify: (1) the agent 
archetype, its super-types and sub-types according to the 
semantic type hierarchy; and (3) the behavior archetype that 
an agent archetype is allowed to perform including moving 
within the informed VGE, perception of the geographic 
features and other spatial agents. Figure 2 shows an example 
of a semantic type hierarchy of agent archetypes. Entity is 

an abstract node and Storm, River, Building and Sensor are 
instance nodes (leaves) of this agent archetype lattice. A key 
characteristic of agent archetype is inheritance. Agents 
belonging to one or several agent archetypes inherit the 
characteristics associates with these agent archetypes. For 
example, let us consider two agent archetypes Temp_sensor 
and Press_sensor respectively sensing temperature and 
pressure. The Temp_sensor is characterised by a 
measurement frequency f. On the other hand, Press_sensor 
is characterised by a one meter circular sensing field. 
Consider now TP_sensor a multi-functional sensor which 
inherits from Temp_sensor and Press_sensor. Thanks to the 
inheritance property provided by agent archetypes, this 
agent performs measurements at a frequency f within a 
circular sensing area of one meter. 
 

 
Figure 2: Semantic Type Hierarchy of Agent Archetypes 

Since our research addresses the simulation of spatial 
behaviors, it has been influenced by some basic tenets of 
active theory [17]. In particular, our approach to manage 
environment knowledge rests on the commitments in active 
theory that: (1) activities are directed toward objects, zones, 
or actors; (2) activities are hierarchically structure; and (3) 
activities capture some context-dependence of the meaning 
of information [17]. Theoretically, the common philosophy 
between our knowledge-based approach and activity theory 
is a view of the geographic environment from the 
perspective of an agent interacting with it [18]. Practically, 
the most important borrowings from activity theory are the 
idea that: (1) the semantic of behaviors and objects are 
inseparable; and (2) behaviors, objects, as well as agents are 
hierarchically structured [18].  
Let us define the following behavior archetypes that we 
associate with the Sensor agent archetype as follows (Figure 
3): 

1. “an agent *m which is a sensor measures an object 
*c which is a phenomenon with a frequency *f ” 

2. “an agent *m which is a sensor measures an object 
*c which is a measurement of unit *u”  
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Figure 3:An example of behaviour archetypes 

These behaviour archetypes are expressed using linear 
notation of CGs respectively as follows: 

[MEASURE:*d] 
-(agnt)->[SENSOR:*m] 
-(obj)->[Phenomenon: *c] 
-(manr)->[Frequency:*f] 

And 
[MEASURE:*d] 
-(agnt)->[SENSOR:*m] 
-(obj)->[MEASUREMENT: *c] 
-(attr)->[Unit:*u] 

Since the above description is equal or more specific than 
the antecedent of the following behaviour, it can be inferred, 
by deduction, that: 

[MEASURE:*d] 
-(agnt)->[SENSOR:*m] 
-(obj)->[MEASUREMENT: *c] 
-(manr)->[Frequency:*f] 
-(attr)->[Unit:*u] 

c) Knowledge about the Application Domain  
The above mentioned levels of knowledge are used during 
the geo-simulation to support agents in their decision 
making. In contrast, knowledge about the application 
domain is mainly used to qualitatively analyze the results of 
the geo-simulation and is thus more linked to decision 
support. In the context of SW deployment, nodes are aimed 
to collect measurements about phenomena of interest which 
vary according to the application domain (military, 
environmental surveillance, etc.). Knowledge about the 

application domain defines phenomena of interest in a 
particular application domain.  
In our framework, we use the concept of spatio-temporal 
situations [19] to model and reason about phenomena of 
interest. A spatio-temporal situation represents a state, an 
event or a process situated in space and time and involving 
various objects of the world. Examples of spatio-temporal 
situations can be a sensor which brake down for a certain 
period of time at a certain spatial area (state), the start of 
rain in certain spatial area (punctual event) or a durative 
heavy rain in a given area (process). A spatio-temporal 
situation has a semantic type (rain, network breakdown, 
etc.), a start and end times and is located in space. 
Knowledge about the application domain defines spatio-
temporal situations of interest according to their temporal 
(state, punctual event or durative process) and semantic 
characteristics. For example, the semantic punctual event 
“Start of rain” can be defined as the fact of water level 
exceeding a given threshold. Relationships between spatio-
temporal situations (temporal and spatial) are also specified 
in the application domain knowledge, which enables 
defining complex phenomena. For example, a situation of 
storm can be defined as a situation of heavy rain followed by 
/ accompanied with a situation of strong wind.  

3)  Decision support  
The decision support component analyzes the result of the 
geo-simulation using application domain knowledge in 
order to identify situations of interest to the user. This data 
analysis process is implemented using the approach 
proposed in [19]. Details of this approach are beyond the 
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scope of this paper. We only illustrate the principle using 
the simple example showed in Figure 4.  
 

 
Figure 4: An example of simulation result processing. 

 
In this example, the situation of interest is Flood. The 
application domain knowledge specifies that there is a flood 
situation if the water-level exceeds 0,15 meter. Otherwise, 
there is no flood situation. The decision support component 
uses this knowledge in order to analyze the facts collected 
by agents during the simulation (Result Facts Base). 
Particularly, the two facts illustrated in Figure 4 are 
respectively interpreted as the start of flood in (Area A, t= 
14:35) and the end of flood in (Area A, 22:12) (punctual 
events). Finally, start and end flood situations are used to 
identify the flood situation itself as a process located in Area 
A during the time interval [14:35, 22:12]. Obviously, 

detection of real complex situations requires taking into 
consideration other aspects (measurement errors, conflict of 
measurements between several sensors, etc.) that are beyond 
the scope of this paper. 

IV. RESULTS AND SCENARIO 

In order to illustrate our knowledge-based multi-agent geo-
simulation framework, we propose to simulate a sensor web 
deployed in an IVGE representing the experimental forest of 
Montmorency (Quebec, Canada) for weather monitoring 
purposes (Figure 5 and Figure 6). This scenario shows how 
agents adapt their spatial behaviors with respect to 
knowledge they acquire from the IVGE using our 
environment knowledge management along with their 
perception capabilities. The objective of the simulated 
sensor web is to identify and monitor a simulated storm 
evolving in the IVGE. In order to reason about knowledge, 
we used a platform to deal with CGs manipulation called 
Amine [20]. Amine platform provides a pattern-matching 
and rule based programming paradigm embedded in 
Prolog+CG language which is basically an object-oriented 
and conceptual graphs-based extension of Prolog language. 
A few agent archetypes representing different kinds of 
sensors are involved in this scenario. These sensors are first 
randomly deployed in the IVGE. Then, each sensor 
computes a path in order to reach its deployment position 
while taking into account the geographic environment 
characteristics. When sensors reach their final destinations, 
some of them stay active while other switch to idle in order 
to preserve the overall energy of the sensor web. Active 
sensors make measurements at a frequency f in order to 
monitor weather conditions. Active and idle sensors as well 
as the measurement frequency are specified in the 
simulation scenario created by the MAGS’s user. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5: Various geometric and semantic layers related to the Montmorency experimental forest, St.Lawrence Region, Quebec, Canada: (a) and (b) two 
types of vegetation characterizing the land cover; (b) water resources including rivers and lakes; and (b) road network. 
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(a) (b) 

Figure 6: IVGE representing the Montmorency experimental forest; (a) the 
2.5D ttriangulated elevation map and (b) the 3D unified map. 

The simulated storm appears after a time frame t from the 
beginning of the simulation. If an active sensor perceives 
the storm agent, it directly accesses to its properties and 
extracts the information that it monitors depending on its 
kind of sensor, i.e. temperature, pressure, wind speed and 
direction, or humidity. If a difference above a certain 
threshold ∆ is observed, the sensor proceeds as follows: (1) 
it accelerates its measurements frequency, (2) it adds a a 
new fact that keeps track of the event with its timestamp in 
the Result Facts Base; and (3) it sends a message to weak up 
idle all sensors of the same kind which are situated in a 
certain estimated distance.  
As the simulation time goes by and the storm agent evolves 
in the IVGE, most of initially idle sensors become active to 
sense the observed phenomenon. When the storm agent is 
out of the perception field of the sensor, this latter senses a 
new difference between the past and the current 
measurement. It notifies the Result Facts Base by adding a 
new fact that keeps track of the new event with its 
timestamp; Idle and active sensors switch states in order to 
preserve their energy. 
In order to model the simulation described above, let us first 
consider the two agent archetypes ZONE and  SENSOR. In 
contrast with the ZONE agent archetype which represents a 
geographic area, the SENSOR agent archetype is associated 
with individual sensors deployed in the informed virtual 
geographic environment.  
Let us consider the two agent sub-types WEATHERZONE 
and STORMZONE. Agents of type WEATHERZONE are 
stationary and represent meteorological conditions within 
the geographic area they cover. 5 instances of 
WEATHERZONE are created in order to approximately 
cover the monitored area (Figure 7). In addition to their 
geometric characteristics, these agents encompass attributes 
which characterize the meteorological conditions such as 
temperature = 18◦ C, pressure = 1010 hPa, humidity = 30%, 
and wind = 3km/h-NW. A single instance of type 
STORMZONE is created to represent the weather storm 
phenomenon. Obviously, this agent is mobile and also 
encompasses attributes characterizing its meteorological 
conditions.  

When a sensor detects a difference above the threshold, it 
adds a fact in the Results Facts Base using the CGs 
formalism. Consider the following example involving the 
sensortemp1 adding a fact describing an observed difference 
of temperature measurement of value 18 at cell 367 at 15h : 
34 : 22. 

[MEASURE:*temperature] 
-(agnt)->[SENSOR:*sensortemp1] 
-(obj)->[TEMPERATURE: 18] 
-(time)->[TIMESTAMP: 15:34:22]  
-(loc)->[CELL: 367] 

 

 
Figure 7: 5 WeatherZone agents covering the monitored geographic area. 

Let us now define the following sub-types of SENSOR 
archetype: TEMPSENSOR for temperature measurement, 
PRESSENSOR for atmospheric pressure measurement, 
WINDSENSOR for wind speed and orientation 
measurement, and HUMISENSOR for humidity 
measurement (Figure 8).  
In this scenario, the situation of interest is the storm. Let us 
suppose that we need to describe the evolution of the storm 
during the geo-simulation for decision support purposes. 
Knowledge about the application domain allows specifying 
how the presence of a storm phenomenon can be detected in 
a certain area. 
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Figure 8: The simulated sensors autonomously reaching their deployment 
position in the IVGE. The blue circle corresponds to the perception field 
for active sensors. 

For simplification, let us consider the following 
(Prolog+CG) rule specifying that a storm is detected at time 
T in area A if there are (in the results facts base) facts 
describing that temperature exceeds 20°C and wind speed 
exceeds 30km/h at the same time T and the same area A: 

[MEASURE:*temperature] 
-(agnt)->[SENSOR: x] 
-(obj)->[TEMPERATURE: v > 20] 
-(time)->[TIMESTAMP: T]  
-(loc)->[AREA: Y] 

And  
[MEASURE:*windspeed] 
-(agnt)->[SENSOR: y] 
-(obj)->[SPEED: s > 30] 
-(time)->[TIMESTAMP: T]  
-(loc)->[AREA: Y] 

A storm detection event is triggered as soon as the 
conjunction of these two facts exists within the result facts 
base (Figure 9). The analysis of the simulation results 
conceptualize this event using the knowledge associated 
with the situation description as follows: 
  

[STORM:*storm] 
-(loc)->[AREA: A] 
-(time)->[TIMESTAMP: T] 

 
This conceptual graph may be interpreted as follows: “a 
storm is detected at area A at time T”. 

 

 
Figure 9: Idle sensors are weaked up by those who perceives the storm 

agent (in yellow at the bottom of the figure). 

V. DISCUSSION AND CONCLUSION 

Our environment knowledge management approach is 
original at various aspects. First, a multi-agent geo-
simulation model which integrates an informed virtual 
geographic environment populated with spatial agents 
capable of acquiring and reasoning about environment 
knowledge does not exist. Second, a formal representation 
of knowledge about the environment using CGs which 
leverages a semantically-enriched description of the virtual 
geographic environment has not yet been proposed. Third, 
providing agent with the capability to reason about a 
contextualized description of their virtual environment and 
phenomenon occurring within it during the simulation is 
also an innovation that characterizes our approach. 
We are currently working on the automated assessment of 
different simulation scenarios f sensor web deployment 
using our qualitative knowledge processing and analysis 
module. Indeed, users usually need to analyze and compare 
various scenarios in order to make informed decisions. This 
task may be complex and effort and time consuming. 
However, since our framework already supports the analysis 
of the multi-agent simulation results, it is easy to extend it to 
automatically assess scenarios. 
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