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Abstract: We prove under appropriate assumptions the existence and uniqueness in the sense of semigroup theor
of a blow-up solution for a degenerate semilinear parabolic problem: (a(z)uz), = f(u) in (0,1) x (0, 00)

wheref is a given function and(0) = 0, a(z) > 0 on (0, 1] together with the Dirichlet boundary condition and

the suitable initial condition.

Key—WordsBlow-up problems, Semilinear parabolic problems, Semigroup theory, Semilinear evolution problems,
Blow-up in finite time, Degenerate parabolic problems

1 Introduction

The subject of blow-up was posed in the 1940’s and
50’s in the context of Semenov’s chain reaction the-

ory, adiabatic explosion and combustion theory. There
has been a tremendous amount of recent activities due

to the subjects of solutions to various partial differen-
tial equations blowing up in finite time. Finite time
blow-up occurs in situations in mechanics and other

local and nonlocal type involving a variable exponent,

} (2)

where  is a smooth bounded subset adR”
with smooth boundaryo? and the source term
is of the form f(u) = a(z)u?™® or f(u) =

up = Au+ f(u), (z,t) € Q x (0,00),
u(z,t) =0, (z,t) € 9Q x (0,00),
u(z,0) = up(z), v € Q,

areas of applied mathematics. Studies of these phe- a(x)g“q(y) (y, t)dy wherea, p andq are given func-

nomena have very recently been gaining momentum.

In the following, we give examples of blow-up prob-
lems in the way of blow-up mathematical theory. In
1985, C.E. Mueller and F. B. Weissler [7] studied the
semilinear heat equation:

u(z,t) =0, x € 00 x (0, 00),

ug = Au— Au+ f(u), (z,t) € Q x (0,00), }
u(z,0) = up(z), z € Q,

(1)

wheref) isR"™ or 2 is a smooth bounded subsefRif,
0% denotes the smooth boundary®f A = > 92,

=1
A > 0 and f andug are specified functions. Under

tions. For blow-up problems of the degenerate semi-
linear parabolic type, in 1999, C.Y. Chan and W. Y.

Chan [3] studied the existence of a blow-up solution of
the degenerate semilinear parabolic initial-boundary

value problem
} 3)

whereq > 0, f andug are given functions. They
proved existence and uniqueness of a blow-up solu-
tion of problem (3) by transforming problem (3) into
the equivalent integral equation in terms of its asso-
ciated Green's function. Furthermore, in 2006, C. Y.

zlup — ugy = f(u), (z,t) € Q x (0,00),
u(0,t =0=wu(1,t), t >0,
u(z,0) = up(z), x € [0,1],

suitable assumptions, they showed that the solution Chan and W.Y. Chan [4] showed that under certain

of (1) blows up in finite time and the blow-up set of
blow-up solution consists of only one point. Further,

in 2009, J. P. Pinasco [8] established the blow-up pos-

itive solutions of problems (2) with reaction terms of
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condition on functiong andug, a solutionu of prob-

lem (3) blows up at every point ifi), 1]. After paper

[3] published, in 2004, Y.P. Chen and C.H. Xie [6]
considered the degenerate parabolic problem with the
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nonlocal term : for anyzx,t) € (0,1) x (0, 00), eigenvalues and eigenfunctions to problem (7) to use
, their properties in the part of existence of solution of
o _ problem (7).

up = (2%a)e = bff(u)dx’ 4 In this paper, we study the following degenerate
u(0,t) =0 = u(1,t), t >0, (4) semilinear parabolic problem closed to problem (7)
u(z,0) = ug(z), z € [0,1], via semigroup theory:

with o € [0,1) and f and ug are given functions. up — (a(z)ug)e = f(u), (z,t) € (0,1) x (0, 00),

They proved the local existence and uniqueness of u(0,t) =0 =wu(1,t), t >0,

a classical solution. Under appropriate hypotheses, u(z,0) = ug(z), x € [0, 1],

they obtained the sufficient conditions for the global (8)

existence and for blow-up of a positive solution of wherea, f andug are given functions.

problem (4). Additionally, in 2004, Y.P. Chen, Q. The objective of this article is to show the exis-

Liu and C.H. Xie [5] studied the degenerate nonlin- tence of a unique blow-up solution of the problem (8)
ear reaction-diffusion equation with nonlocal source: before blow-up occurs by semigroup theory.
forany(z,t) € (0,1) x (0,00),

) .
2y — (3%un)s = | uPd, 2 Setting out a degenerate problem

0 5 . _— ub in finite time.
w(0,8) = 0 = u(1,4), £ >0, (5) We next give the definition of blow-up in finite time
u(z,0) = uo(x), = € [0,1], Definition 1 A solutionu of the problem (8) is said

. ) ) to blow-up at the pointb in finite timeT;, if there ex-
They established the local existence and uniqueness jgis 4 sequencé(wn, tp)} With (zn,t,) € (0,1) x

of a classical solution of problem (5). Under appro- (0,7) and (zp,tn) — (b,Ty) asn — oo and
priate hypotheses, they gave the sufficient conditions }; w(n, ) ~ Yoo ’

for a global existence and for blow-up of a positive n—oo ’

solution. Furthermore, under certain conditions, they
proved that the blow-up set of such a solution of prob-
lem (5) is the whole domain. In 2010, P. Sawangtong
and W. Jumpen[10] showed, under certain condition,
the existence of a blow-up solution of the degenerate
parabolic problem: for anyz, ¢) € (0,1) x (0, 00),

Because of the function which expresses the
degeneracy we need to introduce a variant of the
classical Sobolev spadé! (0, 1), namelyH%(0, 1).
Throughout this paper, we make the following as-
sumptions oru:

(A) a € C°0,1] N CY(0,1], a > 0in (0,1] and

xluy — (2%Uy )y = 29 f(u), a(0) = 0;
u(0,t) =0 =wu(1,t), t >0, (6)
u(z,0) = up(z), x € [0, 1], (B) 3K € [0,1) such thatra'(z) < Ka(x) for all

z € (0,1].
whereq > 0, « € [0,1) and f and u( are suit- 0.1
able functions. Furthermore the sufficient condition We note that
to blow-up in finite time and the blow-up of such a
solution of problem (6) are shown. Furthermore, in
2010, P. Sawangtong and W. Jumpen [11] extended

problem (6) to more general form: for arffy,t) €

1. an example of functions satisfies the conditions
(A) and (B) isz™ with a € [0, 1),

1
(0,1) x (0, 00), 2. the condition (B) implies thaf _Lsda is fi-
0
k(z)us — (a(z)ug)e = k(x) f(u), nite which is a sufficient condition to obtain that
w(0,t) =0 =u(1,t), t >0 @) the spacel 1%(0, 1) is compactly embedded in
Y ) ) Y 2
u(x, 0) = uo(x), = € [0,1], L70.1).
wherek(0) = 0 = a(0), k,a > 0 on(0,1] andf and If u, denote the derivative in the sense of distri-

. o R
up are given functions. They showed the existence bution of the distributior in D'(0, 1), then

and uniqueness of a blow-up solution of problem (7)

1,a _ 2 : _
by classical method, i.e., Greens’function method. As H0,1) = {uel (_0’ 1) possessing an. absolu
shown in [11], there are many conditions on func- tely continuous representative on [0,1]
tionsk anda to obtain the existence of corresponding andy/au, € L*(0, 1)}.
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It is known that equipped with the following inner
product anchorm

1
= [ et et
0

1/2
[ull gr1.a0,1) = <“7“>}¥17a(0,1) :

(U, ) g1 (0,1) z(2)vz (7)) dx

and

respectively. The spaoﬁfl’“(o, 1) is a Hilbert space.

By due account of the fact thg(’t yd is finite,

Héva(o, 1) ={ue H"(0,1)s.t.u(0) =0=u(1)},

is a closed subspace d@f!'%(0,1) with equivalent
norm

el 2.0 0,1 = VAt | o1y

and theinjection of H1:%(0, 1) andC°[0, 1] is contin-
uous. Eventually we will consider

H*%(0,1) = {u € H"*(0,1) s.t.au, € H"*(0,1)}
with its norm:

2 2 2
lullEr2.a 0,1y = l1ulltreqo,ny + l(aua)zlzao,1) -

In order to obtain the existence of a blow-up solu-
tion u of problem (8), we also make some hypothesis
on functionsug and f:

(C) up € H2%(0,1) N Hy"(0,1), up > 0 on[0,1]
andug(0) = 0 = up(1).

(D) f is locally Lipschitz: VM > 0,3C),; such that
|f(a) = f(b)| < Cirla — b| Va,bwith[al, [b] <
M.

To apply a useful result in the semigroup theory
[13], we transform problem (8) into the equivalent
semilinear evolution problem:

— Au(t) = F(u), t > 0, }

u(0) = uy, (9)

where A is an operator mapping from?(A), the do-
main of A, into L2(0, 1) with

D(4)
= {u € Hy®(0,1) s.t. 3w € L*(0,1) satisfies that

1
[wtaretads =~ [ @ @)oo
0 0
forall o € Hy*(0,1)}

)dz,

(10)
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and

Au = (aug)y; = wforallu e D(A)  (11)

and whereF' is an operator mapping fro(A) into
L?(0, 1) defined by

F(u) = f(u) forallu € D(A). (12)

3 The main result

Here, we prove that problem (8) has a unique blow-up
solution in the sense of semigroup theory.

Theorem 2 There exists a positive constant such
that the equivalent evolution problem (9) has a unique
solutionu € C([0,T], D(A)) N C*([0,T], L*(0,1))
defined by

1
u(t uo—l-/St—T (1))dr
0

whereS(t) is an analytic semigroup generated by the
operator A.

Theorem 3 Let [0, Tinq.) be the maximal time inter-
val in which a solution: of problem (9) exists. If is
increasing, then lim max |u(z,t)| is unbounded.

t—Tmax z,€[0,1]
4 The proof of main results

In this section we will give the proof of our main the-
orems by starting from the proof of theorem 2.

4.1 The proof of theorem 2

In this section, we will first consider some properties
of operatorsd andF' defined by (11) and (12), respec-
tively.

4.1.1 Properties ofA

Let us state important properties af

Proposition 4 The operatorA defined by{11)is max-
imal dissipative and self-adjoint oh?(0, 1) which,
consequently, generate an analytic semigroup on
L%(0,1).

Proof: To prove the maximal dissipative property of
A, we have to show two conditions:

1. (Au,u)p2( ) < Oforallu € D(A) and
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2. R(I — MA) = L?(0,1) for any A > 0 where
R(I —\A) andI denote the range df— AA and
the identity operator o?(0, 1), respectively.

Condition1 follows directly from (10), the definition

of A. Leth € L?(0,1) and\ be any positive constant.
For verifying condition2, we have to show that there
exists a unique. € D(A) such thatu — MAu = h
which equivalent to show that there exists a unique
u € D(A) such that the following equation holds:

/1 d:c+/1@( Juz(z)pe(2)dz
0 0

1
/h x)dz forall p € H(0,1).
0

> =

Such the existence is guaranteed by Lax-Milgram the-
orem. Hence, the operatdris maximal dissipative on
L?(0,1). Hence to show thatl is self-adjoint it suf-
fices to prove thatl is symmetric: letu,v € D(A).

We consider that, by (10),

1
(Au,v) 1201y = —/a(w)uz(x)vx(x)dx
0

= (u AU>L2(0,1) :

O
The proof of next lemma is not difficult. We can
prove directly and then we have:

Lemma5 D(A) = H>*(0,1) N Hy*(0,1).

The next lemma is used to guarantee the existence
of corresponding eigenvalues and eigenfunctions of
—A refereed to [1].

Lemma6 The spaceH1 “(0,1) is compactly imbed-
ded inL?(0,1).

Proof: See [1] O

Since the operator(—A4)~! is a bounded
well-defined operator onZ.?(0,1) with values in
H1 “(0,1), lemma 6 implies that—A)~! is compact
operator onL?(0,1). The next lemma is the well-
known results about the spectral theory of self-adjoint
compact operator referred from [2].

Lemma 7 There exists a sequenc@\,,¢,) C
(0, +00) x Hy*(0,1) such that

1. Ag, = Mo foralln > 1,
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1
2. [ ¢n(x)pm(z)dx = {
0
1ax/x/xx: 0, n#m,
3. [t ez = {

n, N =1,

4. 0(®) = 3 (v, 6u) gy bule) for any v e

n=1
L*(0,1),
5. Hv||%2(o,1) = 21 <U7¢n>%2(071) for any v €
L*(0,1),
6. Av =— Z A <U7¢H>L2(071) (bn(x) for anyv

D(A) with D( ) = {v € L?(0,1) such that
21 A (Uv(bn)L?(O,l) < +o0}.

7.5t = 3 e Mt (v, ) 6y for all (v,t) €

L?(0,1) x [0, 00).
We now can define the domain of A)'/2 by

D((—A)Y?) = {v € L%(0,1) s.t. i An (0, p)? < 00

n=1
(13)
and the unbounded self-adjoint operaterA)'/? in
L?(0,1) by

AP ZM/%% no (14)

foranyv € D((—A)'/?). We then have the following:

Lemma8 D((—A)Y/?) = Hy*0,1) and
||U||D((_A)1/2) = H(—A)l/%HLz(OJ) = ||UHH3¢@(0,1)
and consequentlp((—A)'/?) — €0, 1].

4.1.2 Properties ofF

}

In order to prove lemma 10, we have to use a fact re-

ferred to [1]:

Lemma 9 The spaceD(A) is completely imbedded
in D((—A)Y/?).

Proof: See [1] a

Now we state and prove some propertiegof
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Lemma 10 The opeator F' defined by (12) is local
Lipschitz.

Proof: Letw,v € D(A). It follows form lemmas 9
and 8 that there exists a positive const&hsuch that
|lu| < M and|v| < M. Locally Lipschitz condition
of f and lemma 8 imply that there exists a positive
constantL; depending o/ such that

[1F(u) = F

1

= [ IPa)@) - FO)@) ds
0
1

- / ) — F(0) P da
0

1
2, / u(z) — v(z)|? da
0

L3y |lu—

W)lIz2(0,1

IN

IN

2
U||00[0,1}
CgL?w Ju —
ClzL?\/[ |u —

IN

Ol b ayrz)
vllba

where Cy and C; are the constants involved in the
Sobolev embeddingd,*(0,1) — C°[0,1]. and
D((—A)'/?) < D(A), respectively. O

Moreover, we show that the operatbr defined
by (12) is Hblder continuous of exponent € (0, 1).
Before going to that point, we give the definition of
mild solution of the equivalent semilinear evolution
problem (9).

IN

Definition 11 A solutionw is said to be amild so-
lution of the equivalent semilinear evolution problem
(9) if there exists: € C([0, ), HL(0,1)) such that

u(t) uo—l—/St—T (1))dr
0

with ug € H2(0,1).

Based on the proof of theorem 2.5.1 of [14], we
have the following.

Lemma 12 The equivalent semilinear evolution
problem (9) has a unique mild solutiom on the
time interval [0, 7] for some positive constarif.
Moreover, letu(t) and u(t) be mild solutions cor-
responding touy and ug, respectively. Then for all,
t € [0, T1], the following estimate holds

[u(®) = w101y < lluo

for some positive constant;.

~ C1T1/?
—7v’J0H1LIg(0,1)e R
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By modifying the proof of corollary 2.5.1 of [14],
we establish the following lemma.

Lemma 13 The mild solutionu of the equivalent
semilinear evolution problem (9) isditler continu-
ous of exponent = (1/2) in t for anyuy € D(A).

Proposition 14 The operator F' defined by (12)is
Holder continuous of exponent= (1/2) in ¢.

Proof: Since F satisfies the locally Lipschitz
condition andw is Holder continuous of exponent
a = (1/2) in t, F is also Hlder continuous of
exponenty = (1/2) in ¢. 0

Now we are in a position to prove theorem 2.

Proof of theorem 2: It follows directly from propo-
sition 4 and 14. O

4.2 The proof of theorem 3

Let us modify the proof of theorem 2.5.5 of [14] to
obtain the following result.

Lemma 15 Let [0, T;,,q,) be the maximal time inter-
val in which the mild solutiom of the equivalent semi-
linear evolution problem (9) exists.

If T.q2 is finite, then the solutiom of the semi-
linear parabolic problem (8) blows up in finite time
Trnaz, 1.€.,

lim Ju(t)]| e 4y = +00

*LImax

Before proving theorem 3, we have to find some
useful properties of the analytic semigrofift) gen-
erated by operatod. By modifying the proof of
proposition 2.3.1.4 and 2.3.1.5 in [9], we obtain two
results

Lemmal16 If v € D((=A)Y?), then
S(tyv € D((—A)Y?) and ||(—A)Y/2S(t) )9 1201y =
[S(t)(=A) 1/2UHL2 01 = 1(=4) )2 ”HL?(O,l)'

Lemma 17 There exists a positiorC’; such that
[(=A2S@)0]| oy = 1S@vllgagy, <
57/22 HUHL2 (0,1) for any(’l),t) < L2(07 1) X (07 +OO)

We next prove theorem 3.

Proof of theorem 3: We will prove theorem 3 by
contradiction argument. Suppose that there exists a
positive constand/ such thatm[%)i] lu(z,t)| < M as

xe

)
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t

t — Tiax. It follows fromu(t) = S(t)uo + [ S(t —
0

7)F (u(7))dr that

(@)l e < 1S (o] 1o

+ 18~ DF )l g dr.
0

By lemmas 16 and 17, we obtain

IN

a8 g —

1

(t—7)
_ 1/2
= Juoll e +2CF (M),

IN

t
Juol gy + C701) |
0

for some positive constanf. So, ast — Tnax,

t
IE (u(m)ll 22 0,1
Hu0||H3,a+c/ = O ;-
0

1/2d7'

Hu(t)HHé,a(O 3 is bounded which contradicts to

lemma 15. Hence the proof of this theorem is com-

plete. a

5 Conclusion

As shown in [11], if we would like to prove the exis-
tence and uniqueness of a blow-up solution by Green’s [11]

function method, we have to make many assump-
tions on functions: anda to guarantee the existence
of eigenvalues and eigenfunctions of such a problem

[4]

[5]

[6]

[7]

[8]

[9]

[10]

which contrast to method in semigroup theory. But the [12]

difficulty of applying semigroup theory is to construct

the suitable Banach spaces.
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