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Abstract: - In this paper are investigated some methods for parallel computation of the Singular Value 

Decomposition (SVD) of a matrix. There is done a mathematical analysing of some known techniques. A 

mathematical approach is base on orthogonal rotations. Finally is given corresponding array for parallel 

computation based on systolic computation which on the other hand mathematically is based on Hestenes-

Jacobi method. 
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1 Introduction 
The computation of a singular value decomposition 

of an nm ×  matrix A is one of the most demanded 

tasks in various applications. There are many 

algorithms for computing the full or partial singular 

value decomposition. Among them, the Jacobi 

methods are reputable for the ability to compute the 

singular values as well as left and right singular 

vectors with high relative accuracy. The one-sided 

Jacobi methods for computing the SVD of a 

rectangular matrix are more efficient than their two 

sided counterparts, mainly due to the halving of the 

number of matrix-matrix products needed for 

updating the left and right singular vectors [10, 11]. 

Jacobi methods are more appropriate in accuracy 

point of view in comparison for example with QR 

methods.  The well known sequential 

bidiagonalization based SVD algorithm takes 

)( 2
mnO time on an nmnm ≥× ,  matrix [1]. For 

large matrices an execution time may be 

unacceptable. Thus, it is essential to develop 

efficient parallel algorithms. Both two sided and 

one-sided techniques have been studied in this 

context [5,6,8,12]. An improved systolic arrays is 

discussed in [2]. 

 

 

2 The SVD of a Matrix 
Definition: The singular-value decomposition 

(SVD) of an nm×  matrix A  is given by 
TVUA Σ=  where U  and V  are orthogonal 

mm×  and nn×  matrices respectively, (i.e.,  

m

T
IUU =   and 

n

T
IVV = ), and Σ  is a diagonal 

nm×  matrix such that ( ),..., 21 σσdiag=Σ  and 

0...... 121 ===≥≥≥≥
+ krr σσσσσ , where 

rankAr = . In the case Σ= ,nm  is a square 

diagonal matrix of order n . The iσ -s are the 

singular values of A . The matrix U  consists of m  

left singular vectors and the matrix V  consists of n  

right singular vectors.  

The SVD decomposition is often based on 

diagonalizing rotations which are orthogonal 

transformations which preserve Eigen values and 

Eigen vectors as well as singular values and singular 

vectors. The sequence of rotations kA , such 

that Σ=
∞→

k
k

Alim , is applied during the process. 

 

 

3 Jacobi Rotations 
The classical Jacobi rotation [4] has been used by 

Jacobi in the 19
th
 century as a tool for solving the 

least square problem. This rotation is also called 

Given’s rotation. This method uses a sequence of 

plane rotations to diagonalize a symmetric nn×  

real matrix A . We denote the Jacobi rotation of an 

angle θ  in the ( )ji,  plane by ( )θ,, jiJ . This is a 

square matrix equal to the identity matrix except the 

four additional elements in the intersection of i -th 

and j -th rows and columns: 
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where θcos=c  and θsin=s . It is not difficult to 

verify that this is an orthogonal transformation 

because of the fact that ( ) ( ) IjiJjiJ
T

=θθ ,,,,  for 

eachθ . The rotation angle θ  is chosen so that it 

annihilates the symmetrically placed pairs 
jiij

aa =  

of the ( )1−nn  off-diagonal elements. Because only 

the rows and columns i  and j  are modified only 

the example with a matrix of order 2 is analyzed. 

Initially, let 1AA =  and at the thk −  

iteration JAJA k

T

k =
+1

. The 22×  representation is 

as follows: 
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From (2) we have: 0
22

=−+−
k

jj

k

ij

k

ij

k

ii csaacascsa . 

After additional transformation of this expression 

and putting θα 2ctg=  and θtgt =  we get: 

k
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From 
θ

θ

θ

θ
θ

cos

cos1

cos

sin 2
−

=== tgt  we get the 

values of c  and s . 

 

cts
t

c =

+

== ;
1

1
cos

2
θ                        (5) 

 

In practice, the variant with 2t  is better because in 

that case the angle satisfies the condition
4

0
π

θ ≤≤ . 

The convergence is proved using the Frobenius 

norm ∑= ijaA  which remains unchanged under 

orthogonal rotations. In fact, the Jacobi 

transformation increases the norm of the diagonal 

elements and it decreases the norm of the off-

diagonal elements so that 0→= ∑
≠ ji

ijk aoffA  [1].  

Hence, A  approaches the diagonal form. 

The basic problem is to choose the ordering of 

pairs ( )ji,  which will be used for zeroing the off-

diagonal elements. An objective is to go through all 

pairs exactly ones. Such a sequence is called a 

sweep and it consists of 
( )

2

12 −
=

nn
Cn

 rotations. A 

simple cyclic ordering by the rows is the ordering: 

( ) ( ) ( ) ( ) ( ) ( ) ( )nnnn ,1,...,4,3,,2,...,3,2,,1,...,3,1,2,1 −   (6) 

The procedure given above is for the case when 

A  is a symmetric matrix. What about a 

nonsymmetrical matrix A ? Even in that case 

annihilation of the off-diagonal elements can be 

made using two sided Jacobi method. 
In the two sided Jacobi method for SVD of a 

nonsymetric matrix, the annihilation of the off-

diagonal elements is done by using two pairs of 

rotations [7], such that: 
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If 1θ  and 2θ  are the angles generating the pairs 

( )11,cs  and ( )22 ,cs  then the solution given in [7] is 
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k
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There is another approach to do the 

diagonalization using two transformations. The first 

one is to symmetrize the given matrix A  and then 

to diagonalize the matrix. These two steps are given 

below: 
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From (9),  the following relations can be obtained: 

11
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(11) 

The first step (symmetrization) is done by using 

(11). The diagonalization is done by using (10). 

Afterwards the relations and equations are the same 

as in (3), (4) and (5). 

 

 

4 Hestenes-Jacobi Method 
Computationally better results offers the so called 

Hestenes-Jacobi method [3]. This method works 
with a smaller unit of computation (only with the 

rows of the matrix) compared with the first 

explained Jacobi method (which modifies both the 
rows and columns). Since Hestenes-Jacobi 

transformations are orthogonal transformations 

which leave singular values unchanged, it is not 

important how many such transformations are 

applied. 

For a given nm×  matrix A , the Hestenes-

Jacobi method produces an orthogonal matrix U as 

a product of plane rotations and a matrix N whose 

rows are orthogonal. 

 

[ ] jiforNUA j

T

in ≠=== 0;...21 ηηηηη
  

(12) 

The orthogonal matrix U  may be taken as a 

plane rotation matrix ( )θ,, jiJ . If AA =1  then 

JAA kk =
+1 . The iterations result in the matrix N  

defined by (12). Working with a submatrix of type 

22×  we have: 
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From the orthogonality condition we have: 

( ) ( ) 0=⋅+⋅−⋅⋅+⋅ casasaca
k

j

k

i
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j
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i
                 (14) 

After a transformation of the relation (14), one can 

obtain the new relation: 

( )
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From these relations the iteration formulae for the 
updating the value of an inner product may be given 

with this relation: 

( ) ( )( ) 

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

−+⋅−=⋅
++

22
2211 k

j

k

i

k

j
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k

j
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Writing ( ) j

T

iij aag ⋅=  the following equality will 

be fulfilled: 
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From the equality above there can be obtained the 

relation: 

ij

k

i

k

j

g
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22sin
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===

θ

θ
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The next steps are same like in the relations (4) 

and (5). Summering this, the results are: 

cts
t

ct =

+

=++−= ;
1

1
),1(sgn

2

2
λλλ  (18) 

 

 

5 A Parallel Approach 
In general, the maximal number of rotation pairs of 

one sweep for a matrix of order nm×  is 

{ } { }{ }[ ] 21,max,max −⋅ nmnm . If the matrix is 

nn×  symmetric then one sweep consists of 

( ) 21−nn  transformations, which is the same with 

the number of elements above or below the main 

diagonal. Let ( )jiT ,  be the transformation which is 

used to annihilate the element in the position ( )ji, . 

Then, ( ) ( ) ( )θθ ,,,,, jiAJjiJAjiT
T

= . For 4=n  

each sweep consists of 6 transformations. These 

transformations are 

( ) ( ) ( ) ( ) )4,3(,)4,2(,3,2,4,1,3,1,2,1 TTTTTT . So, the 

general transformation for a given matrix A  will 
be: 

( ) ( ) ( ) ( ) ATTTTTT )2,1()3,1(4,13,24,24,3 .          (19) 

In fig. 1 are presented the modifications of the rows 
and columns after applying the transformation (19). 

Annihilated elements are represented by putting the 

value 0 in the corresponding position: 
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Fig. 1. Sweep of  Jacobi transformation for a matrix of order 4 

 

In this case it is important to mention that the off-

diagonal elements converge to 0, although it is 

possible that after the annihilation of some element 
by using the corresponding transformation, the same 

element can be filled with non-zero by a subsequent 

transformation. So, in this case the fact that the 
process is convergent, allow us to fill this places by 

0. In general, transformation )3,1(T will fill the zero 

elements created by transformation )2,1(T  with non-

zero elements, )4,1(T will fill those created by )3,1(T , 

and so on. But the important fact here is that the off-

diagonal elements decrease from sweep to sweep.  

Concerning the parallelization, if n  is an even 

number, there may be performed 2n  rotations 

simultaneously. For 4=n  simultaneously may be 

applied two rotations. It may be done by multiplying 

by the orthogonal matrix of the form: 
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This implicates an annihilation which is equivalent 

by the annihilation using the rotations ( )θ,3,1J  and 

( )θ,4,2J . Using similar multiplication matrices, 

the steps of the annihilations will be given by: 
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Fig. 2 Sweep of parallel Jacobi transformation for matrix of order 4 

If 8=n , then four rotations can be performed 

simultaneously. The matrix used for the annihilation 

of the first 8 elements is: 
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          (21) 

The annihilation of all off diagonal elements will 

be done in 7 steps. Seven such transformations are 

the matrix 
813,24,57,6J (given in (21)) followed by the 

matrices 
714,23,58,6J , 

812,43,56,7J , 
815,26,47,3J , 

716,25,48,3J , 

717,35,28,4J  and 
518,27,36,4J .Generally, in such kind of 

parallel processing, the process will be finished in 

1−n  steps compared with the serial case where 

2)1( −nn  steps are needed for performing. If n  is 

an odd number, then the number of rotational 

transformations which can be used in parallel to 

annihilate the off diagonal elements is ( ) 21−n  and 

the process will be done in n  steps. Let us now take 

an example where 5=n . In this case the first 

matrix (of order 5) which can be used to annihilate 

the first 4 off diagonal elements may be defined by: 




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
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

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=
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J

                              (22) 

The annihilation will be finished in 5 steps choosing 

the transformations ,, 24,1325,14 JJ 23,4535,12 , JJ  and 

34,15J . The steps of annihilations are given by the 

representation: 
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Fig. 3. Sweep of parallel Jacobi transformation for matrix of order 5 

In general, for a randomly chosen square matrix of 

order n  (with )1( −nn off diagonal elements), it is 

possible to annihilate  22 n⋅  elements at once. 

The number of transformations of the form ),( jiT  is 

( )  1212 −+⋅ n                                           (23) 

As a consequence of the analysis done above, a 

conclusion which determines the number of parallel 

iterations can be given with the following:                               

Corollary: The number of parallel iterations k  in a 

computation of SVD of a square matrix of order n  

is given by the relation: 





−

=

evenisifn

oddisnifn
k

,1

,
 

Proof: This is a consequence of the discussion 

given above. The number k  is given by the formula 

(23). In the case where n  is an even number we can 

use the notation mn 2=  Therefore we 

have: ( )  1122212122 −=−⋅=−+⋅= nmmk . 

Otherwise, if n  is an odd number then 12 += mn  
and from (23) we have ( )  nmk =−++⋅= 121122 . 

 

 

5.1 A Linear Processors Array 

The linear array, for 8=n , is presented in fig. 4. 

This array consists of 4 processors working in 

parallel and annihilating the off diagonal elements 

in 7 steps. 

What about the total communication cost (C) 

which in this case is equal to the total number of 

transmissions between processors? From fig. 4 we 

can see that each processor transmits only ones in 

each step. Taking into the consideration the fact that 

in the last stn '1−  step there is no more 

communication, the total cost will be: 

( )

2

2
)2(

nn
pnC

−
=−=                                  (24) 

The communication cost in this case is of 

order )( 2
nO . 

1P 2P 3P 4P

  1  3   2  4   3  7   6  8

  1  4   2  3   5  8   6  7

  1  2   3  4   5  6   7  8

  1  5   2  6   4  7   3  8

  1 6   2  5   4  8   3  7

  1  7   2  8   3  5   4  6

  1  8   2  7   3  6   4  5
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1
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Fig. 4. A linear systolic array 

 

 

5.2 A Systolic Array Based on Hestenes-Jacobi 

Method  
The proposed systolic array using Hestenes method 

is consisting of 2RRxR =  processors. At first it’ll 

compute the value ( ) j

T

iij aag ⋅= , and after the 

receiving the row norms 
2

ia  and 
2

ja , each 

processor computes the rotation values 
ij

s  and 
ij

c  

according the formulas (16) and (17). When the 

values 
ij

c  and 
ij

s  are computed, the same array can 

be used for second step of computation which is 

consisted in obtaining the correspondent values of 

matrix 1+kA . The initial arrays (for both steps) are 

presented in fig. 5 and fig.6. 

The systolic array shown in fig. 5 and fig. 6 is 

more efficient in the parallel point of view, although 
it uses more steps for achieving the convergence. In 

the presented case there are required 13 time steps 

in order to compute the values of ijc  and ijs  (fig. 5), 

as well as 15 time steps in order to compute the 

values of 1+kA (fig. 6). In general, the total number 

of time steps is ( ) 321241 ++=−+++ RNRN  

(fig.5).In the case of fig.6 there are used more 
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number of steps because one needs to use two 
multiplicative and additive operations. So, the 

number of time steps in the case of fig.6 is is 

1)(4 ++ RN . So, the total number of steps will be 

465 ++ RN . 
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Fig. 1 Systolic computation of rotation angles  for  R=3 and n=4 
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Fig. 6 Obtaining the values of 
1+kA using the values ijc  and ijs   

 

 

6 Conclusion 
In this paper is done a theoretical analysis of some 

parallel methods for computation of the SVD. There 
is emphasized the parallel systolic computation 

which is consisted on two basic steps which are 

dependant. The proposed systolic array doesn’t 
depend of the number of columns. The discussion 

can be extended making some comparison analysis 

as well as simulations about the efficiency of each 

method followed by the analysing of the advantages 

and disadvantages of each one. 
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