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Abstract: Artificial bee colony algorithm is an optimization algorithm based on a particular intelligent 

behaviour of honeybee swarms. In this paper we present a novel algorithm named GABC which integrates 

artificial bee colony algorithm (ABC) with self-adaptive guidance adjusted for engineering optimization 

problems. The novel algorithm speeds up the convergence and improves the algorithm’s exploitation. We tested 

our guided algorithm on four standard engineering benchmark problems. The experimental results show that 

GABC algorithm can outperform ABC algorithm in most of the cases. 
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1 Introduction 
1A branch of nature inspired algorithms which are 

called swarm intelligence is focused on insect 

behavior in order to develop some meta-heuristics 

which can mimic insect's problem solution abilities 

[1], [2], [3], [4]. Optimization algorithms are 

capable of finding optimal solutions for numerous 

test problems for which exact and analytical 

methods do not produce optimal solutions within a 

reasonable computational time. Their ability to 

provide many near-optimal solutions at the end of 

an optimization run enables to choose the best 

solution according to given criteria. The artificial 

bee colony (ABC) algorithm is a metaheuristic 

optimization technique that mimics the process of 

food foraging of honeybees. Originally the ABC 

algorithm was developed for continuous function 

optimization problems, but it can also be 

successfully applied to various optimization 

problems. 

 A majority of industrial engineering optimization 

problems are constrained problems. The presence of 

constraints significantly affects the performance of 

any optimization algorithm.  Michalewicz and Fogel 

[5] describe the following characteristics that make 

it difficult to solve an optimization problem in the 

real world: 
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1. The number of possible solutions (search space) 

is too large. 

2.  The problem is so complicated that, with the 

aim of obtaining a solution, simplified models 

of the same problem must be used. Thus, the 

solution is not useful. 

3. The evaluation function that describes the quality 

of each solution in the search space varies over 

time or it has noise. 

4.  Possible solutions are highly restricted, making 

it difficult even generating at least one feasible 

solution (i.e., satisfy the constraints of the 

problem).  

The constrained optimization problem can be 

represented as the following nonlinear programming 

problem [6]: 
 

   minimize f(x), x=(x1, …, xn)  R
n
     (1) 

 

where x F S. The objective function f is defined 

on the search space SR
n
 and the set F S defines 

the feasible region. Usually, the search space S is 

defined as an n-dimensional rectangle in R
n
 

(domains of variables defined by their lower and 

upper bounds): 

 lbi ≤ xi ≤ ubi,     1 ≤ i ≤ n  (2) 

the feasible region F S is defined by a set of m 

additional constraints: 

gj(x) ≤ 0, for j = 1, . . . , q 

hj(x) = 0, for j = q + 1, . . .,m.  (3) 
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Although the original ABC algorithm is a well-

performing optimization algorithm, we have noticed 

that the solution search method of ABC algorithm 

can be improved by better guided exploration. In 

order to improve the exploration phase we decided 

to use the information of the global best solution in 

the process of producing new candidate solution in 

the scout phase and to change a random approach. It 

should be pointed out that the use of global best 

solution has also been utilized by DE and PSO 

algorithms [7], [8]. 

 In this paper, we present enhancements of the 

artificial bee colony algorithm proposed by 

Karaboga and Basturk [9]. The organization of the 

remaining paper is as follows. Section 2 details the 

original ABC algorithm; Section 3 describes the 

basic theory of the constrained optimization. In 

Section 4 our modification is proposed and 

explained in detail. In Section 5 well-known 

constrained engineering problems are discussed and 

in Section 6 comparison experiments on the 

engineering optimization problems are performed to 

verify efficiency of our proposed approach over the 

traditional ABC algorithm. Our conclusions and 

future work are contained in the final Section 7. 

 

 

2 Pure ABC algorithm 
In the ABC algorithm, the colony of artificial bees 

contains three groups of bees: employed bees, 

onlookers and scouts. The number of employed bees 

is equal to the number of food sources and an 

employed bee is assigned to one of the sources. In 

the ABC algorithm, while onlookers and employed 

bees carry out the exploitation process in the search 

space, the scouts control the exploration process.  

The scouts are characterized by low search costs and 

a low average in food source quality [9]. In ABC 

algorithm, the position of a food source represents a 

possible solution to the optimization problem and 

the nectar amount of a food source corresponds to 

the quality (fitness) of the associated solution. An 

important difference between ABC and other swarm 

intelligence algorithms is that in the ABC, the 

solutions of the problem are represented by the food 

sources, not by the bees. The food source of which 

the nectar is abandoned by the bees is replaced with 

a new food source by the scouts which involves 

calculating a new solution at random. The employed 

bee of an abandoned food source becomes a scout.

 An onlooker bee chooses a food source 

depending on the probability value associated with 

that food source, pi, calculated by the following 

expression 





SN

n

n

i
i

fit

fit
p

1

   (4) 

where fiti is the fitness value of the solution i which 

is proportional to the nectar amount of the food 

source in the position i. 

In order to produce a candidate food solution 

from the old one in memory, the ABC uses the 

following expression 
 

)( ,,,,, jkjijijiji xxx     (5) 
 

where k  {1, 2,.., SN} and j  {1, 2,...,D} are 

randomly chosen indexes. If a solution cannot be 

improved further through a predetermined number 

of cycles, the food source will be abandoned. The 

value of predetermined number of cycles is an 

important control parameter of the ABC algorithm, 

which is called “limit” [9]. There are three main 

control parameters used in the ABC: the number of 

food sources which is equal to the number of 

employed or onlooker bees (SN), the value of limit, 

and the maximum cycle number. 

 

 

3 Constrained optimization problems 
In case of problems with constraints, a desired 

solution must be located in the feasible space F   S 

where feasibility means that the solution satisfies all 

the constraints. Most of the methods to solve 

constrained problems start with solutions that are 

outside of the feasible area and it is expected that, 

after some computational time these solutions reach 

the feasible area. 

 The first proposal to extend the ABC algorithm 

[9] to constrained spaces, used a constraint handling 

technique originally proposed for a genetic 

algorithm by Deb [10], [11]. Penalty function 

method is the most common approach in handling 

constraints. By adding a penalty term to the 

objective function, a constrained optimization 

problem is transformed into an unconstrained one. 

Based on the penalty function method, Deb has 

developed a constraint handling approach which 

does not require any penalty parameter. Deb’s 

method uses a tournament selection operator, where 

two solutions are compared at a time, and the 

following criteria are always enforced: 

1. Any feasible solution is preferred to any 

infeasible solution,  

2. Among two feasible solutions, the one having 

better objective function value is preferred,  

3. Among two infeasible solutions, the one having 

smaller constraint violation is preferred. 
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In order to adapt the ABC algorithm Karaboga has 

accepted Deb’s constrained handling method instead 

of the selection process (greedy selection) of the 

ABC algorithm. Pseudo-code [1] for the ABC 

algorithm for constrained optimization problems is:  
 

1. Initialize the population of solutions 

2. Evaluate the population 

3. cycle=1 

4. repeat 

5. Produce new solutions for the employed bees by 

using Eq. (6) and evaluate them 

  
 MRRxxx

otherwisexji
jjkjiji

ji
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6. Apply selection process based on Deb’s method  

7. Calculate the probability values Pi,j for the 

solutions xi,j using fitness of the solutions and 

the constraint violations (CV) by Eq. (7)  
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           where CV is defined by Eq. (8) 
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8. For each onlooker bee, produce a new solution 

υi by (4) in the neighborhood of the solution 

selected depending on pi and evaluate it 

9. Apply selection process between υi and xi based 

on Deb’s method 

10. Determine the abandoned solutions by using 

“limit” parameter fr the scout. If it exists, 

replace it with a new randomly produced 

solution by step 5 

  
)(*)1,0( minmaxmin

jjjj

i xxrandxx 
   (9)

 

11. Memorize the best solution achieved so far 

12. cycle = cycle+1 

13.  until cycle = MCN   
 

 

4 Guided ABC algorithm 
It is well known that both exploration and 

exploitation should be well balanced in any 

population-based optimization algorithm [12]. In 

ABC algorithm, the process of replacing abandoned 

food source is simulated by randomly producing a 

new solution, as seen in Eq. (5). The new solutions 

in scout phase of ABC algorithm are not based on 

the information of previous solutions or the global 

best solution. In practice, we noticed that after a 

certain number of cycles, solutions will approach 

the optimum value, hence the use of random 

solution given by Eq. (5) will be a step backwards. 

Inspired by original proposal in SAVPSO [8], we 

modify the solution search equation by applying the 

global best solution to guide the search of scout in 

order to improve the exploration. To handle 

constraints, in SAVPSO authors adopt their 

proposed dynamic-objective constraint-handling 

method. 
 The following three characteristics of the feasible 

region, which can be considered as some kind of 

knowledge about the feasible region, are responsible 

for the impact on the search behaviour of the 

particles [8]: 
 

1. The position of the feasible region with 

respect to the search space; 

2. The connectivity and the shape of the 

feasible region; 

3. The ratio |F|/|S| of feasible region to the 

search space. 
 

According to the characteristics above, in SAVPSO, 

the swarm is manipulated according to the following 

self-adaptive velocity equations: 
 

   vid(t+1) = ω|pi’d(t)-pid(t)|sign(vid(t)) +              (10) 
 

                 + r(pid(t) - xid(t)) + (1-r)(pgd(t)-xid(t)) 
 

  xid(t+1) = xid(t) + vid(t+1) 
 

where r ∈ U[0, 1], i’∈ intU[1, N], ω is a scaling 

parameter, and sign(vid (t)) is the sign of vid (t). The 

self-adaptive velocity formula consists of three 

parts. The first part is velocity of the particle. The 

second part is the “cognitive” part which represents 

personal thinking of itself - learning from its own 

flying experience. The third part is the “social” part 

which represents the collaboration among particles -

learning from group flying experience [8]. In the 

original ABC in scout phase new solution is 

generated by using a random approach, thus it is 

very difficult to generate a new solution that could 

be placed in the promising region of the search 

space. Our modified algorithm uses a different 

approach based on proposal utilized in [8]. Instead 

of generating a random solution based on Eq. (5), 

the scout will generate a new solution by adding the 

global experience information (xbest,j - the best global 

food source) to Eq. (5). A new solution will be 

generated by using information about the food 

source that is abandoned, the best global food 
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source and a randomly chosen food source as stated 

in Eq. (11): 
 

        
)(*)1()(* ,,,,,, jbestjijkjijiji xxxxx  
   (11)

 

 

 
 

 
 

Fig. 3: Possible directions for random scout solution  
 

The proposed modification will increase the 

capabilities of the ABC algorithm to produce new 

solutions located near the boundaries of the feasible 

region or if the best solution is feasible in the 

promising region by choosing direction based on the 

best global food source (Fig. 3). 

 

 

5 Engineering optimization problems 
In order to study the performance of solving the 

real-world engineering design problems, the 

proposed method is applied to 4 well-known 

constrained engineering problems: Pressure vessel, 

tension/compression spring, speed reducer and 

welded beam. The number of linear and nonlinear 

inequality constraints of the problems is given in 

Table 1. On constrained optimization problems, no 

single parameter (number of linear, nonlinear, active 

constraints, the ratio ρ = |F| / |S|, type of the 

function, number of variables) is proved to be 

significant as a major measure of difficulty of the 

problem [13].  
 

Problem LI NI 

Pressure vessel 3 1 

Tension/comp. spring 1 3 

Speed reducer 4 7 

Welded beam 2 5 
 

Table 1: Number of linear and nonlinear inequality 

constraints 
 

The pressure vessel problem is to design a 

compressed air storage tank with a working pressure 

of 3000 psi and a minimum volume of 750 ft
3
. A 

cylindrical vessel (Fig. 4) is capped at both ends by 

hemispherical heads. Using rolled steel plate, the 

shell is made in two halves that are joined by the 

longitudinal welds to form a cylinder. The objective 

is to minimize the total cost of material, forming and 

welding of a cylindrical vessel. The four design 

variables are x1 (thickness of the shell), x2 (thickness 

of the head), x3 (inner radius R) and x4 (length of the 

cylindrical section of the vessel, not including the 

head). x1 and x2 are to be in integral multiples of 

0.0625 inch which are the available thicknesses of 

rolled steel plates. The radius x3 and the length x4 

are continuous variables.   

 

Fig. 4: Pressure vessel design 
 

The tension/compression problem deals with 

minimizing of the weight of the tension/ 

compression spring subject to constraints on the 

minimum deflection, shear stress, surge frequency, 

diameter and design variables. This problem has a 

nonlinear objective function, a linear and three 

nonlinear inequality constraints. There are three 

continuous variables: the wire diameter x1 , the 

mean coil diameter x2 , and the number of active 

coils x3 . 
 

 
Fig. 5: Tension/compression spring 

 

The aim of the speed reducer design is to 

minimize the weights of the speed reducer subject to 

constraints on bending stress of the gear teeth, 

surface stress, transverse deflections of the shafts 
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and stresses in the shafts. The design of the speed 

reducer, is considered with the face width x1, 

module of teeth x2, number of teeth on pinion x3, 

length of the first shaft between bearings x4 , length 

of the second shaft between bearings x5 , diameter of 

the first shaft x6 , and diameter of the first shaft x7. 

All variables are continuous except x3 that is integer. 

Speed reducer problem has seven nonlinear and four 

linear constraints. 

 
 

Fig.6: Speed reducer 
 

Welded beam design problem is a standard test 

problem for constrained design optimization. The 

problem aims to minimize the cost of beam subject 

to constraints on shear stress, τ, bending stress in the 

beam, σ, buckling load on the bar, Pc, end deflection 

of the beam, δ, and side constraints. Welded beam 

design is illustrated in Fig. 7. This problem consists 

of a nonlinear objective function, five nonlinear and 

two linear inequality constraints. The solution is 

located on the boundaries of the feasible region.  

 
Fig. 7: Welded beam problem 

 

 

 

 

6 Parameter settings and results 

The performance of the GABC algorithm was 

compared with original ABC algorithm [14], 

particle swarm optimization (PSO) [15] and the 

evolution strategy [16]. We performed 30 

independent runs per problem. Our algorithm used 

the same parameters' values as original ABC 

algorithm: Swarm Size = 30, Maximum cycle 

number = 1000, Modification rate = 0.9. Our results 

were compared with respect to the best results 

reported in the specialized literature. Comparisons 

show that GABC outperforms or performs similarly 

to three state-of-the-art approaches in terms of the 

quality of the resulting solutions – Table 2. From the 

results, it can be concluded that GABC algorithm is 

a promising ABC modification for optimizing 

constrained engineering problems. 

 

 

7 Conclusions 
A new method named GABC is introduced in this 

paper, which improves the performance of the ABC 

algorithm by incorporating self-adaptive guidance 

method. The approach obtains competitive results 

on 4 well-known constrained engineering problems. 

From the comparative study our modified algorithm 

GABC has shown its potential to handle various 

constrained problems and its performance is much 

better than original ABC algorithm, so we can 

conclude that this mechanism does improve the 

robustness of the ABC. Thus, we consider our 

approach to be a viable choice for solving 

constrained engineering optimization problems, due 

to its simplicity, speed and reliability.  

As part of our future work, we are interested in 

exploring other constrained problems and in 

performing a more detailed statistical analysis of the 

performance of our proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Statistical results of the PSO, (μ + λ)-ES, ABC and GABC algorithms 

Problem Stats. PSO (μ + λ)-ES ABC GABC 

Pressure vessel Best  6059.714 6059.714 6059.714 6059.714 

 Mean 6289.928 6379.938 6245.308 6218.515 

 St. Dev 3.1E+02 2.1E+02 2.05.E+02 1.9 E+02 

Ten/comp. spring Best 0.012 0.012 0.0126 0.0126 

 Mean 0.012 0.013 0.0127 0.0127 

 St. Dev 4.1E-05 3.9E-04 1.28E-4 2.8E-4 

Speed reducer Best NA 2996.348 2997.058 2996.783 

 Mean NA 2996.348 2997.058 2996.783 

 St. Dev NA 0.000 0.000 0.000 

Welded beam Best NA 1.724 1.724 1.724 

 Mean NA 1.777 1.741 1.763 

 St. Dev NA 0.088 0.031 0.033 
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