
Performance comparison of Apriori and FP-Growth algorithms 
in generating association rules 

 
DANIEL HUNYADI 

Department of Computer Science 
”Lucian Blaga” University of Sibiu, Romania 

daniel.hunyadi@ulbsibiu.ro 
 

Abstract: In this article we present a performance comparison between Apriori and FP-Growth algorithms in 
generating association rules. The two algorithms are implemented in Rapid Miner and the result obtain from 
the data processing are analyzed in SPSS. The database used in the development of processes contains a series 
of transactions belonging to an online shop. 

 
Key-Words: Apriori, association rules, data mining, FP-Growth, frequent item sets 
 
 
1 Introduction 
     Having its origin in the analysis of the marketing 
bucket, the exploration of association rules 
represents one of the main applications of data 
mining. Their popularity is based on an efficiet data 
processing by means of algorithms. Being given a 
set of transactions of the clients, the purpose of the 
association rules is to find correlations between the 
sold articles. Knowing the associations between the 
offered products and services, helps those who have 
to take decisions to implement successful marketing 
techniques. 
     By means of the RapidMiner application we 
design several processes which generate frequent 
item sets, on the basis of which were then 
generated association rules. This article includes 
two processes, the first uses the Apriori algorithm 
and the second one uses the two algorithms FP-
Growth and Create Association Rules. 
       Based on the obtained results and using the 
same work hypothesis and comparative statistical 
interpretations, we issued hypotheses referring to 
performance, precision and accuracy of the two 
processes created. 
   The article is organized as fallows: in section 2 we 
present Apriori algorithm, in section 3 we present 
the FP-Growth algorithm, in sections 4 we present 
two process developed for generating association 
rules, in section 5 we present the statistical 
interpretation of results and in section 6 we present 
conclusions of the research. 
  
 
2 Apriori Algorithm  

The first algorithm to generate all frequent 
item sets and confident association rules was the 
AIS algorithm by Agrawal et al. [1], which was 

given together with the introduction of this mining 
problem. Shortly after that, the algorithm was 
improved and renamed Apriori by Agrawal et al., 
by exploiting the monotonicity property of the 
support of item sets and the confidence of 
association rules [2, 7].  

The items in transactions and item sets are 
kept sorted in their lexicographic order unless 
stated otherwise. The item set mining phase of the 
Apriori algorithm is given in Listing 1. I use the 
notation X[i], to represent the ith item in X. The k-
prefix of an item set X is the k-item set {X[1], . . . 
,X[k]} [5]. 
 
Listing 1. Apriori algorithm – Item set mining 

Input: D, minsupp 
Output: F 
   C1={{i}|i∈ I}; 
   k=1; 
   while Ck≠{} do{ 
      //Compute the supports of all  
      //candidate itemsets 
      forall transactions(tid,D)∈D 
         forall candidate itemsets X∈Ck 
             if ( X I⊆ ) 
                X.support++; 
      //Extract all frequent itemsets 
      Fk = {X|X.support ≥ minsupp} 

             //Generate new candidate itemsets       
forall X,Y ∈  Fk, X[i]=Y[i] for 1 ≤ i ≤ k-1,  
 and X[k}<Y[k]{ 
   { [ ]}I X Y k= ∪ ; 

          if ( ,| | , kJ I J k J F∀ ⊂ = ∈ ) 

  Ck+1= Ck+1∪ I; 
  } 
k++; 

 } 
The algorithm performs a breadth-first search 

through the search space of all item sets by 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 376



iteratively generating candidate item sets Ck+1 of 
size k+1, starting with k = 0. An item set is a 
candidate if all of its subsets are known to be 
frequent. More specifically, C1 consists of all 
items in I, and at a certain level k, all item sets of 
size k+1 are generated. This is done in two steps. 
First, in the join step, Fk is joined with itself. The 
union X Y∪ of item sets X,Y ∈Fk is generated if 
they have the same (k−1) - prefix. In the prune 
step, X Y∪ is only inserted into Ck+1 if all of its 
k-subsets occur in Fk. 

To count the supports of all candidate k-item 
sets, the database, which retains on secondary 
storage in the horizontal database layout, is 
scanned one transaction at a time, and the supports 
of all candidate item sets that are included in that 
transaction are incremented. All item sets that turn 
out to be frequent are inserted into Fk. 

If the number of candidate (k +1) - item sets is 
too large to retain into main memory, the 
candidate generation procedure stops and the 
supports of all generated candidates is computed 
as if nothing happened. But then, in the next 
iteration, instead of generating candidate item sets 
of size k +2, the remainder of all candidate (k+1) - 
item sets is generated and counted repeatedly until 
all frequent item sets of size k + 1 are generated. 

 
 
3 FP-Growth Algorithm 
     In order to store the data base in the primary 
storage and to calculate the support of all generated 
sets of articles, the FP/Growth algorithm uses a 
combination between the horizontal model and the 
vertical model of a database. Instead of saving the 
boundaries of each element from the database, the 
transactions of the database are saved in tree 
structure and each article has a pointer attached 
towards all transactions containing it. This new data 
structure, named FP-Tree was created by Han et al. 
[4].  

The FP Growth algorithm is presented in 
listing 2. 
 
Listing 2. FP-growth algorithm 

Input: D, minsupp, J ⊆ I 
Output: F[J] 
   F[J]={}; 
   forall i I∈  occurring in D { 
       F[J]=F[J]∪ {J∪ {i}}; 
       //Create Di;  
       Di={}; 
       H={}; 
       forall j I∈  occurring in D such that j>I   
             if (support(J∪ {i,j})≥minsupp) 

                 H=H ∪ {j};   
       forall (tid,X)∈D with i∈X 
             Di= Di ∪ {(tid,X ∩  H)};   
        //Depth-first recursion 
        Compute F[J ∪ {i}]; 
        F[J]=F[J]∪ F[J ∪ {i}]; 
   } 

 
     In the first step, the root of the tree is created and 
is labelled with „null”. For each transaction from the 
database, the articles are processed in reverse order. 
Each node from the structure will further contain a 
counter which saves the number of  transactions that 
have to deal with to that node. More precisely, if we 
consider that a branch must be added for a 
transaction, the counter of each node along the 
common prefix will be labelled with 1 and the node 
related to the articles from the transaction which 
follows the prefix are created and linked 
accordingly. Additionally, a table head is created for 
that article, so that each article points towards its 
appearances in the tree by means of several links. 
Each article from this table head will memorize the 
support of the article, too. The transactions are saved 
in the FP-tree structure in reverse order because the 
aim is to have a rather small tree size, the most 
frequent articles within the transactions being saved 
as close as possible to the root. 
      
 
4 Developing a series of processes for 
generating associations 
     The first process uses the Apriori algorithm to 
determine the frequent sets and to generate 
association rules based on the frequent sets 
discovered. The process is presented in figure 1. 
 

 
Fig. 1. Generating association rules by using the W-

Apriori algorithm 
 
     The second process uses the FP-Growth 
algorithm to determine the frequent item sets and 
the Create Association Rules algorithm to generate 
association rules based on the frequent item sets 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 377



discovered. The same data set was used as in the 
process presented in figure 1, namely the same 
values for minimum support and confidence. The 
process is presented in figure 2 [6]. 
 

 
Fig. 2. Generating association rules using the FP-Growth 

and the Association Rules algorithms 
 
     The frequent sets were generated by means of the 
FPGrowth algorithm. This algorithm calculates all 
frequent item sets, building a FP-Tree structure from 
a database of transactions. The FP-Tree structure is a 
very compressed copy of data which are stored in 
the memory. All frequent sets of articles are 
obtained from this structure. 
     A major advantage of the algorithm FP Growth 
compared to others of the same type is the fact that it 
uses only two scans of the data and it can be applied 
to larger data sets. The frequent sets of articles are 
searched for positive entries from the data base. The 
entry data set must contain only bionominal 
attributes. If the data contains other types of 
attributes preprocessing operators must be used to 
transform the data set. The necessary operators are 
the transformation operators which change the type 
of values from numerical attributes into nominal 
attributes and then from nominal attributes into 
binominal attributes. 
     The association rules were generated by means of 
the CreateAssociationRules operator. 
     The rule trust degree was used as generation 
degree. In RapidMiner the process of exploitation of 
frequent sets is divided into two parts, first are 
generated all frequent sets of articles after which are 
generated the association rules from the frequent 
sets. 
 
5 Statistical interpretations for 
comparing results 
     By means of statistical interpretations, were 

compared the results of the two generation processes 
of the association rules set previously developed, 
using the same entry data set and the same parameter 
values. 
     For data processing, the minimum support 
(min_support) took the values of 0.1 first and next of 
0.15, respectively of 0.2, and the confidence in the 
generated rules (min_confidence) took values from 
the set (0.1, 1.0). Based on all these premises was 
determined the number of associations resulted on 
each of the two processes built.  
     After the execution of the process developed 
through the FPGrowth and CreateAssociationRules 
algorithms, no matter of the variables min_support 
and min_confidence, were obtained more frequent 
sets than after the execution of the Apriori 
algorithm. The graphs in figure 3 represent the 
average of results of these algorithms in the case of 
different values of the variables min_support and 
min_confidence.  
 

support

.20.15.10

M
ea

n
1000

800

600

400

200

0

FP Grow th

Apriori

confidence

1.00
.95

.90
.85

.80
.75

.70
.65

.60
.55

.50
.45

.40
.35

.30
.25

.20
.15

.10

M
ea

n

700

600

500

400

300

200

100

0

FP Grow th

Apriori

 
Fig.3 The average of the processed results 

 
     In figure 3 the medium values are much higher at 
using the FPGrowth / CreateAssociationRules 
algorithms than at using the Apriori algorithm 
 
5.1 Distribution of values for the three values of 
the variable min_support 
     The statistical modeling requires to check for the 
state of normality of the used variables, this state 
being very important for the process of statistical 
inference. Thus, before performing the inference 
process, it is very important to determine whether 
the observed sample belongs to a normally 
distributed population, or not. 
     “One Sample Kolmogorov-Smirnov Test” is a 
formal method used to determine the distribution 
type of a variable (normal, uniform, exponential). 
Null hypothesis H0 means „variable distribution is 
normal”  and alternative hypothesis H1, „variable 
distribution differs from normal distribution”. 
     For each of the three values of the variable 
min_support one can observe a normal distribution 
of the values FPGrowth / CreateAssociationRules 
(p>0.05) and a normal distribution of the values 
Apriori for min_support = 0.1. The distribution 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 378



differs from the normal one in the case of the 
Apriori values where min_support=0.15 or 
min_support=0.2. 
 

 

 
 

 
 

Fig. 4: One Sample Kolmogorov-Smirnov Test for the 
values min_support 

 
     The result of this test is interpreted according to 
the value „Asymp”. Sig (2-tailed)” thus: 
• if this value is smaller than 0.1, the test is 90% 

reliable, i.e. the null hypothesis can be 
rejected at a trust level of 90% (this means 
that the distribution of the variable differs 
significantly from the normal distribution) 

• if this value is smaller than 0.05, the test is 
95% reliable, i.e. the null hypothesis can be 
rejected at a trust level of 95% (this means 
that the distribution of the variable differs 
significantly from the normal distribution). 
This is the standard criterion; 

• if this value is smaller than 0.01, the test is 
99% reliable, i.e. the null hypothesis can be 
rejected at a trust level of 99% (this means 

that the distribution of the variable differs 
significantly from the normal distribution). 

 
     If the value “Asymp. Sig (2-tailed)” is higher than 
0.05, null hypothesis is admitted, considering that 
the variable distribution is normal.  
     Before effectively applying this test we 
represented the histogram graph in the figures 5 and 
6 for the results of the two techniques applied in the 
construction of processes for the three different 
values of the variable min_support.   
 

FP Growth

1300.0
1200.0

1100.0
1000.0

900.0
800.0

700.0
600.0

500.0
400.0

SUPP:       .10
5

4

3

2

1

0

Std. Dev = 302.93  
Mean = 774.8

N = 19.00

FP Growth

400.0350.0300.0250.0200.0150.0100.0

SUPP:       .15
6

5

4

3

2

1

0

Std. Dev = 105.36  
Mean = 260.4

N = 19.00

 

FP Growth

220.0200.0180.0160.0140.0120.0100.080.060.0

SUPP:       .20
8

6

4

2

0

Std. Dev = 46.14  
Mean = 127.9

N = 19.00

 
Fig. 5: The histogram for the results of the process using 

the FPG / AR technique for the min_support values 
 

Apriori

25.020.015.010.05.00.0

SUPP:       .10
8

6

4

2

0

Std. Dev = 9.39  
Mean = 15.6

N = 19.00

Apriori

6.04.02.00.0

SUPP:       .15
12

10

8

6

4

2

0

Std. Dev = 2.41  
Mean = 4.2

N = 19.00

 

Apriori

2.001.501.00.500.00

SUPP:       .20
14

12

10

8

6

4

2

0

Std. Dev = .77  
Mean = 1.47

N = 19.00

 
Fig. 6: The histogram for the results of the Apriori 

technique for the min_support values. 
 
5.2 Comparison of the medium values of 
FPGrowth/CreateAssociationRules 
     “Anova Test” is a procedure applied to the 
independent samples (more than two samples with 
normal distribution) to verify if the average of 
several groups is equal. 
     It is considered null hypothesis H0: “there are no 
significant differences among the averages of the 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 379



groups” and alternative hypothesis H1: “there is 
significant difference among the averages of the 
groups”.  
     The results of this test are presented in two tables. 
The first table presents descriptive statistical 
elements of the variable for the two groups: 

• number of cases 
• averages 
• standard deviations 
• standard average error  

     The test results are interpreted according to the 
probability value “Sig”, from the second table: 

• if a value is smaller than 0.05, the test is 
95% reliable, this means the null hypothesis 
can be rejected at a trust level of 95% (the 
difference between the average of the two 
groups is statistically significant). 

• If a value is higher than 0.05, the null 
hypothesis is admitted: the difference 
between the averages of the two groups is 
not statistically significant. 

 

 

SUPP1

3.002.001.00

M
ea

n 
of

 F
P 

G
ro

w
th

1000

800

600

400

200

0

 
Fig. 7: Anova test results 

 
     In this situation one can observe a significant 
difference among the averages of the values 
FPGrowth / CreateAssociationRules considering the 
three values of the variable min_support (p<0.05). 
 
5.3 Comparison of the medium values of the 
Apriori technique  
     If there are more than two independent samples, 
which do not have a normal distribution, the 
“Kruskal-Wallis” test will be used, the test results 
being interpreted according to the probability value 

“Sig”, like the Anova test. 
     Here too, one can observe a significant difference 
among the average values resulted from the Apriori 
technique, regarding the three values of the 
min_support (p<0.05) variable. 

support

.20.15.10

M
ea

n 
Ap

rio
ri

18

16

14

12

10

8

6

4

2

0

 
 

Fig. 8: Kruskal-Wallis test results 
 

5.4 Correlations between the result values of the 
processes generated through the FPGrowth/ 
CreateAssociationRules technique  and the Apriori 
technique 
     Interpreting the graph in figure 9 one can observe 
a significant correlation between the FPGrowth / 
CreateAssociationRules values and the Apriori 
values, i.e, when the Apriori values rise, the 
FPGrowth / CreateAssociationRules values (p<0.05) 
increase as well. 

 

 

Apriori

3020100-10

FP
 G

ro
w

th

1400

1200

1000

800

600

400

200

0

 
Fig. 9: Correlations between the FPGrowth / 

CreateAssociationRules values and the Apriori values 
 
After applying the regression analysis, this relation 
will take the form of: 
     FPGrowth / CAR = 39.334 * Apriori + 108.991       (1) 
     The definite relation in (1) indicates the fact that 
we can preview the result of the FPGrowth / 
CreateAssociationRules (CAR) algorithm if we 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 380



know the result of the Apriori algorithm. More 
precisely, if the result value of the analysis is 50 for 
the Apriori algorithm, the result of the 
FPGrowth/CreateAssociationRules technique can be 
calculated according to the formula given below: 
                FPGrowth / CAR = 39.334 * 50 + 108.991   (2) 
 
     A significant correlation between the values 
FPGrowth/CreateAssociationRules and the Apriori 
values exists also in the case of the three values of the 
variable min_support, with the observation that 
together with the rising of the values of the variable 
min_support the correlation becomes weaker.  
 

 
SUPP:       .10

Apriori

3020100

FP
 G

ro
w

th

1400

1200

1000

800

600

400

200

 
Fig 10: Correlations between the result values on the two 

processes for the minimum support 0.1 
 
     In the above situation, the equation of the 
regression line is following: 
        FPGrowth / CAR = 31.007 * Apriori + 289.004       (3) 

   
 
6   Conclusion 
 
     The association rules play a major role in many 
data mining applications, trying to find interesting 
patterns in data bases. In order to obtain these 
association rules the frequent sets of articles must be 
previously generated. The most common algorithms 
which are used for this type of actions are the Apriori 
(which generate both frequent sets and association 
rules) and the FP-Growth / Create Association Rules 
(FP-Growth generates frequent sets of articles, which 

are then used by Create Association Rules to generate 
association rules).  
     Although the Apriori algorithm processes data in a 
different manner from the algorithms FPGrowth and 
Create Association Rules, eliminating the sets of 
articles which are not frequent (with a minimum 
support smaller than the minimum support specified), 
there is a significant correlation (p<0.05) between the 
results of the generated processes through the 
respective algorithms, made evident through the 
regression line, in the case support independent, 
respectively through the regression lines, in the case 
of the three variants of the min_support values. 
     
 
References: 
 
[1] R. Agrawal, T. Imielinski, and T. Swami. Mining 
association rules between sets of items in large 
databases. In Proc., ACM SIGMOD Conf. on 
Manag. of Data, pages 207–216, Washington, D.C., 
1993. 
[2] R. Agrawal and R. Srikant. Fast algorithms for 
mining association rules in large databases. In J. 
Bocca, M. Jarke, and C. Zaniolo, editors, Proc. Int. 
Conf. on Very Large Data Bases, pages 478–499, 
Santiago, Chile, 1994.  
[3] Craus M., Archip A., A Generalized Parallel 
Algorithm for Frequent Itemset Mining, Proceedings 
of the 12th WSEAS International Conference on 
Computers, Heraklion, Greece, 2008, pg. 520-523 
[4] Han J., Pei J., Yin Y. and Mao R., Mining 
frequent patterns without candidate generation: A 
frequent-pattern tree approach, Data Mining and 
Knowledge Discovery, 2003. 
[5] Daniel Hunyadi, Improvements of Apriori 
Algorithms, First International Conference on  
Modelling and Development of Intelligent Systems 
– MDIS, October 22-25, 2009, Sibiu, Romania, 
“Lucian Blaga” University Publishing House 
[6] Daniel Hunyadi, Rapid Miner E-Commerce, 
The 12th WSEAS International Conference on 
AUTOMATIC CONTROL, MODELLING & 
SIMULATION (ACMOS '10), Catania, Italy, 2010 
pg. 316-321 
[7] R. Srikant and R. Agrawal, Mining 
generalized association rules, 1999, pg. 407–419. 

Proceedings of the European Computing Conference

ISBN: 978-960-474-297-4 381




