Intelligent Control System for Artificial Arms Configuration

EDUARD FRANTI1, GHEORGHE STEFAN2, PAUL SCHIOPU2, TIBERIU BOROS3, ANCA PLAVITU3

1IMT Bucharest, Erou Iancu Nicolae street 32B, Bucharest, edif@atlas.cpe.pub.ro
2Politehnica University of Bucharest, Romania, gstefan@artsoc.ro
3Research Institute for Artificial Intelligence, Bucharest, Romania, aplavitu@artsoc.ro

Abstract—The current paper describes an intelligent control system for artificial arms configuration. The intelligent control system, was designed to configure the artificial arms in absence of a patient, for research, developing or testing purposes. Intelligent prosthesis consists in complex systems designed to interact both with the patient and with the physical environment in a way that reproduce normal human movements. The intelligent control system offers an important help in coordinate and control the movements of the artificial arms elements in accordance with the software modeled movements. The intelligent control system has been tested on a simple active artificial arm prototype and the results are presented.

Keywords—Intelligent Prosthesis, Virtual Environment, Software Aided Design, Prosthesis Simulation.

I. INTRODUCTION

The intelligent prosthesis' design emphasizes various problems that has to be solved in order to get both reliable and performance oriented solutions [1].

Restoring the functions of a taken off human arm is a difficult task, and most arms prosthesis are able to perform only the simplest functions of the missing natural arms [2].

However, it is expected that the technological progress shows its effects also in this area, assuring a breaking through these limitations and the improvement of the artificial arm, so that all the patients demands are fulfilled [3].

The research endeavors in the development of artificial arm take into consideration firstly its performance (including hardware and software points of view) and secondly, the prosthesis's true behavior both to the patient's straight commands (either through bio-signals, remote control or direct interplay) or indirect commands (e.g. the human walk's style and dynamic [2]) and to the environment's such commands (throughout sensors or resistance).

In the testing phase of artificial arm design, in order to reproduce the behavior of human arms, it is important to test the prosthesis using complex command signal sets, similar with myoelectric biosignals. This is the main purpose of the system presented in this paper.

II. THE MODELING AND CONTROL SYSTEM

The modeling and control system, which is the main subject of this paper, is designed to model, configure and control the intelligent prosthesis in absence of a patient, for research, developing or testing purposes. It offers a valuable help in determining the prosthesis' movements precision and reproducibility along with their conformity to the software modeled movements.

The system, consists of a Software component and specific interfaces to convert software data to human-like electric signals. The system allows a comparison between the real and simulated behaviours of the prostheses, aiming at solving the problems of the real prosthesis. The tests start only in a virtual environment, and, when the virtual prosthesis is free of errors, a real prosthesis is designed and its behaviour is compared to the behaviour of the virtual model.

The system allows connections to other additional programs, each of them covering a different aspect of limb simulation. For example, it is possible to analyze prosthesis according to the patient’s gender, age, height and weight.

Virtual patient/prosthesis application includes a graphic 3D module used for skeleton and humanoid representation. To reduce the quantity of graphical represented information without functionality regression the coordinate system associated to each bone is represented in a different color, like in the figure below.

Each bone is graphically represented starting from its parent bone coordinate system. The bone definition includes length and rotations with specified rotation angles around X, Y and Z axes of parent bone. The bone contains a new coordinate system is computed from started system. To reduce the graphical information but keep the functionality, each axis of the coordinate system is represented in different color.

The new system is translated with the bone length along Z axis and then rotated with specified angles around corresponding axes in order Y-rotation, X-rotation and Z-rotation. The software contains:

- a graphic 3D engine;
- an interactive system between the user and the graphic elements;
- a module for virtual prosthesis parameters administration;
- a module synchronizing the graphic scene components according to each new value of the prosthesis parameters;
- a set of functions for environment settings and design.

The software simulator for human body parts is an interactive open base for prosthesis design.

The 3D engine graphically shows a virtual prosthesis. We adopt two solutions for the engine:
- a powerful engine under DIRECTX [4, 5] creating a high quality scene;
- a less powerful engine, using VRML [1], enabling online tests.

The engine works under a WEB browser and it is accessible over the internet.

The software offers possibilities to design and simulate a prosthesis control system and a movement system in accordance with all the facilities of the prosthesis and with the patient’s assets.

The designed system comprises:
- a virtual environment. It allows generating, configuring and modifying different work environments for the testing of the prosthesis;
- a module allowing virtual prosthesis description. The users can create different prosthetic architectures according to the patient’s disability;
- a module allowing real prosthesis specifications. The module is necessary because the virtual prosthesis must have a behavior identical to the behavior of a real prosthesis, under the same simulated conditions (on different external stimulations). The virtual environment allows the connection to an external hardware which reads a set of virtual sensors corresponding to real sensors.
- a command module sending signals to a set of devices used in the movements of a real prosthesis, as a response to different kinds of external stimuli. The module works in real time and performs a continuous monitoring of the parameter states.
- a module implementing the control logic, usually by means of a software specification.
- a module for synchronizing and coordinating the evolution of the environment components.

In the figure below is shown the control used for bone definition. Each bone can be either a human bone or an equivalent bone used in prosthesis design.

First option is a control used for bone name. Each bone has length, start geometry and end geometry. Each of these consists in two radiiuses (one for X-axis and one for Y-axis). The rotation angle is limited between a minimal value and a maximal value. Also, the limits are used to compute output values. The association between a degree of freedom and a sensor value is modeled using a value differed by -1 in the “Sensor” field. The used sensor value can be normal (as is) or like binary complement (0 becomes 1 and 1 becomes 0). All these settings are grouped under the “Bone editor” control, presented in figure1.

The important advantage of this approach is high definition granularity, enough to create a correct skeleton for each patient, even if there are some asymmetries or bone deformation.

The entire skeleton that can be easily adapted to particular situation.

The application allows a very good skeleton representation. The “start” and “end” bone geometry are very useful because the final representation follows the human proportion.

In our application we create a start skeleton that can be easily adapted to particular situation.

Our efforts concerns legs representation, but we define all the body. A full representation gives us and to the patient a global image of the future body. Figure 2 contains different arms representation.

Also, the software is able to represent an amputated limb and associated prosthesis, as a replacement of a full limb. The prosthesis – adapter system, as an “artificial bone” which replaces the missing part of the bone, has an adequate (software adjustable) length, in order to restore the limb functionality.

The humanoid representation data is stored in an XML file. Each bone has a node with a parent bone and a set of child bones.
Each articulation is augmented with inferior and superior rotation limit and with a sensor identifier. Each sensor is identified in virtual prosthesis using a unique associated identification number. A sensor identifier can be used for many articulations to create complex movements.
Virtual sensors simulate the interaction between the elements of the prosthesis. Such sensors detect collisions between the elements of the prosthesis and block illegal movements. The sensors are supposed to be hardware implemented and send values to the control module.

The virtual sensors also simulate the interactions between the prosthesis and the environment. This type of sensors comprise two categories: the real sensors model (like the pressure sensors placed on the compression part) and events from the real world (collision sensors that overload the simulated engines effects and do not allow illegal movements).

These sensors capture the new prosthesis parameters as a result of the interaction between the user and the 3D engine, and manage the collision tests.

The process of movement learning uses these sensors to create databases with movement sequences correlated with a time scale. The sensors are used in the validation process of the movement equations.

III. THE PC-ARTIFICIAL ARM INTERFACES

These interfaces are designed to convert bones positions data, from virtual patient, to human-like electric myosignals, which are able to control the movements of an active intelligent prosthesis.

For the simple artificial arms tested in this work, the sensors were configured to have the reference value corresponding to a digital offset of 0.5. The minimum sensor value corresponds to digital 0 and maximum to 1. This configuration is useful for the particular case of this prosthesis design and prevents the controller to work with negative values. Additionally, in the controller there are implemented some auto-calibration facilities which permit to translate to the best reference the values given by sensors’ signals, correcting some errors and adaptation to some specific conditions.

IV. THE SYNCHRONIZATION MODULE

The middleware of the system is represented by the synchronization module. It interconnects all other modules. The entire real prosthesis or only parts of it are connected to the system, by using a hardware interface.

For testing, we use a kit of Velleman K8000 [7] connected to parallel port. The kit has 16 digital IO, 8 analog outputs and 4 analog inputs. The prosthesis model is implemented by using the virtual prosthesis editor.

The system synchronizes the real and the virtual prosthesis. Any adjustment of virtual prosthesis is transmitted to the real prosthesis and vice versa.

The movements of the real prosthesis are detected by the system and transmitted automatically to the prosthesis design which computes the new attributes of the model. The synchronization module sends new attributes as parameters to the graphics engine which repaints the graphic scene according to the real model.

Similarly, the interaction between the operator and the graphics engine triggers the modification of the scene, the synchronization module sends the new parameters of the virtual prosthesis to the model, the model computes appropriate commands that are transmitted by using the synchronization module and the hardware interface modifies the parameters of the real prosthesis.

Thus, all the time, the real prosthesis and the virtual prosthesis are in the same state.

The system allows the storage of a set of movement sequences received from the real or the virtual prosthesis. This set of sequences can be transmitted to the real prosthesis, or to the virtual prosthesis, or to both, at the same time, at any time.

V. EVALUATION AND TESTS

For the simple artificial arms we made some tests related to the movements’ conformity with Virtual patient model and also on the auto-calibration facility of the PC-Artificial arm Interface.

In figure 5 are presented the testing results obtain for virtual artificial arm configuration.

The simple artificial arm was proved to be able to follow the positions changes applied to the model.
VI. CONCLUSION

A software-hardware system designed for intelligent prosthesis configuration and testing, under research and developing conditions, was developed, described and tested under different circumstances.

Physical tests were made on simple active leg prosthesis, able to reproduce the movements of a human leg, with no load or under light one. Also, auto-calibration tests were run on the PC-Artificial arm Interface, to verify its ability to adapt to sensor conditions changes.

Both types of tests were successful and we concluded that the system development effort was useful and the research results are very promising.

Acknolegement: The work of this paper was done with financial support from POSDRU/89/1.5/S/63700 project.

REFERENCES

References:
[14] Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults, Urs Granacher, Irene Wolf, Anja Wehrle, Stephanie Bridenbaugh, Reto W Kressig, Journal of NeuroEngineering and Rehabilitation 2010,
[15] Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation, Mónica S Caneirão, Sergi Bermúdez i Badia, Esther Duarte Oller, Paul FMJ Verschure, Journal of NeuroEngineering and Rehabilitation 2010